Skip to main content

Global mercury modelling at Environment Canada

  • Chapter
  • First Online:
Mercury Fate and Transport in the Global Atmosphere

Summary

We describe the recent developments of Environment Canada's atmospheric mercury model (GRAHM) and its application to the intercontinental source-receptor relationships of mercury. The model includes 2188 Mg yr-1 global anthropogenic emissions, 1600 Mg yr-1 terrestrial emissions and 2600 Mg yr-1 oceanic emissions). Transport, chemical transformation and deposition of Hg0, Hg(II) and Hg(p) are simulated in GRAHM within a meteorological assimilation and forecasting system. Current version of the GRAHM includes GEM oxidation by ozone in the troposphere and halogen oxidation in the Polar and the marine boundary layers. It also includes dynamic exchange of mercury fluxes at air-snow/ice interface. The model simulates springtime atmospheric mercury depletion events (AMDEs) and the net accumulation of mercury in snow in the Polar Regions. We performed one reference simulation with emissions as above and four perturbation simulations with 20% reduced anthropogenic emissions over East Asia, South Asia, Europe and North Africa and North America. 20% reduction in anthropogenic emissions of mercury over East Asia, South Asia, Europe and North Africa and North America represent 7.7%, 1.6%, 2.5% and 1.3% reduction in global anthropogenic emissions respectively. The deposition over East Asia, South Asia, Europe and North America are reduced by 13.5%, 7.9%, 8.3% and 4.3% due to the emission reductions within the same regions. Deposition in North America is found to be most affected by the emission reductions in other regions and the deposition in East Asia is least affected by outside reductions. The deposition in the Arctic is nearly equally sensitive to the unit emission reductions in Europe and East Asia and is most sensitive in springtime due to the high deposition related to AMDEs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

17.5 References

  • Ariya, P., A. Dastoor, M. Amyot, W. Schroeder, L. Barrie, K. Anlauf, F. Raofie, A. Ryzhkov, D. Davignon, J. Lalonde, A. Steffen, 2004. Arctic: A sink for mercury. Tellus, 56B, 397–403.

    CAS  Google Scholar 

  • Calvert, J.G., S.E. Lindberg, 2005. Mechanisms of mercury removal by O3 and OH in the atmosphere. Atmospheric Environment, 39, 3355–3367.

    Article  CAS  Google Scholar 

  • Dastoor, A.P., Y. Larocque, 2004. Global circulation of atmospheric mercury: A modeling study. Atmospheric Environment, 38, 147–161.

    Article  CAS  Google Scholar 

  • Dastoor, A.P., D. Davignon, N. Theys, M. Roozendael, A. Steffen and P.A. Ariya, 2008. Modeling Dynamic Exchange of Gaseous Elemental Mercury at Polar Sunrise. Environmental Science and Technology (in press).

    Google Scholar 

  • Donohoue, D.L., D. Bauer, B. Cossairt, and A. J. Hynes, 2006. Temperature and pressure dependent rate coefficients for the reaction of Hg with Br and the reaction of Br with Br: A pulsed laser photolysis-pulsed laser induced fluorescence study. Journal Physical Chemistry A, 110, 6623–6632.

    Article  CAS  Google Scholar 

  • Hall, B., 1995. The gas phase oxidation of elemental mercury by ozone. Water, Air, and Soil Pollution, 80, 301–315.

    Article  CAS  Google Scholar 

  • Hammerschmidt CR, W.F. Fitzgerald, 2004. Geochemical controls on the production and distribution of methylmercury in near-shore marine sediments. Environmental Science and Technology, 38, 1487−1495.

    Article  CAS  Google Scholar 

  • Horowitz, L. W., S. Walters, D. L. Mauzerall, L. K. Emmons, P.J. Rasch, C. Granier, X. Tie, J.-F. Lamarque, M.G. Schultz, G.P. Brasseur, 2003. A global simulation of tropospheric ozone and related tracers : Description and evaluation of MOZART, version 2, Journal of Geophysical Research , 108(D24), 4784, doic 10.1029/2002JD002853.

    Article  CAS  Google Scholar 

  • Jaffe, D., E. Prestbo, P. Swartzendruber, P. Weiss-Penzias, S. Kato, A. Takami, S. Hatakeyama and Y. Kajii, 2005, Export of atmospheric mercury from Asia. Atmospheric Environment, 39, 3029–3038.

    Article  CAS  Google Scholar 

  • Kirk, J.L., V.L. St. Louis, M.J. Sharp, 2006. Rapid reduction and reemission of mercury deposited into snowpacks during atmospheric mercury depletion events at Churchill, Manitoba, Canada. Environmental Science and Technology, 40, 7590–7596.

    Article  CAS  Google Scholar 

  • Laurier, F. J. G., R. P. Mason, L. Whalin, S. Kato, 2003. Reactive gaseous mercury formation in the North Pacific Ocean's marine boundary layer: A potential role of halogen chemistry. Journal of Geophysical Research, 108, D17, art # 4529.

    Article  CAS  Google Scholar 

  • Lin, C.-J., P. Pongprueksa, S.E. Lindberg, S.O. Pehkonen, D. Byun, C. Jang, 2006. Scientific uncertainties in atmospheric mercury models I: Model science evaluation. Atmospheric Environment, 40, 2911–2928.

    Article  CAS  Google Scholar 

  • Mason, R. P., G.-R Sheu, 2002. The role of the ocean in the global mercury cycle. Global Biogeo. Cycles, 16, art. # 1093.

    CAS  Google Scholar 

  • Outridge, P.M., R.W. Macdonald, F. Wang, G.A. Stern and A.P. Dastoor, 2008. A mass balance inventory of mercury in the Arctic Ocean. Environmental Chemistry, 5, 89–111. doi:10.1071/EN08002.

    Article  CAS  Google Scholar 

  • Pacyna, E. G., Pacyna, J. M., Steenhuisen, F., Wilson, S., 2006. Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, 40, 4048–4063.

    Article  CAS  Google Scholar 

  • Poulain, A.J., J.D. Lalonde, M. Amyot, J.A. Shead, F. Raofie, P.A. Ariya, 2004. Redox transformations of mercury in an Arctic snowpack at springtime. Atmospheric Environment, 38, 6763–6774.

    Article  CAS  Google Scholar 

  • Steffen, A., Douglas, T., Amyot, M., Ariya, P., Aspmo, K., Berg, T., Bottenheim, J., Brooks, S., Cobbett, F., Dastoor, A., Dommergue, A., Ebinghaus, R., Ferrari, C., Gardfeldt, K., Goodsite, M.E., Lean, D., Poulain, A., Scherz, C., Skov, H.,Sommar, J., Temme, C., 2008. A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow. Atmospheric Chemistry and Physics, 8, 1445–1482.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag New York

About this chapter

Cite this chapter

Dastoor, A.P., Davignon, D. (2009). Global mercury modelling at Environment Canada. In: Mason, R., Pirrone, N. (eds) Mercury Fate and Transport in the Global Atmosphere. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-93958-2_17

Download citation

Publish with us

Policies and ethics