Skip to main content

Animal Models of Lung Disease

  • Chapter
  • First Online:
Basic Concepts of Molecular Pathology

Part of the book series: Molecular Pathology Library ((MPLB,volume 2))

Abstract

Animal models afford the opportunity for investigators to study the study the mechanisms of human disorders by experimentally manipulating a number of controlled variables. Experimental models can be arbitrarily divided into (a) spontaneous disease models, which are mutant animals that carry a disease similar to a human condition; (b) models obtained through genetic manipulation, in other words, gene-modified models including: transgenic and knock out animals and (c) chemically or physically induced changes. Researchers have to chose from a number of possibilities such as species and strain of animal, environment, and the genome to investigate the molecular interactions involved in the pathogenesis of many diseases.1 Experimental models also provide a unique opportunity to test potential therapeutic intervention. Well-developed animal models should share features with specific human disorders. Although the basic molecular biology terminology is covered in other chapters of this book, it is convenient to briefly review the basic technology for the development of transgenic mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar RK. Experimental models in pulmonary pathology. Pathology. 1995;27(2):130–132.

    Article  PubMed  CAS  Google Scholar 

  2. Barlozzari T, et al. Direct evidence for the role of LGL in the inhibition of experimental tumor metastases. J Immunol. 1985;134(4):2783–2789.

    PubMed  CAS  Google Scholar 

  3. McCabe PM, et al. Animal models of disease. Physiol Behav. 2000;68(4):501–507.

    Article  PubMed  CAS  Google Scholar 

  4. Brusselle GG, et al. Murine models of COPD. Pulm Pharmacol Ther. 2006;19:155–165.

    Article  PubMed  CAS  Google Scholar 

  5. Paigen K. A miracle enough: the power of mice. Nat Med. 1995;1(3):215–220.

    Article  PubMed  CAS  Google Scholar 

  6. Glasser SW, et al. Transgenic models for study of pulmonary development and disease. Am J Physiol. 1994;267(5 pt 1):L489–L497.

    PubMed  CAS  Google Scholar 

  7. Ho YS. Transgenic models for the study of lung biology and disease. Am J Physiol. 1994;266(4 pt 1):L319–L353.

    PubMed  CAS  Google Scholar 

  8. Shapiro SD. Animal models for COPD. Chest. 2000;117(5 suppl 1):223S–227S.

    Article  PubMed  CAS  Google Scholar 

  9. Shapiro SD. Animal models for chronic obstructive pulmonary disease: age of klotho and marlboro mice. Am J Respir Cell Mol Biol. 2000;22(1):4–7.

    PubMed  CAS  Google Scholar 

  10. Lucey EC. Experimental emphysema. Clin Chest Med. 1983;4(3):389–403.

    PubMed  CAS  Google Scholar 

  11. Snider GL, Lucey EC, Stone PJ. Animal models of emphysema. Am Rev Respir Dis. 1986;133(1):149–169.

    PubMed  CAS  Google Scholar 

  12. Guerassimov A, et al. The development of emphysema in cigarette smoke-exposed mice is strain dependent. Am J Respir Crit Care Med. 2004;170(9):974–980.

    Article  PubMed  Google Scholar 

  13. Bartalesi B, et al. Different lung responses to cigarette smoke in two strains of mice sensitive to oxidants. Eur Respir J. 2005;25(1):15–22.

    Article  PubMed  CAS  Google Scholar 

  14. Valentine R, et al. Morphological and biochemical features of elastase-induced emphysema in strain A/J mice. Toxicol Appl Pharmacol. 1983;68(3):451–461.

    Article  PubMed  CAS  Google Scholar 

  15. Gross P, et al. Experimental emphysema: its production with papain in normal and silicotic rats. Arch Environ Health. 1965;11:50–58.

    PubMed  CAS  Google Scholar 

  16. Shiomi T, et al. Emphysematous changes are caused by degradation of type III collagen in transgenic mice expressing MMP-1. Exp Lung Res. 2003;29(1):1–15.

    Article  PubMed  CAS  Google Scholar 

  17. Foronjy RF, et al. Progressive adult-onset emphysema in transgenic mice expressing human MMP-1 in the lung. Am J Physiol Lung Cell Mol Physiol. 2003;284(5):L727–L737.

    PubMed  CAS  Google Scholar 

  18. Zheng T, et al. Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase- and cathepsin-dependent emphysema. J Clin Invest. 2000;106(9):1081–1093.

    Article  PubMed  CAS  Google Scholar 

  19. Wang Z, et al. Interferon gamma induction of pulmonary emphysema in the adult murine lung. J Exp Med. 2000;192(11):1587–1600.

    Article  PubMed  CAS  Google Scholar 

  20. Elwood W, et al. Characterization of allergen-induced bronchial hyperresponsiveness and airway inflammation in actively sensitized brown-Norway rats. J Allergy Clin Immunol. 1991;88(6):951–960.

    Article  PubMed  CAS  Google Scholar 

  21. Nagai H, et al Effect of anti-IL-5 monoclonal antibody on allergic bronchial eosinophilia and airway hyperresponsiveness in mice. Life Sci. 1993;53(15):PL243–PL247.

    Article  PubMed  CAS  Google Scholar 

  22. Renz H, et al. Specific V beta T cell subsets mediate the immediate hypersensitivity response to ragweed allergen. J Immunol. 1993;151(4):1907–1917.

    PubMed  CAS  Google Scholar 

  23. Kung TT, et al. Characterization of a murine model of allergic pulmonary inflammation. Int Arch Allergy Immunol. 1994;105(1):83–90.

    Article  PubMed  CAS  Google Scholar 

  24. Chavez J, et al. Interactions between leukotriene C4 and interleukin 13 signaling pathways in a mouse model of airway disease. Arch Pathol Lab Med. 2006;130(4):440–446.

    PubMed  CAS  Google Scholar 

  25. Kerem B, et al. Identification of the cystic fibrosis gene: genetic analysis. Science. 1989;245(4922):1073–1080.

    Article  PubMed  CAS  Google Scholar 

  26. Buchwald M, Tsui LC, Riordan JR. The search for the cystic fibrosis gene. Am J Physiol. 1989;257(2 pt 1):L47–L52.

    PubMed  CAS  Google Scholar 

  27. Riordan JR, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989;245(4922):1066–1073.

    Article  PubMed  CAS  Google Scholar 

  28. Rommens JM, et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science. 1989;245(4922):1059–1065.

    Article  PubMed  CAS  Google Scholar 

  29. Snouwaert JN, et al. An animal model for cystic fibrosis made by gene targeting. Science. 1992;257(5073):1083–1088.

    Article  PubMed  CAS  Google Scholar 

  30. Davidson DJ, Rolfe M. Mouse models of cystic fibrosis. Trends Genet. 2001;17(10):S29–S37.

    Article  PubMed  CAS  Google Scholar 

  31. Guilbault C, et al. Cystic fibrosis mouse models. Am J Respir Cell Mol Biol. 2007;36(1):1–7.

    Article  PubMed  CAS  Google Scholar 

  32. Frizzell RA, Pilewski JM. Finally, mice with CF lung disease. Nat Med. 2004;10(5):452–454.

    Article  PubMed  CAS  Google Scholar 

  33. Mall M, et al. Increased airway epithelial Na+ absorption produces cystic fibrosis-like lung disease in mice. Nat Med. 2004;10(5):487–493.

    Article  PubMed  CAS  Google Scholar 

  34. Fleischman RW, et al. Bleomycin-induced interstitial pneumonia in dogs. Thorax. 1971;26(6):675–682.

    Article  PubMed  CAS  Google Scholar 

  35. Adamson IY, Bowden DH. The pathogenesis of bloemycin-induced pulmonary fibrosis in mice. Am J Pathol. 1974;77(2):185–197.

    PubMed  CAS  Google Scholar 

  36. Adamson IY, Bowden DH. Bleomycin-induced injury and metaplasia of alveolar type 2 cells. Relationship of cellular responses to drug presence in the lung. Am J Pathol. 1979;96(2):531–544.

    PubMed  CAS  Google Scholar 

  37. Snider GL, Hayes JA, Korthy AL. Chronic interstitial pulmonary fibrosis produced in hamsters by endotracheal bleomycin: pathology and stereology. Am Rev Respir Dis. 1978;117(6):1099–1108.

    PubMed  CAS  Google Scholar 

  38. Borzone G, et al. Bleomycin-induced chronic lung damage does not resemble human idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2001;163(7):1648–1653.

    PubMed  CAS  Google Scholar 

  39. Popenoe D. Effects of paraquat aerosol on mouse lung. Arch Pathol Lab Med. 1979;103(7):331–334.

    PubMed  CAS  Google Scholar 

  40. Yoshida M, et al A histologically distinctive interstitial pneumonia induced by overexpression of the interleukin 6, transforming growth factor beta 1, or platelet-derived growth factor B gene. Proc Natl Acad Sci U S A 1995;92(21):9570–9574.

    Article  PubMed  CAS  Google Scholar 

  41. Katsuma S, et al. Molecular monitoring of bleomycin-induced pulmonary fibrosis by cDNA microarray-based gene expression profiling. Biochem Biophys Res Commun. 2001;288(4):747–751.

    Article  PubMed  CAS  Google Scholar 

  42. Brantley JG, et al. Cux-1 transgenic mice develop glomerulosclerosis and interstitial fibrosis. Kidney Int. 2003;63(4):1240–1248.

    Article  PubMed  Google Scholar 

  43. Driessens J, et al The urethane-induced experimental pulmonary adenoma in the mouse. I. Histological study. C R Seances Soc Biol Fil. 1962;156:655–ʿ657.

    PubMed  CAS  Google Scholar 

  44. Mirvish SS. The carcinogenic action and metabolism of urethan and N-hydroxyurethan. Adv Cancer Res. 1968;11:1–42.

    Article  PubMed  CAS  Google Scholar 

  45. Brooks RE. Pulmonary adenoma of strain A mice: an electron microscopic study. J Natl Cancer Inst. 1968;41(3):719–742.

    PubMed  CAS  Google Scholar 

  46. Gargus JL, Paynter OE, Reese WH Jr. Utilization of newborn mice in the bioassay of chemical carcinogens. Toxicol Appl Pharmacol. 1969;15(3):552–559.

    Article  PubMed  CAS  Google Scholar 

  47. Shabad LM. Dose-response studies in experimentally induced lung tumours. Environ Res. 1971;4(4):305–315.

    Article  PubMed  CAS  Google Scholar 

  48. Snyder C, et al. Urethan-induced pulmonary adenoma as a tool for the study of surfactant biosynthesis. Cancer Res. 1973;33(10):2437–2443.

    PubMed  CAS  Google Scholar 

  49. Cazorla M, et al. Ki-ras gene mutations and absence of p53 gene mutations in spontaneous and urethane-induced early lung lesions in CBA/J mice. Mol Carcinog. 1998;21(4):251–260.

    Article  PubMed  CAS  Google Scholar 

  50. Lin L, et al. Additional evidence that the K-ras protooncogene is a candidate for the major mouse pulmonary adenoma susceptibility (Pas-1) gene. Exp Lung Res. 1998;24(4):481–497.

    Article  PubMed  CAS  Google Scholar 

  51. Avanzo JL, Mesnil M, Hernandez-Blazquez FJ, et al. Altered expression of connexins in urethane-induced mouse lung adenomas. Life Sci. 2006;79:2202–2208.

    Article  PubMed  CAS  Google Scholar 

  52. Umemura T, et al. Susceptibility to urethane carcinogenesis of transgenic mice carrying a human prototype c-Ha-ras gene (rasH2 mice) and its modification by butylhydroxytoluene. Cancer Lett. 1999;145(1-2):101–106.

    Article  PubMed  CAS  Google Scholar 

  53. Furth PA. SV40 rodent tumour models as paradigms of human disease: transgenic mouse models. Dev Biol Stand. 1998;94:281–287.

    PubMed  CAS  Google Scholar 

  54. Wikenheiser KA, et al Simian virus 40 large T antigen directed by transcriptional elements of the human surfactant protein C gene produces pulmonary adenocarcinomas in transgenic mice. Cancer Res. 1992;52(19):5342–5352.

    PubMed  CAS  Google Scholar 

  55. Wikenheiser KA, Whitsett JA. Tumor progression and cellular differentiation of pulmonary adenocarcinomas in SV40 large T antigen transgenic mice. Am J Respir Cell Mol Biol. 1997;16(6):713–723.

    PubMed  CAS  Google Scholar 

  56. Kwak I, Tsai SY, DeMayo FJ. Genetically engineered mouse models for lung cancer. Annu Rev Physiol. 2004;66:647–663.

    Article  PubMed  CAS  Google Scholar 

  57. Zhao B, et al. Transgenic mouse models for lung cancer. Exp Lung Res. 2000;26(8):567–579.

    Article  PubMed  CAS  Google Scholar 

  58. Albanese C, et al. Recent advances in inducible expression in transgenic mice. Semin Cell Dev Biol. 2002;13(2):129–141.

    Article  PubMed  CAS  Google Scholar 

  59. Argmann C, Dierich A, Auwrex J. Current Protocols in Molecular Biology. New York: Wiley; 2006 [unit 29.A.1].

    Google Scholar 

  60. Matsuda I, Aiba A. Receptor knock-out and knock-in strategies. Methods Mol Biol. 2004;259:379–390.

    PubMed  CAS  Google Scholar 

  61. Sato Y, et al. Establishment of Cre/LoxP recombination system in transgenic rats. Biochem Biophys Res Commun. 2004;319(4):1197–1202.

    Article  PubMed  CAS  Google Scholar 

  62. Altomare DA, et al. A mouse model recapitulating molecular features of human mesothelioma. Cancer Res. 2005;65(18):8090–8095.

    Article  PubMed  CAS  Google Scholar 

  63. Altomare DA, et al. Human and mouse mesotheliomas exhibit elevated AKT/PKB activity, which can be targeted pharmacologically to inhibit tumor cell growth. Oncogene. 2005;24(40):6080–6089.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Barrios, R. (2009). Animal Models of Lung Disease. In: Allen, T., Cagle, P.T. (eds) Basic Concepts of Molecular Pathology. Molecular Pathology Library, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-89626-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-89626-7_17

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-89625-0

  • Online ISBN: 978-0-387-89626-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics