Skip to main content

Recombinant DNA Technology

  • Chapter
  • First Online:
Reproductive Endocrinology
  • 1684 Accesses

The terms recombinant DNA technology, DNA cloning, molecular cloning, or gene cloning all refer to use of molecular techniques to select a specific sequence or sequences of DNA from an organism and transfer it into another organism to code for or alter specific traits. Thus, recombinant DNA technology provides a powerful molecular tool that enables scientists to engineer sequences of DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibilography

  1. Ausubel F, Brent R, Kingston RE, et al. Short Protocols in Molecular Biology, fourth edition. New York: Wiley & Sons, 2004.

    Google Scholar 

  2. Bolivar F, Rodriguez RL, Greene PJ, et al. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 1977; 2:95–113.

    CAS  Google Scholar 

  3. Butler M. Mammalian Cell Biotechnology: A Practical Approach. New York: IRL Press, 1991.

    Google Scholar 

  4. Capecchi MR. Altering the genome by homologous recombination. Science 1989; 244:1288–92.

    Article  PubMed  CAS  Google Scholar 

  5. Chedrese PJ, Rodway MR, Swan CL, et al. Establishment of a stable steroidogenic porcine granulosa cell line. J Mol Endocrinol 1998; 20:287–92.

    Article  PubMed  CAS  Google Scholar 

  6. Davis L, Kuehl M, Battey J. Basic Methods in Molecular Biology, second edition. Norwalk: Appleton & Lange, 1997.

    Google Scholar 

  7. Demain AL, Solomon NA. Biology of Industrial Organisms. Menlo Park: Benjamin/Cummings Publishing Co., 1985.

    Google Scholar 

  8. Dujon B. The yeast genome project: what did we learn? Trends Genet 1996; 12:263–70.

    CAS  Google Scholar 

  9. Glik B, Pasternak J. Molecular Biotechnology, Principles and Applications of Recombinant DNA. Washington: American Society for Microbiology, 1998.

    Google Scholar 

  10. Kaise K, Murray NE. The use of phage lambda replacement vectors in the construction of representative genomic DNA libraries. In: Glober DM, editor. DNA Cloning Volume 1: A Practical Approach. Oxford: IRL Press, 1986.

    Google Scholar 

  11. Harrington JJ, Van Bokkelen G, Mays RW, et al. Formation of de novo centromeres and construction of first-generation artificial chromosomes. Nat Genet 1997; 15:345–55.

    Article  PubMed  CAS  Google Scholar 

  12. Larin Z, Mejía JE. Advances in human artificial chromosome technology. Trends Genet 2002; 18:313–9.

    Article  PubMed  CAS  Google Scholar 

  13. Lodish H, Baltimore D, Berk A, et al. Molecular Cell Biology, third edition. New York: Scientific American Books, 1995.

    Google Scholar 

  14. Mortensen RM, Conner DA, Chao S, et al. Production of homozygous mutant ES cells with a single targeting construct. Mol Cell Biol 1992; 12:2301–5.

    Google Scholar 

  15. Palmiter RD, Brinster RL, Hammer RE, et al. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 1982; 300:611–5.

    Article  PubMed  CAS  Google Scholar 

  16. Primrose SB, Twyman RM. Principles of Gene Manipulation and Genomics, seventh edition. Oxford: Blackwell Publishing, 2006.

    Google Scholar 

  17. Shizuya H, Birren B, Kim UJ, et al. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci 1992; 89:8794–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro J. Chedrese .

Editor information

Editors and Affiliations

 

ampr:

ampicillin resistance gene

ATP:

adenosine triphosphate

BAC:

bacterial artificial chromosome

Ca2+:

calcium ion

CaCl2:

calcium chloride

cDNA:

complementary DNA

Cl–:

chlorine ion

CO2:

carbon dioxide

DNA:

deoxyribonucleic acid

ES:

embryonic stem cells

GH:

growth hormone

HAC:

human artificial chromosome

HPO4 2–:

monohydrogen phosphate ion

ICM:

inner cell mass

IPTG:

isopropyl-β-D thiogalactopyranoside

K+:

potassium ion

LacZ′:

β-galactosidase gene of E. coli

MCS:

multiple cloning sites also called polylinkers

Mg2+:

magnesium ion

mRNA:

messenger RNA

Na+:

sodium ion

NH4+:

ammonium

RNA:

ribonucleic acid

SO4 2–:

sulfate ion

YAC:

yeast artificial chromosome

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chedrese, P.J. (2009). Recombinant DNA Technology. In: Chedrese, P. (eds) Reproductive Endocrinology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-88186-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-88186-7_7

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-88185-0

  • Online ISBN: 978-0-387-88186-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics