Skip to main content

Abstract

The theory of piezoelectricity is based on a quasistatic approximation [1]. As a result, in this theory, although the mechanical equations are dynamic, the electromagnetic equations are static, and the electric field and the magnetic field are not dynamically coupled. Therefore, the theory of piezoelectricity does not describe the wave behavior of electromagnetic fields. For many applications in piezoelectric acoustic wave devices, the quasistatic theory is sufficient; but there are situations in which full electromagnetic coupling needs to be considered. When electromagnetic waves are involved, the complete set of Maxwell equations needs to be used, coupled to the mechanical equations of motion. Such a fully dynamic theory has been called piezoelectromagnetism by some researchers. Solutions for the propagation of plane waves in an unbounded piezoelectromagnetic medium were obtained in [2]. In addition to waves that are essentially acoustic, there are also waves that are essentially electromagnetic. These two groups of modes interact through piezoelectric coupling. Effects of viscosity and conductivity on plane waves were analyzed in [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nelson DF (1979) Electric, Optic and Acoustic Interactions in Crystals. Wiley, New York

    Google Scholar 

  2. Kyame JJ (1949) Wave propagation in piezoelectric crystals. J Acoust Soc Am 21: 159–167

    Article  Google Scholar 

  3. Kyame JJ (1953) Conductivity and viscosity effects on wave propagation in piezoelectric crystals.J Acoust Soc Am 26: 990–993

    Article  Google Scholar 

  4. Pailloux PMH (1958) Piezoelectricite calcul des vitesses de propagation. Le Journal de Physique et le Radium 19: 523–526

    Article  MATH  Google Scholar 

  5. Hruska H (1966) The rate of propagation of ultrasonic waves in ADP and in Voigt’s theory. Czech J Phys B 16: 446–453

    Article  Google Scholar 

  6. Hruska H (1966) Relation between the general and the simplified condition for the velocity of propagation of ultrasonic waves in a piezoelectric medium. Czech J Phys B 18: 214–221

    Google Scholar 

  7. Tseng CC, White PM (1967) Propagation of piezoelectric and elastic surface waves on the basal plane of hexagonal piezoelectric crystals. J Appl Phys 38: 4274–4280

    Article  Google Scholar 

  8. Tseng CC (1967) Elastic surface waves on free surface and metallized surface of CdS, ZnO, and PZT-4. J Appl Phys 38: 4281–4284

    Article  Google Scholar 

  9. Spaight RN, Koerber GG (1971) Piezoelectric surface waves on LiNbO3. IEEE Trans Son Ultrason 18: 237–238

    Google Scholar 

  10. Moon FC (1970) Scattering of waves by a cylindrical piezoelectric inclusion. J Acoust Soc Am 48: 253–262

    Article  Google Scholar 

  11. Sedov A, Schmerr LW Jr (1986) Some exact solutions for the propagation of transient electroacoustic waves I: piezoelectric half-space. Int J Engng Sci 24: 557–568

    Article  MATH  Google Scholar 

  12. Schmerr LW Jr, Sedov A (1986) Some exact solutions for the propagation of transient electroacoustic waves II: plane interface between two piezoelectric media. Int J Engng Sci 24: 921–932

    Article  MATH  Google Scholar 

  13. Morishita K, Kumagai N (1978) Systematic derivation of variational expressions for electromagnetic and/or acoustic waves. IEEE Trans Microwave Theor Technol 26: 684–689

    Article  MathSciNet  Google Scholar 

  14. Mindlin RD (1978) A variational principle for the equations of piezoelectromagnetism in a compound medium. In: Complex Variable Analysis and Its Applications (I. N. Vekua 70th Birthday Volume). Academy of Sciences USSR, Nauka, Moscow

    Google Scholar 

  15. Lee PCY (1991) A variational principle for the equations of piezoelectromagnetism in elastic dielectric crystals. J Appl Phys 69: 7470–7473

    Article  Google Scholar 

  16. Yang JS (1991) A generalized variational principle for piezoelectromagnetism in an elastic medium. Arch Mech 43: 795–798

    MATH  Google Scholar 

  17. Yang JS (1993) Variational principles for the vibration of an elastic dielectric. Arch Mech 45: 279–284

    MATH  Google Scholar 

  18. Yang JS, Wu XY (1995) The vibration of an elastic dielectric with piezoelectromagnetism. Quart Appl Math 53: 753–760

    MATH  MathSciNet  Google Scholar 

  19. Altay GA, Dökmeci MC (2004) Fundamental equations of certain electromagneticacoustic discontinuous fields in variational form. Continuum Mech Thermodyn 16: 53–71

    Article  MATH  Google Scholar 

  20. Altay GA, Dökmeci MC (2005) Variational principles and vibrations of a functionally graded plate. Computer Struct 83: 1340–1354

    Article  Google Scholar 

  21. Yang JS, Zhou HG (2005) Two-dimensional equations for electromagnetic waves in multi-layered thin films. Int J Solids Struct 42: 6662–6679

    Article  MATH  MathSciNet  Google Scholar 

  22. Yang JS (2004) A moving dislocation in piezoelectromagnetic ceramics.Acta Meach 172: 123–129

    MATH  Google Scholar 

  23. Wang X, Zhong Z (2002), A moving piezoelectric screw dislocation. Mech Res Commun 29: 425–429

    Article  MATH  Google Scholar 

  24. Yang JS (2004) Effects of electromagnetic coupling on a moving crack in polarized ceramics. Int J. of Fract 126: L83–L88

    Article  MATH  Google Scholar 

  25. Li XF, Yang JS (2005) Electromagnetoelastic behavior induced by a crack under antiplane mechanical and inplane electric impacts. Int J Fract 132: 49–65

    Article  Google Scholar 

  26. Li S (1996) The electromagneto-acoustic surface wave in a piezoelectric medium: the Bleustein-Gulyaev mode. J Appl Phys 80: 5264–5269

    Article  Google Scholar 

  27. Yang JS (2000) Bleustein-Gulyaev waves in piezoelectromagnetic materials. Int J Appl Electromag and Mech 12: 235–240

    Google Scholar 

  28. Bleustein JL (1968) A new surface wave in piezoelectric materials. Appl Phys Lett 13: 412–413

    Article  Google Scholar 

  29. Gulyaev YuV (1969) Electroacoustic surface waves in solids. Sov Phys JETP Letters 9: 37–38

    Google Scholar 

  30. Yang JS, Zhou HG (2005) An interface wave in piezoelectromagnetic materials. Int J Appl Electromag and Mech 21: 63–68

    Google Scholar 

  31. [31] To AC, Glaser SD (2005) On the quasi-static assumption in modeling shear horizontal (SH) waves in a transversely isotropic (6mm) medium. http://www.ce.berkeley.edu/ ∼ albertto/piezo.pdf. Accessed 2005

  32. Yang JS (2004) Piezoelectromagnetic waves in a ceramic plate. IEEE Trans Ultrason Ferroelect Freq Contr 51: 1035–1039

    Article  Google Scholar 

  33. Yang JS (2004) Love waves in piezoelectromagnetic materials. Acta Mech 168: 111–117

    Article  MATH  Google Scholar 

  34. Yang JS (2006) Acoustic gap waves in piezoelectromagnetic materials. Math Mech Solids 11: 451–458

    Article  MATH  MathSciNet  Google Scholar 

  35. Yang JS, Guo SH (2006): Piezoelectromagnetic waves guided by the surface of a ceramic cylinder. Acta Mech 181: 199–205

    Article  MATH  Google Scholar 

  36. Iadonisi G, Perroni CA, Cantele G et al (2008) General solutions to the equations of piezoelectromagnetism: infinite medium and slab. J Appl Phys 63: 064109

    Article  Google Scholar 

  37. Jiang SN, Jiang Q, Li XF et al (2006) Piezoelectromagnetic waves in a ceramic plate between two ceramic half-spaces. Int J Solids Struct 43: 5799–5810

    Article  MATH  Google Scholar 

  38. Yang JS, Chen XH, Soh AK (2007) Acoustic leakage in electromagnetic waveguides made from piezoelectric materials. J Appl Phys 101: 066105

    Article  Google Scholar 

  39. Mindlin RD (1972) Electromagnetic radiation from a vibrating quartz plate. Int J Solids Struct 9: 697–702

    Article  Google Scholar 

  40. Lee PCY (1989) Electromagnetic radiation from an AT-cut quartz plate under lateralfield excitation. J Appl Phys 65: 1395–1399

    Article  Google Scholar 

  41. Lee PCY, Kim YG, Prevost JH (1990) Electromagnetic radiation from doubly rotated piezoelectric crystal plates vibrating at thickness frequencies. J Appl Phys 67: 6633–6642

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yang, J. (2009). Fully Dynamic Theory. In: Yang, J. (eds) Special Topics in the Theory of Piezoelectricity. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89498-0_7

Download citation

Publish with us

Policies and ethics