Skip to main content

Municipal Wastewater Concentrations of Pharmaceutical and Xeno-Estrogens: Wildlife and Human Health Implications

  • Conference paper
  • First Online:
Proceedings of the 2007 National Conference on Environmental Science and Technology

Abstract

Most pharmaceutical estrogens and xenoestrogens are introduced into the environment through municipal waste water treatment plant (WWTP) effluent sources. These effluents contain synthetic compounds; surfactants, flame retardants and halogenated hydrocarbons that can mimic estrogens; and are discharged directly into rivers and lakes. As rivers and lakes are used for water and food supply, and recreation, and wastewater effluent usage increases, the presence and concentration of xenoestrogens in surface water becomes a valid public health concern. Additionally, many USA cities have significant combined sewer overflows releasing untreated sewage directly into surface waters, thus increasing the amounts of xenoestrogens finding their way into drinking water supplies and commercial and subsistence fishing habitat.

In the United States, humans are exposed daily to both pharmaceutical and xenoestrogens which have been implicated in various human health outcomes, such as testicular dysgenesis syndrome including testicular cancer and breast cancer in women. Also, they can have adverse reproductive effects in aquatic wildlife through sex reversals, production of intersex individuals, alterations in mating, and prevention of gonadal maturation. Combinations of estrogenic compounds are present in municipal WWTP effluents but, the natural estrogens, 17β-estradiol (E2) and estrone (E1), and the synthetic E2 derivate 17α-ethinylestradiol (EE2) are most responsible for in vitro estrogenic activity. Each xenoestrogen exhibits its own wildlife or human health risk, but synergistic effects could occur with xenoestrogen mixtures. Less than 1 ng/L EE2 can cause feminization of male fishes, 4 ng/L caused abnormal reproductive development (male fathead minnows). E2 has been detected at concentrations from 1 ng/L to 80 ng/L. Total estrogenicity (E2 equivalents) of 147 ng/L has been measured in WWTP effluent. Nonylphenol, a surfactant and brominated biphenyls, a flame retardant have been detected between 0.1–3.7 μg/L and 0.3–4.6 mg/kg (on suspended particles) respectively.

Understanding the species and xenoestrogen concentrations in surface water is imperative for environmental public health tracking of associated disease states. Such research will determine the necessity for utilizing limited and competing public financial resources to invest in technology to remove xenoestrogens from surface waters and, in regulation of fish or wildlife consumption from our rivers and lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adlercreutz H. (1995). “Phytoestrogens: epidemiology and a possible role in cancer protection." Environ Health Perspect 7 (103): 103–112.

    Article  Google Scholar 

  • Atienzar FA, Billinghurst Z, Depledge MH. (2002). “4-n-Nonylphenol and 17-beta estradiol may induce common DNA effects in developing barnacle larvae." Environ Pollut 3 (120): 735–738.

    Article  Google Scholar 

  • Banerjee SK, Banerjee S, Li SA, Li JJ. (1994). “Induction of chromosome-aberrations in Syrian-hamster renal cortical-cells by various estrogens." Mutat Res Fundam Mol Mech Mutagen 2 (311): 191–197.

    Google Scholar 

  • Baronti C, Curini R, D’Ascenzo G, Di Corcia A, Gentili A, Saperi R. (2000). “Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water." Environ Sci Technol 34: 5059.

    Article  CAS  Google Scholar 

  • Belfroid A, Van der Horst A, Vethaak AD, Schäfer AJ, Rijs GBJ, Wegener J, Confino WP. (1999). Sci Total Environ 225: 101–108.

    Article  CAS  Google Scholar 

  • Bolz U, Hagenmaier H, et al. (2001). “Phenolic xenoestrogens in surface water, sediments, and sewage sludge from Baden-Wurttemberg, south-west Germany." Environ Pollut 115 (2): 291–301.

    Article  CAS  Google Scholar 

  • Carlsen E, Giwercman A, Keiding N, Skakkebaek NK. (1995). “Declining semen quality and increasing incidence of testicular cancer: Is there a common cause?" Environ Health Perspect 103: 137–139.

    Article  Google Scholar 

  • Choi SM, Yoo SD, Lee BM. (2004). “Toxicological characteristics of endocrine-disrupting chemicals: developmental toxicity, carcinogenicity, and mutagenicity." J Toxicol Environ Health B Crit Rev 1 (7): 1–32.

    Google Scholar 

  • Colborn T, vom Saal SF, Soto AM. (1993). “Developmental effects of endocrine-disrupting chemicals in wildlife and humans." Environ Health Perspect 101: 378–384.

    Article  CAS  Google Scholar 

  • Crain DA, Spiteri I, Guillette LJ Jr. (1999). “The functional and structural observations of the neonatal reproductive system of alligators exposed in ovo to atrazine, 2,4-D or estradiol." Toxicol Ind Health 15: 180–185.

    Article  CAS  Google Scholar 

  • Daughton CG, Ternes TA. (1999). “Pharmaceuticals and Personal Care Products in the Environment: Agents of Subtle Change?" Environ Health Perspect 107 (Suppl 6): 907–938.

    Article  CAS  Google Scholar 

  • Desbrow C, Routledge EJ, Brighty GC, Sumpter JP, Waldock M. (1998). “Identification of estrogenic chemicals in STW effluent. 1. Chemical fractionation and in vitro biological screening." Environ Sci Technol 11 (32): 1549–1558.

    Article  Google Scholar 

  • Feyk LA, Giesy JP. (1998). “Xenobiotic modulation of endocrine function in birds. In: Principles and Processes for Evaluating Endocrine Disruption in Wildlife (Kendall R, Dickerson R, Giesy J, Suk W, eds)." Pensacola, FL, SETAC Press, pp. 121–140.

    Google Scholar 

  • Gaido KW, Leonar L, Lovell S, Gould JC, Babai D, Portier CJ, et al. (1997). “Evaluation of chemicals with endocrine modulating activity in a yeast-based steroid hormone receptor gene transcription assay." Toxicol Appl Pharmacol 1 (143): 205–212.

    Article  Google Scholar 

  • Giesy JP, Ludwig JP, Tillitt DE. (1994). “Deformities of birds in the Great Lakes region: assigning causality." Environ Sci Technol 28: 128A–135A.

    Article  CAS  Google Scholar 

  • Gimeno, S. G., A. Bowmer, T. Komen, H. (1996). “Feminization of male carp” Nature 384(6606): 221–222

    Google Scholar 

  • Giwercman A, Carlsen E, Keiding N, Skakkebaek NE. (1993). “Evidence for increasing incidence of abnormalities of the human testis: A review." Environ Health Perspect 101: 65–72.

    Article  Google Scholar 

  • Gray LE, Ostby JS, Kelce WR. (1994). “Developmental effects of an environmental antiandrogen: the fungicide vinclozolin alters differentiation of the male rat." Toxicol Appl Pharmacol 129: 46–52.

    Article  CAS  Google Scholar 

  • Gray, M.A., and Metcalfe, Chris D. (1997). “Induction of Testis–Ova in Japanese Medaka (Oryzias Latipes) Exposed to p-Nonylphenol.” Environmental Toxicology and Chemistry 1082–1086.

    Google Scholar 

  • Guillette LJ Jr, Crain DA, Rooney AA, Pickford DB. (1995). “Organization versus activation: the role of endocrine-disrupting contaminants (EDCs) during embryonic development in wildlife." Environ Health Perspect 103 (Suppl 7): 157–164.

    Article  CAS  Google Scholar 

  • Guillette LJ Jr, Gross TS, Masson GR, Matter JM, Percival HF, Woodward AR. (1994). “Developmental abnormalities of the gonad and abnormal sex hormone concentrations in juvenile alligators from contaminated and control lakes in Florida." Environ Health Perspect 102: 680–688

    Article  CAS  Google Scholar 

  • Guillette LJ Jr, Pickford DB, Crain DA, Rooney AA, Percival HF. (1996). “Reduction in penis size and plasma testosterone concentrations in juvenile alligators living in a contaminated environment." Gen Comp Endocrinol 101: 32–42.

    Article  CAS  Google Scholar 

  • Han XL, Liehr JG. (1994). “8-Hydroxylation of guanine bases in kidney and liver DNA of hamsters treated with estradiol-role of free radicals in estrogen-induced carcinogenesis." Cancer Res 21 (54): 5515–5517.

    Google Scholar 

  • Harris CA, Santos EM, Janbakhsh A, Pottinger TG, Tyler CR, Sumpter JP. (2001). “Nonylphenol affects gonadotropin levels in the pituitary gland and plasma of female rainbow trout." Environ Sci Technol 14 (35): 2909–2916.

    Article  Google Scholar 

  • Hayes TB, Collins A, Lee M, Mendoza M, Noriega N, Stuart AA, et al. (2002). “Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses." Proc Natl Acad Sci USA 99: 5476–5480.

    Article  CAS  Google Scholar 

  • Hutson SS, Barber NL, Kenny JF, Linsey KS, Lumia DS, Maupin MA. (2004). Estimated Use of Water in the United States in 2000. USGS. U.S. Department of Interior, U.S. Geological Survey. U.S. Geological Survey Circular 1268.

    Google Scholar 

  • Hyötyläinen T, Grob K, Biedermann M, Riekkola ML. (1997). “Reversed phase HPLC coupled on-line to GC by the vaporizer/precolumn solvent split/gas discharge interface; analysis of phthalates in water." J High Resolut Chromatogr 20: 410.

    Article  Google Scholar 

  • Jin XL, Huang GL, et al. (2004). “Simultaneous determination of 4-tert-octylphenol, 4-nonylphenol and bisphenol a in Guanting Reservoir using gas chromatography-mass spectrometry with selected ion monitoring." J Environ Sci (China) 16 (5): 825–828.

    CAS  Google Scholar 

  • Jobling S, Tyler CR. (2003). “Endocrine Disruption in Wild Freshwater Fish." Pure Appl Chem 75 (11–12): 2219–2234.

    Article  CAS  Google Scholar 

  • Jobling S, Nolan M, Tyler CR, Brighty G, Sumpter JP. (1998). “Widespread sexual disruption in wild fish." Environ Sci Technol 17 (32): 2498–2506.

    Article  Google Scholar 

  • Kidd KA, Blanchfield PJ, et al. (2007). “Collapse of a fish population after exposure to a synthetic estrogen." Proc Natl Acad Sci USA 104 (21): 8897–8901.

    Article  CAS  Google Scholar 

  • King TE, Ballereau SJ, et al. (2006). “Genetic signatures of coancestry within surnames." Curr Biol 16 (4): 384–388.

    Article  CAS  Google Scholar 

  • Körner W, Bolz U, Rita T, Schwaiger J, Rolf-Dieter N, Hagenmaier AMaH. (2001). “Steroid Analysis and Xenosteroid Potentials in the Small Streams in Southwest Germany." J Aquat Ecosyst Stress and Recovery 8: 215–229.

    Google Scholar 

  • Kuch HM, Ballschmiter K. (2001). “Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the picogram per liter range." Environ Sci Technol 35 (15): 3201–3206.

    Article  CAS  Google Scholar 

  • Larsson D, Adolfsson-Erici M, Parkkonen J, Pettersson M, Berg AH, Olsson P-E, Forlin L. (1999). Aquat Toxicol (45): 91–97.

    Google Scholar 

  • Liney KE, Hagger JA, et al. (2006). “Health effects in fish of long-term exposure to effluents from wastewater treatment works." Environ Health Perspect 114 (Suppl 1): 81–89.

    Google Scholar 

  • Magliulo L, Schreibman M, Cepriano J, Ling J. (2002). “Endocrine disruption caused by two common pollutants at “acceptable” concentrations." Neurotoxicol Teratol 1 (24): 71–79.

    Article  Google Scholar 

  • Meyer VF. (2001). “The Medicalization of Menopause: Critique and Consequences." Int J Health Sci 4 (31): 769–792.

    Article  Google Scholar 

  • Norris DO. (2007). Xenoestrogen Actions on Reproduction: Implications for Health of Wildlife And Humans. American Water Resources Association 2007 Summer Specialty Conference, Emerging Contaminants of Concern in the Environment: Issues, Investigations and Solutions.

    Google Scholar 

  • Nutter LM, Ngo EO, Abulhajj YJ. (1991). “Characterization of DNA damage induced by 3,4-estrone-ortho-quinone in human-cells." J Biol Chem 25 (266): 16380–16386.

    Google Scholar 

  • Nutter LM, Wu YY, Ngo EO, Sierra EE, Gutierrez PL, Abulhajj YJ. (1994). “An O-quinone form of estrogen produces free radicals in human breast-cancer cells-correlation with DNA-damage." Chem Res Toxicol 1 (7): 23–28.

    Article  Google Scholar 

  • Petrovic M, Barcelo D. (2000). “Determination of Anionic and Nonionic Surfactants, Their Degradation Products, and Endocrine-Disrupting Compounds in Sewage Sludge by Liquid Chromatography/Mass Spectrometry." Anal Chem 72 (19): 4560–4567.

    Article  CAS  Google Scholar 

  • Purdom CE, Hardiman, PA, Bye VJ, Eno NC, Tyler CR, Sumpter JP. (1994). “Estrogenic effects of effluents from sewage treatment works.” Chem Ecol 8: 275–285.

    Article  CAS  Google Scholar 

  • Rajapakse N, Silva E. et al. (2002). “Combining xenoestrogens at levels below individual no-observed-effect concentrations dramatically enhances steroid hormone action." Environ Health Perspect 110 (9): 917–921.

    Article  CAS  Google Scholar 

  • Routledge EJ, Sheahan D, et al. (1998). “Identification of Estrogenic Chemicals in STW Effluent. 2. In Vivo Responses in Trout and Roach." Environ Sci Technol 32 (11): 1559–1565.

    Article  CAS  Google Scholar 

  • Safe SH. (2000). “Endocrine Disruptors and Human Health-Is There a Problem? An Update." Environ Health Perspect 108 (6): 487–493.

    CAS  Google Scholar 

  • Sharpe RM, Fisher JS, et al. (1995). “Gestational and lactational exposure of rats to xenoestrogens results in reduced testicular size and sperm production." Environ Health Perspect 103 (12): 1136–1143.

    Article  CAS  Google Scholar 

  • Silva E, Rajapakse N, Kortenkamp A. (2002). “Something from “nothing”-eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects." Environ Sci Technol 8 (36): 1751–1756.

    Article  Google Scholar 

  • Sohoni P, Sumpter JP. (1998). “Several environmental oestrogens are also anti-androgens." J Endocrinol 158 (3): 327–339.

    Article  CAS  Google Scholar 

  • Stachel B, Ehrhorn U. et al. (2003). “Xenoestrogens in the River Elbe and its tributaries." Environ Pollut 124 (3): 497–507.

    Article  CAS  Google Scholar 

  • Stevens JL, Northcott GL, Stern GA, Tomy GT, Jones KC. (2003). “PAHs, PCBs, PCNs, organochlorine pesticides, synthetic musks, and polychlorinated n-alkanes in UK sewage sludge: survey results and implications." Environ Sci Technol 3 (37): 462–467.

    Article  Google Scholar 

  • Sumpter J. (2003). “Endocrine disruption in wildlife: the future?" Pure Appl Chem 11–12 (75): 2355–2360.

    Article  Google Scholar 

  • Sumpter JP, Jobling S. (1995). “Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment." Environ Health Perspect 103 (Suppl 7): 173–178.

    Article  CAS  Google Scholar 

  • Ternes TA, Bonerz M, et al. (2007). “Irrigation of treated wastewater in Braunschweig, Germany: an option to remove pharmaceuticals and musk fragrances." Chemosphere 66 (5): 894–904.

    Article  CAS  Google Scholar 

  • Ternes TA, Kreckel P, et al. (1999). “Behaviour and occurrence of estrogens in municipal sewage treatment plants – II. Aerobic batch experiments with activated sludge." Sci Total Environ 225 (1–2): 91–99.

    Article  CAS  Google Scholar 

  • Thorpe KL, Cummings RI, Hutchinson TH, Scholze M, Brighty G, Sumpter JP, et al. (2003). “Relative potencies and combination effects of steroidal estrogens in fish." Environ Sci Technol 6 (37): 1142–1149.

    Article  Google Scholar 

  • Thorpe KL, Hutchinson TH, Hetheridge MJ, Scholze M, Sumpter JP, Tyler CR. (2001). “Assessing the biological potency of binary mixtures of environmental estrogens using vitellogenin induction in juvenile rainbow trout (Oncorhynchus mykiss)." Environ Sci Technol 12 (35): 2476–2481.

    Article  Google Scholar 

  • Toppari J, Larsen JC, Christiansen P, Giwercman A, Grandjean P, Guillette LJ, Jr, Jégou B, Jensen TK, Jounnet P, Keiding N, et al. (1996). “Male reproductive health and environmental xenoestrogens." Environ Health Perspect Suppl 104: 741.

    Article  CAS  Google Scholar 

  • University of Michigan, C. f. S. S. (2005). U.S. Water Supply and Distribution.

    Google Scholar 

  • USEPA. (2001). Removal of Endocrine Disrupting Chemicals in Drinking Water. D. Office of Research and Development Washington, Technology Transfer and Support Division, National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268.

    Google Scholar 

  • USEPA. (2004). Primer for Municipal Wastewater Treatment Systems. O. o. W. O. o. W. Management, Washington, DC.

    Google Scholar 

  • Willingham E, Crews D. (1999). “Sex reversal effects of environmentally relevant xenobiotic concentrations on the redeared slider turtle, a species with temperature-dependent sex determination.” Gen Comp Endocrinol 113: 429–435.

    Article  CAS  Google Scholar 

  • Zhou J, Liu R, Wilding A, Hibberd A. (2007). “Sorption of Selected Endocrine Disrupting Chemicals to Different Aquatic Colloids.” Environ Sci Technol 41: 206–213.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this paper

Cite this paper

Wright-Walters, M., Volz, C. (2009). Municipal Wastewater Concentrations of Pharmaceutical and Xeno-Estrogens: Wildlife and Human Health Implications. In: Nzewi, E., et al. Proceedings of the 2007 National Conference on Environmental Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-88483-7_15

Download citation

Publish with us

Policies and ethics