Skip to main content

Applications to Rings of Quotients and C-Algebras

  • Chapter
Extensions of Rings and Modules

Abstract

The focus of the final chapter of the book is on applications of the ideas and results developed in earlier chapters to Functional Analysis and Ring Theory. The chapter begins with the development of necessary and sufficient conditions on a ring so that its maximal right ring of quotients can be decomposed into a direct products of indecomposable rings or into a direct products of prime rings. This relies on results on the idempotent closure class of rings discussed in Chap. 8 and a dimension on bimodules introduced in this chapter. As an application, a quasi-Baer ring hull of a semiprime ring with only finitely many minimal prime ideals is shown to be a finite direct sum of prime rings. Conditions for a ∗-ring to become a Baer ∗-ring or a quasi-Baer ∗-ring are discussed. The quasi-Baer ∗-ring property is shown to transfer from a ring to its various polynomial extensions. Self-adjoint ideals in Baer ∗-rings and quasi-Baer ∗-rings are examined. In applications to the study of C -algebras, it is shown that a unital C -algebras A is boundedly centrally closed if and only if A is a quasi-Baer ring. The local multiplier algebra of a C -algebras is shown to be always quasi-Baer. Characterizations of C -algebras whose local multiplier algebras are C -direct products of prime C -algebras are provided. The quasi-Baer property is discussed for a C -algebras A with a finite group G of -automorphisms in terms of the skew group ring A G and the fixed ring. Finally, C -algebras satisfying a polynomial identity with only finitely many minimal prime ideals are characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amitsur, S.A.: On rings of quotients. Symp. Math. 8, 149–164 (1972)

    MathSciNet  Google Scholar 

  2. Andrunakievic, V.A., Rjabuhin, Ju.M.: Rings without nilpotent elements and completely simple ideals. Sov. Math. Dokl. 9, 565–568 (1968)

    Google Scholar 

  3. Ara, P.: Centers of maximal quotient rings. Arch. Math. 50, 342–347 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ara, P.: The extended centroid of C -algebras. Arch. Math. 54, 358–364 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ara, P.: On the symmetric algebra of quotients of a C -algebra. Glasg. Math. J. 32, 377–379 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ara, P., Mathieu, M.: A local version of the Dauns-Hofmann theorem. Math. Z. 208, 349–353 (1991)

    Article  MathSciNet  Google Scholar 

  7. Ara, P., Mathieu, M.: An application of local multipliers to centralizing mappings of C -algebras. Q. J. Math. Oxf. 44, 129–138 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ara, P., Mathieu, M.: On the central Haagerup tensor product. Proc. Edinb. Math. Soc. 37, 161–174 (1993)

    Article  MathSciNet  Google Scholar 

  9. Ara, P., Mathieu, M.: Local Multipliers of C -Algebras. Springer Monographs in Math. Springer, London (2003)

    Book  Google Scholar 

  10. Armendariz, E.P., Birkenmeier, G.F., Park, J.K.: Ideal intrinsic extensions with connections to PI-rings. J. Pure Appl. Algebra 213, 1756–1776 (2009). Corrigendum 215, 99–100 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Beidar, K.I.: Rings with generalized identities I, II. Mosc. Univ. Math. Bull. 32, 15–20; 27–33 (1977)

    Google Scholar 

  12. Berberian, S.K.: Baer ∗-Rings. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

  13. Birkenmeier, G.F., Park, J.K.: Self-adjoint ideals in Baer ∗-rings. Commun. Algebra 28, 4259–4268 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Birkenmeier, G.F., Kim, J.Y., Park, J.K.: Polynomial extensions of Baer and quasi-Baer rings. J. Pure Appl. Algebra 159, 25–42 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Birkenmeier, G.F., Park, J.K., Rizvi, S.T.: Ring hulls of semiprime homomorphic images. In: Brzeziński, T., Gómez-Pardo, J.L., Shestakov, I., Smith, P.F. (eds.) Modules and Comodules. Trends in Math., pp. 101–111. Birkhäuser, Boston (2008)

    Chapter  Google Scholar 

  16. Birkenmeier, G.F., Park, J.K., Rizvi, S.T.: The structure of rings of quotients. J. Algebra 321, 2545–2566 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Birkenmeier, G.F., Park, J.K., Rizvi, S.T.: Hulls of semiprime rings with applications to C -algebras. J. Algebra 322, 327–352 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Birkenmeier, G.F., Park, J.K., Rizvi, S.T.: Modules with FI-extending hulls. Glasg. Math. J. 51, 347–357 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Birkenmeier, G.F., Park, J.K., Rizvi, S.T.: Principally quasi-Baer ring hulls. In: Huynh, D.V., López-Permouth, S.R. (eds.) Advances in Ring Theory. Trends in Math., pp. 47–61. Birkhäuser, Boston (2010)

    Chapter  Google Scholar 

  20. Blackadar, B.: Operator Algebras, Theory of C -Algebras and von Neumann Algebras. Encyclopaedia Math. Sciences. Springer, Berlin (2006)

    Google Scholar 

  21. Busby, R.C.: Double centralizers and extensions of C -algebras. Trans. Am. Math. Soc. 132, 79–99 (1968)

    MathSciNet  MATH  Google Scholar 

  22. Davidson, K.R.: C -Algebra by Example. Fields Institute Monograph, vol. 6. Amer. Math. Soc., Providence (1996)

    Google Scholar 

  23. Dixmier, J.: C -Algebras. North-Holland, Amsterdam (1977)

    Google Scholar 

  24. Doran, R.S., Belfi, V.A.: Characterizations of C -Algebras: The Gelfand-Naimark Theorems. Marcel Dekker, New York (1986)

    Google Scholar 

  25. Elliott, G.A.: Automorphisms determined by multipliers on ideals of a C -algebra. J. Funct. Anal. 23, 1–10 (1976)

    Article  MATH  Google Scholar 

  26. Goodearl, K.R.: Prime ideals in regular self-injective rings. Can. J. Math. 25, 829–839 (1973)

    Article  MathSciNet  Google Scholar 

  27. Goodearl, K.R.: Von Neumann Regular Rings. Krieger, Malabar (1991)

    MATH  Google Scholar 

  28. Goodearl, K.R., Handelman, D.E., Lawrence, J.W.: Affine Representations of Grothendieck Groups and Applications to Rickart C-Algebras and ℵ0-Continuous Regular Rings. Memoirs, vol. 234. Amer. Math. Soc., Providence (1980)

    Google Scholar 

  29. Jain, S.K., Lam, T.Y., Leroy, A.: On uniform dimensions of ideals in right nonsingular rings. J. Pure Appl. Algebra 133, 117–139 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jin, H.L., Doh, J., Park, J.K.: Group actions on quasi-Baer rings. Can. Math. Bull. 52, 564–582 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras, Vol. I: Elementary Theory. Graduate Studies in Math., vol. 15. Amer. Math. Soc., Providence (1997)

    MATH  Google Scholar 

  32. Kaplansky, I.: Projections in Banach algebras. Ann. Math. 53, 235–249 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kaplansky, I.: Rings of Operators. Benjamin, New York (1968)

    MATH  Google Scholar 

  34. Lam, T.Y.: Lectures on Modules and Rings. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  35. Maeda, S., Holland, S.S. Jr.: Equivalence of projections in Baer ∗-rings. J. Algebra 39, 150–159 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mathieu, M.: The local multiplier algebra: blending noncommutative ring theory and functional analysis. In: Brzeziński, T., Gómez-Pardo, J.L., Shestakov, I., Smith, P.F. (eds.) Modules and Comodules. Trends in Math., pp. 301–312. Birkhäuser, Boston (2008)

    Chapter  Google Scholar 

  37. Montgomery, S.: Outer automorphisms of semi-prime rings. J. Lond. Math. Soc. 18, 209–220 (1978)

    Article  MATH  Google Scholar 

  38. Palmer, T.W.: Banach Algebras and the General Theory of ∗-Algebras, Vol. I: Algebras and Banach Algebras. Cambridge Univ. Press, Cambridge (1994)

    Book  Google Scholar 

  39. Passman, D.S.: The Algebraic Structure of Group Rings. Wiley, New York (1977)

    MATH  Google Scholar 

  40. Pedersen, G.K.: Approximating derivations on ideals of C -algebras. Invent. Math. 45, 299–305 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pedersen, G.K.: Multipliers of AW -algebras. Math. Z. 187, 23–24 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  42. Stewart, P.N.: Semi-simple radical classes. Pac. J. Math. 32, 249–255 (1970)

    Article  MATH  Google Scholar 

  43. Tomforde, M.: Continuity of ring ∗-homomorphisms between C -algebras. N.Y. J. Math. 15, 161–167 (2009)

    MathSciNet  MATH  Google Scholar 

  44. Vas, L.: Dimension and torsion theories for a class of Baer ∗-rings. J. Algebra 289, 614–639 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  45. Vas, L.: Class of Baer ∗-rings defined by a relaxed set of axioms. J. Algebra 297, 470–473 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Birkenmeier, G.F., Park, J.K., Rizvi, S.T. (2013). Applications to Rings of Quotients and C-Algebras. In: Extensions of Rings and Modules. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92716-9_10

Download citation

Publish with us

Policies and ethics