Skip to main content

Malignancy of the Bone: Primary Tumors, Lymphoma, and Skeletal Metastases

  • Chapter
  • First Online:
Hybrid PET/CT and SPECT/CT Imaging

Abstract

Most malignant skeletal lesions initiate intramedullary. As the intramedullary malignant deposit enlarges, the surrounding bone undergoes osteoclastic and osteoblastic activity. Tumor cells may destroy bone directly or produce mediators that stimulate reabsorption by osteoclasts.1Based on the balance between the two processes, the radiographic appearance of a malignant skeletal lesion may be lytic, blastic, or mixed.2Detection of malignant skeletal involvement is based on either direct visualization of tumor cells or of the secondary reaction of the bone to the present malignant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roodman GD. Mechanisms of bone metastasis. N Engl J Med 2004;350:1655–1664.

    Article  CAS  PubMed  Google Scholar 

  2. Padhani A, Husband J. Bone metastases. In Husband JES, Reznek RH, (eds): Imaging in Oncology.Oxford, UK: Isis Medical Media Ltd., 1998: 765–787.

    Google Scholar 

  3. Blake GM, Park-Holohan SJ, Cook GJ, Fogelman I. Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate.Semin Nucl Med 2001;31:28–49.

    CAS  Google Scholar 

  4. Cook GJ, Fogelman I. The role of positron emission tomography in skeletal disease. Semin Nucl Med 2001;31:50–61.

    Article  CAS  PubMed  Google Scholar 

  5. Even-Sapir E. Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J Nucl Med 2005;46:1356–1367.

    PubMed  Google Scholar 

  6. Hamaoka T, Madewell JE, Podoloff DA, Hortobagyi GN, Ueno NT. Bone imaging in metastatic breast cancer. J Clin Oncol 2004; 22:2942–2953.

    Article  PubMed  Google Scholar 

  7. Liu FY, Chang JT, Wang HM, Liao CT, Kang CJ, Ng SH, Chan SC, Yen TC. [18F]fluorodeoxyglucose positron emission tomography is more sensitive than skeletal scintigraphy for detecting bone metastases in endemic nasopharyngeal carcinoma at initial staging. J Clin Oncol 2006;24:599–604.

    Article  PubMed  Google Scholar 

  8. Cook GJ, Fogelman I. The role of positron emission tomography in the management of bone metastases. Cancer 2000; 88:2927–2933.

    Article  CAS  PubMed  Google Scholar 

  9. Cook GJ, Houston S, Rubens R, Maisey MN, Fogelman I. Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol 1998;16:3375–3379.

    CAS  PubMed  Google Scholar 

  10. Moog F, Bangerter M, Kotzerke J, Guhlmann A, Frickhofen N, Reske SN. 18-F-fluorodeoxyglucose-positron emission tomography as a new approach to detect lymphomatous bone marrow. J Clin Oncol 1998;16:603–609.

    CAS  PubMed  Google Scholar 

  11. Even-Sapir E, Lievshitz G, Perry C, Herishanu Y, Lerman H, Metser U. Fluorine-18 fluorodeoxyglucose PET/CT patterns of extranodal involvement in patients with Non-Hodgkin lymphoma and Hodgkin's disease. Radiol Clin North Am 2007;45:697–709.

    Article  PubMed  Google Scholar 

  12. Durie BG. The role of anatomic and functional staging in myeloma: description of Durie/Salmon plus staging system. Eur J Cancer 2006;42:1539–1543.

    Article  PubMed  Google Scholar 

  13. Adam Z, Bolcak K, Stanicek J, Buchler T, Pour L, Krejci M, Prasek J, Neubauer J, Vorlicek J, Hajek R. Fluorodeoxyglucose positron emission tomography in multiple myeloma, solitary plasmocytoma and monoclonal gammapathy of unknown significance. Neoplasma 2007;54:536–540.

    CAS  PubMed  Google Scholar 

  14. Israel O, Goldberg A, Nachtigal A, Militianu D, Bar-Shalom R, Keidar Z, Fogelman I. FDG-PET and CT patterns of bone metastases and their relationship to previously administered anti-cancer therapy. Eur J Nucl Med Mol Imaging 2006;33:1280–1284.

    Article  PubMed  Google Scholar 

  15. Du Y, Cullum I, Illidge TM, Ell PJ. Fusion of metabolic function and morphology: Sequential [18F]Fluorodeoxyglucose positron-emission tomography /computed tomography studies yield new insights into the natural history of bone metastases in breast cancer. J Clin Oncol 2007;25:3440–3447.

    Article  PubMed  Google Scholar 

  16. Kazama T, Swanston N, Podoloff DA, Macapinlac HA. Effect of colony-stimulating factor and conventional- or high-dose chemotherapy on FDG uptake in bone marrow. Eur J Nucl Med Mol Imaging 2005;32:1406–1411.

    Article  CAS  PubMed  Google Scholar 

  17. Kostakoglu L, Hardoff R, Mirtcheva R, Goldsmith SJ. PET/CT Fusion imaging in differentiating physiologic from pathologic FDG uptake. Radiographics 2004;24:1411–1431.

    Article  PubMed  Google Scholar 

  18. Metser U, Lerman H, Blank A, Lievshitz G, Bokstein F, Even-Sapir E. Malignant involvement of the spine: assessment by 18F-FDG PET/CT. J Nucl Med 2004;45:279–284.

    PubMed  Google Scholar 

  19. Schulte M, Brecht-Krauss D, Heymer B, Guhlmann A, Hartwig E, Sarkar MR, Diederichs CG, Von Baer A, Kotzerke J, Reske SN. Grading of tumors and tumorlike lesions of bone: evaluation by FDG PET. J Nucl Med 2000;41:1695–701.

    CAS  PubMed  Google Scholar 

  20. Pezeshk P, Sadow CA, Winalski CS, Lang PK, Ready JE, Carrino JA. Usefulness of 18F-FDG PET-directed skeletal biopsy for metastatic neoplasm. Acad Radiol 2006;13:1011–1015.

    Article  PubMed  Google Scholar 

  21. Lodge MA, Lucas JD, Marsden PK, Cronin BF, O'Doherty MJ, Smith MA. A PET study of 18FDG uptake in soft tissue masses. Eur J Nucl Med 1999;26:22–30.

    Article  CAS  PubMed  Google Scholar 

  22. Brenner W, Bohuslavizki KH, Eary JF. PET imaging of osteosarcoma. J Nucl Med 2003;44:930–942.

    PubMed  Google Scholar 

  23. Cotterill SJ, Ahrens S, Paulussen M, Jürgens HF, Voûte PA, Gadner H, Craft AW. Prognostic factors in Ewing’s tumor of bone: analysis of 975 patients from the European Intergroup Cooperative Ewing’s Sarcoma Study Group. J Clin Oncol 2000;18:3108–3114.

    CAS  PubMed  Google Scholar 

  24. Franzius C, Daldrup-Link HE, Wagner-Bohn A, Sciuk, J, Heindel WL, Jürgens H, Schober O. FDG-PET for detection of recurrences from malignant primary bone tumors: comparison with conventional imaging. Ann Oncol 2002;13:157–160.

    Article  CAS  PubMed  Google Scholar 

  25. Hawkins DS, Rajendran JG, Conrad EU 3rd, Bruckner JD, Eary JF. Evaluation of chemotherapy response in pediatric bone sarcomas by [F-18]-fluorodeoxy-D-glucose positron emission tomography. Cancer 2002;94:3277–3284.

    Article  CAS  PubMed  Google Scholar 

  26. Cheran SK, Herndon JE, Patz EF. Comparison of whole-body FDG-PET to bone scan for detection of bone metastases in patients with a new diagnosis of lung cancer. Lung Cancer 2004; 44:317–325.

    Article  PubMed  Google Scholar 

  27. Fogelman I, Cook G, Israel O, Van der Wall H. Positron emission tomography and bone metastases. Semin Nucl Med 2005;35:135–142.

    Article  PubMed  Google Scholar 

  28. Langsteger W, Heinisch M, Fogelman I. The role of fluorodeoxyglucose, 18F-dihydroxyphenylalanine, 18F-choline, and 18F-fluoride in bone imaging with emphasis on prostate and breast. Semin Nucl Med 2006;36:73–92.

    Article  PubMed  Google Scholar 

  29. Nakai T, Okuyama C, Kubota T, Yamada K, Ushijima Y, Taniike K, Suzuki T, Nishimura T. Pitfalls of FDG-PET for the diagnosis of osteoblastic bone metastases in patients with breast cancer. Eur J Nucl Med Mol Imag 2005;32:1253–1258.

    Article  Google Scholar 

  30. Abe K, Sasaki M, Kuwabara Y, Koga H, Baba S, Hayashi K, Nakahashi N, Honda H. Comparison of 18FDG-PET with 99mTc-HMDP scintigraphy for the detection of bone metastases in patients with breast cancer. Ann Nucl Med 2005;19:573–579.

    Article  PubMed  Google Scholar 

  31. Port ER, Yeung H, Gonen M, Liberman L, Caravelli J, Borgen P, Larson S. (18)F-2-fluoro-2-deoxy-d: -glucose positron emission tomography scanning affects surgical management in selected patients with high-risk, operable breast carcinoma. Ann Surg Oncol 2006;13:677–684.

    Article  PubMed  Google Scholar 

  32. Kazama T, Faria SC, Varavithya V, Phongkitkarun S, Ito H, Macapinlac HA. FDG PET in the evaluation of treatment for lymphoma: clinical usefulness and pitfalls. Radiographics 2005;25:191–207.

    Article  PubMed  Google Scholar 

  33. Pakos EE, Fotopoulos AD, Ioannidis JP. 18F-FDG PET for evaluation of bone marrow infiltration in staging of lymphoma: A meta-analysis. J Nucl Med 2005;46:958–963.

    PubMed  Google Scholar 

  34. Schaefer NG, Strobel K, Taverna C, Hany TF. Bone involvement in patients with lymphoma: The role of FDG-PET/CT. Eur J Nucl Med Mol Imaging 2007;34:60–67.

    Article  PubMed  Google Scholar 

  35. Baehring JM, Damek D, Martin EC, Betensky RA, Hochberg FH. Neurolymphomatosis. Neuro-Oncology 2003;5:104–115.

    PubMed  Google Scholar 

  36. Heyning FH, Kroon HM, Hogendoorn PC, Taminiau AH, van der Woude HJ. MR imaging characteristics in primary lymphoma of bone with emphasis on non-aggressive appearance. Skeletal Radiol 2007;36:937–944.

    Article  PubMed  Google Scholar 

  37. Durie BG., Waxman AD, D'Agnolo A, Williams CM. Whole-body 18F-FDG PET identifies high-risk myeloma. J Nucl Med 2002;43:1457–1463.

    PubMed  Google Scholar 

  38. Schirrmeister H, Bommer M, Buck AK, Müller S, Messer P, Bunjes D,. Döhner H, Bergmann L, Reske S. Initial results in the assessment of multiple myeloma using F-18 FDG PET. Eur J Nucl Med Mol Imag 2002;29:361–366.

    Article  CAS  Google Scholar 

  39. Daldrup-Link HE, Franzius C, Link TM, Laukamp D, Sciuk J, Jürgens H, Schober O, Rummeny EJ. Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR 2001;177:229–236.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Einat Even-Sapir MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Even-Sapir, E., Flusser, G., Blachar, A. (2010). Malignancy of the Bone: Primary Tumors, Lymphoma, and Skeletal Metastases. In: Delbeke, D., Israel, O. (eds) Hybrid PET/CT and SPECT/CT Imaging. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92820-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-92820-3_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-92819-7

  • Online ISBN: 978-0-387-92820-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics