Skip to main content

Epigenetic Mechanisms of Ovarian Gene Regulation

  • Chapter
  • First Online:
Reproductive Endocrinology
  • 1442 Accesses

Epigenetics refers to alterations in gene function that are heritable between generations of cells or animals and that do not involve a change in the DNA sequence itself [1]. Such alterations occur at the level of chromatin and include post-translational modifications of histone tails and methylation of DNA. In a more narrow sense, epigenetics can be used to describe chromatin altering events within a single cell or groups of cells that leads to changes in gene function in response to hormones or growth factors. This chapter will briefly describe the most common epigenetic marks and review studies of chromatin alterations as they relate to gene function in cells of the developing ovarian follicle and corpus luteum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003; 33:245–54.

    Article  PubMed  CAS  Google Scholar 

  2. Lodish H, Berk A, Zipursky LS, et al. Regulation of transcription initiation. Molecular Cell Biology. New York: W.H. Freeman, 2000.

    Google Scholar 

  3. Fischle W, Wang Y, Allis CD. Histone and chromatin cross-talk. Curr Opin Cell Biol 2003; 15:172–83.

    Article  PubMed  CAS  Google Scholar 

  4. Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000; 403:41–5.

    Article  PubMed  CAS  Google Scholar 

  5. Fischle W, Wang Y, Allis CD. Binary switches and modification cassettes in histone biology and beyond. Nature 2003; 425:475–9.

    Article  PubMed  CAS  Google Scholar 

  6. Eberharter A, Becker PB. ATP-dependent nucleosome remodelling: factors and functions. J Cell Sci 2004; 117:3707–11.

    Article  PubMed  CAS  Google Scholar 

  7. Eberharter A, Becker PB. Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep 2002; 3:224–9.

    Article  PubMed  CAS  Google Scholar 

  8. Rice JC, Allis CD. Histone methylation versus histone acetylation: new insights into epigenetic regulation. Curr Opin Cell Biol 2001; 13:263–73.

    Article  PubMed  CAS  Google Scholar 

  9. Santos-Rosa H, Caldas C. Chromatin modifier enzymes, the histone code and cancer. Eur J Cancer 2005; 41:2381–402.

    Article  PubMed  CAS  Google Scholar 

  10. de lC, X, Lois S, Sanchez-Molina S, et al. Do protein motifs read the histone code? Bioessays 2005; 27:164–75.

    Article  Google Scholar 

  11. Utley RT, Ikeda K, Grant PA, et al. Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature 1998; 394:498–502.

    Article  PubMed  CAS  Google Scholar 

  12. de Ruijter AJ, van Gennip AH, Caron HN, et al. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 2003; 370:737–49.

    Article  PubMed  Google Scholar 

  13. Yang XJ, Seto E. The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol 2008; 9:206–18.

    Article  PubMed  CAS  Google Scholar 

  14. Haigis MC, Guarente LP. Mammalian sirtuins--emerging roles in physiology, aging, and calorie restriction. Genes Dev 2006; 20:2913–21.

    Article  PubMed  CAS  Google Scholar 

  15. Gao L, Cueto MA, Asselbergs F, et al. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem 2002; 277:25748–55.

    Article  PubMed  CAS  Google Scholar 

  16. Grozinger CM, Schreiber SL. Deacetylase enzymes: biological functions and the use of small-molecule inhibitors. Chem Biol 2002; 9:3–16.

    Article  PubMed  CAS  Google Scholar 

  17. Legube G, Trouche D. Regulating histone acetyltransferases and deacetylases. EMBO Rep 2003; 4:944–7.

    Article  PubMed  CAS  Google Scholar 

  18. Sengupta N, Seto E. Regulation of histone deacetylase activities. J Cell Biochem 2004; 93:57–67.

    Article  PubMed  CAS  Google Scholar 

  19. Wysocka J, Allis CD, Coonrod S. Histone arginine methylation and its dynamic regulation. Front Biosci 2006; 11:344–55.

    Article  PubMed  CAS  Google Scholar 

  20. Lee DY, Teyssier C, Strahl BD, et al. Role of protein methylation in regulation of transcription. Endocr Rev 2005; 26:147–70.

    Article  PubMed  CAS  Google Scholar 

  21. He H, Lehming N. Global effects of histone modifications. Brief Funct Genomic Proteomic 2003; 2:234–43.

    Article  PubMed  CAS  Google Scholar 

  22. Agger K, Christensen J, Cloos PA, et al. The emerging functions of histone demethylases. Curr Opin Genet Dev 2008; 22:115–40.

    Google Scholar 

  23. Bannister AJ, Kouzarides T. Reversing histone methylation. Nature 2005; 436:1103–6.

    Article  PubMed  CAS  Google Scholar 

  24. Takeuchi T, Watanabe Y, Takano-Shimizu T, et al. Roles of jumonji and jumonji family genes in chromatin regulation and development. Dev Dyn 2006; 235:2449–59.

    Article  PubMed  CAS  Google Scholar 

  25. Chang B, Chen Y, Zhao Y et al. JMJD6 is a histone arginine demethylase. Science 2007; 318:444–7.

    Article  PubMed  CAS  Google Scholar 

  26. Workman JL, Kingston RE. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem 1998; 67:545–79.

    Article  PubMed  CAS  Google Scholar 

  27. Nowak SJ, Corces VG. Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet 2004; 20:214–20.

    Article  PubMed  CAS  Google Scholar 

  28. Cheung P, Tanner KG, Cheung WL, et al. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol Cell 2000; 5:905–15.

    Article  PubMed  CAS  Google Scholar 

  29. Lo WS, Trievel RC, Rojas JR, et al. Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. Mol Cell 2000; 5: 917–26.

    Article  PubMed  CAS  Google Scholar 

  30. Wang GG, Allis CD, Chi P. Chromatin remodeling and cancer, Part I: Covalent histone modifications. Trends Mol Med 2007; 13: 363–72.

    Article  PubMed  CAS  Google Scholar 

  31. Clayton AL, Mahadevan LC. MAP kinase-mediated phosphoacetylation of histone H3 and inducible gene regulation. FEBS Lett 2003; 546:51–8.

    Article  PubMed  CAS  Google Scholar 

  32. Li F, Adam L, Vadlamudi RK, et al. p21-activated kinase 1 interacts with and phosphorylates histone H3 in breast cancer cells. EMBO Rep 2002; 3:767–73.

    Article  PubMed  CAS  Google Scholar 

  33. Salvador LM, Park Y, Cottom J, et al. Follicle-stimulating hormone stimulates protein kinase A-mediated histone H3 phosphorylation and acetylation leading to select gene activation in ovarian granulosa cells. J Biol Chem 2001; 276:40146–55.

    Article  PubMed  CAS  Google Scholar 

  34. Taylor SS. The in vitro phosphorylation of chromatin by the catalytic subunit of cAMP-dependent protein kinase. J Biol Chem 1982; 257:6056–63.

    PubMed  CAS  Google Scholar 

  35. Hassa PO, Haenni SS, Elser M, et al. Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev 2006; 70:789–829.

    Article  PubMed  CAS  Google Scholar 

  36. Nathan D, Ingvarsdottir K, Sterner DE, et al. Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes Dev 2006; 20:966–76.

    Article  PubMed  CAS  Google Scholar 

  37. Kuo MH, Allis CD. In vivo cross-linking and immunoprecipitation for studying dynamic Protein:DNA associations in a chromatin environment. Methods 1999; 19:425–33.

    Article  PubMed  CAS  Google Scholar 

  38. Das PM, Ramachandran K, vanWert J, et al. Chromatin immunoprecipitation assay. Biotechniques 2004; 37:961–9.

    PubMed  CAS  Google Scholar 

  39. Hanlon SE, Lieb JD. Progress and challenges in profiling the dynamics of chromatin and transcription factor binding with DNA microarrays. Curr Opin Genet Dev 2004; 14:697–705.

    Article  PubMed  CAS  Google Scholar 

  40. Bernstein BE, Humphrey EL, Erlich RL, et al. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc Natl Acad Sci U S A 2002; 99:8695–700.

    Article  PubMed  CAS  Google Scholar 

  41. Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem 2005; 74:481–514.

    Article  PubMed  CAS  Google Scholar 

  42. Griswold MD, Kim JS. Site-specific methylation of the promoter alters deoxyribonucleic acid-protein interactions and prevents follicle-stimulating hormone receptor gene transcription. Biol Reprod 2001; 64:602–10.

    Article  PubMed  CAS  Google Scholar 

  43. Nagase H, Ghosh S. Epigenetics: differential DNA methylation in mammalian somatic tissues. FEBS J 2008; 275:1617–23.

    Article  PubMed  CAS  Google Scholar 

  44. Schaefer CB, Ooi SK, Bestor TH, et al. Epigenetic decisions in mammalian germ cells. Science 2007; 316:398–9.

    Article  PubMed  CAS  Google Scholar 

  45. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science 2001; 293:1089–93.

    Article  PubMed  CAS  Google Scholar 

  46. Richards JS. Hormonal control of gene expression in the ovary. Endocr Rev 1994; 15:725–51.

    PubMed  CAS  Google Scholar 

  47. Richards JS. Perspective: the ovarian follicle--a perspective in 2001. Endocrinology 2001; 142:2184–93.

    Article  PubMed  CAS  Google Scholar 

  48. DeManno DA, Cottom JE, Kline MP, et al. Follicle-stimulating hormone promotes histone H3 phosphorylation on serine-10. Mol Endocrinol 1999; 13:91–105.

    Article  PubMed  CAS  Google Scholar 

  49. Ruiz-Cortes ZT, Kimmins S, Monaco L, et al. Estrogen mediates phosphorylation of histone H3 in ovarian follicle and mammary epithelial tumor cells via the mitotic kinase, Aurora B. Mol Endocrinol 2005; 19:2991–3000.

    Article  PubMed  CAS  Google Scholar 

  50. Clark BJ, Wells J, King SR, et al. The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J Biol Chem 1994; 269:28314–22.

    PubMed  CAS  Google Scholar 

  51. Kiriakidou M, McAllister JM, Sugawara T, et al. Expression of steroidogenic acute regulatory protein (StAR) in the human ovary. J Clin Endocrinol Metab 1996; 81:4122–8.

    Article  PubMed  CAS  Google Scholar 

  52. Christenson LK, Stouffer RL, Strauss JF, III. Quantitative analysis of the hormone-induced hyperacetylation of histone H3 associated with the steroidogenic acute regulatory protein gene promoter. J Biol Chem 2001; 276:27392–9.

    Article  PubMed  CAS  Google Scholar 

  53. Hiroi H, Christenson LK, Chang L, et al. Temporal and spatial changes in transcription factor binding and histone modifications at the steroidogenic acute regulatory protein (StAR) locus associated with StAR transcription. Mol Endocrinol 2004; 18:791–806.

    Article  PubMed  CAS  Google Scholar 

  54. Rusovici R, Hui YY, LaVoie HA. Epidermal growth factor-mediated inhibition of follicle-stimulating hormone-stimulated StAR gene expression in porcine granulosa cells is associated with reduced histone H3 acetylation, Biol Reprod 2005; 72:862–71.

    Article  PubMed  CAS  Google Scholar 

  55. Clem BF, Clark BJ. Association of the mSin3A-histone deacetylase 1/2 corepressor complex with the mouse steroidogenic acute regulatory protein gene. Mol Endocrinol 2006; 20:100–13.

    Article  PubMed  CAS  Google Scholar 

  56. Lazzaro MA, Pepin D, Pescador N, et al. The imitation switch protein SNF2L regulates steroidogenic acute regulatory protein expression during terminal differentiation of ovarian granulosa cells. Mol Endocrinol 2006; 20:2406–17.

    Article  PubMed  CAS  Google Scholar 

  57. Zhang Y, Dufau ML. Dual mechanisms of regulation of transcription of luteinizing hormone receptor gene by nuclear orphan receptors and histone deacetylase complexes. J Steroid Biochem Mol Biol 2003; 85:401–14.

    Article  PubMed  CAS  Google Scholar 

  58. Zhang Y, Dufau ML. Silencing of transcription of the human luteinizing hormone receptor gene by histone deacetylase-mSin3A complex. J Biol Chem 2002; 277:33431–8.

    Article  PubMed  CAS  Google Scholar 

  59. Soloff MS, Shaw AR, Gentry LE, et al. Demonstration of relaxin precursors in pregnant rat ovaries with antisera against bacterially expressed rat prorelaxin. Endocrinology 1992; 130:1844–51.

    Article  PubMed  CAS  Google Scholar 

  60. Peters CA, Maizels ET, Robertson MC, et al. Induction of relaxin messenger RNA expression in response to prolactin receptor activation requires protein kinase C delta signaling. Mol Endocrinol 2000; 14:576–90.

    Article  PubMed  CAS  Google Scholar 

  61. Soloff MS, Gal S, Hoare S, et al. Cloning, characterization, and expression of the rat relaxin gene. Gene 2003; 323:149–55.

    Article  PubMed  CAS  Google Scholar 

  62. Garmey JC, Guthrie HD, Garrett WM, et al. Localization and expression of low-density lipoprotein receptor, steroidogenic acute regulatory protein, cytochrome P450 side-chain cleavage and P450 17-alpha-hydroxylase/C17-20 lyase in developing swine follicles: in situ molecular hybridization and immunocytochemical studies. Mol Cell Endocrinol 2000; 170:57–65.

    Article  PubMed  CAS  Google Scholar 

  63. Golos TG, August AM, Strauss JF, III. Expression of low density lipoprotein receptor in cultured human granulosa cells: regulation by human chorionic gonadotropin, cyclic AMP, and sterol. J Lipid Res 1986; 27:1089–96.

    PubMed  CAS  Google Scholar 

  64. LaVoie HA, Benoit AM, Garmey JC, et al. Coordinate developmental expression of genes regulating sterol economy and cholesterol side-chain cleavage in the porcine ovary. Biol Reprod 1997; 57:402–7.

    Article  PubMed  CAS  Google Scholar 

  65. Grummer RR, Carroll DJ. A review of lipoprotein cholesterol metabolism: importance to ovarian function. J Anim Sci 1988; 66:3160–73.

    PubMed  CAS  Google Scholar 

  66. Natesampillai S, Fernandez-Zapico ME, Urrutia R, et al. A novel functional interaction between the Sp1-like protein KLF13 and SREBP-Sp1 activation complex underlies regulation of low density lipoprotein receptor promoter function. J Biol Chem 2006; 281:3040–7.

    Article  PubMed  CAS  Google Scholar 

  67. Watari H, Blanchette-Mackie EJ, Dwyer NK, et al. NPC1-containing compartment of human granulosa-lutein cells: a role in the intracellular trafficking of cholesterol supporting steroidogenesis. Exp Cell Res 2000; 255:56–66.

    Article  PubMed  CAS  Google Scholar 

  68. Gevry N, Lacroix D, Song JH, et al. Porcine Niemann Pick-C1 protein is expressed in steroidogenic tissues and modulated by cAMP. Endocrinology 2002; 143:708–16.

    Article  PubMed  CAS  Google Scholar 

  69. Gevry NY, Lalli E, Sassone-Corsi P, et al. Regulation of niemann-pick c1 gene expression by the 3'5'-cyclic adenosine monophosphate pathway in steroidogenic cells. Mol Endocrinol 2003; 17:704–15.

    Article  PubMed  CAS  Google Scholar 

  70. Gevry N, Schoonjans K, Guay F, et al. Cholesterol supply and sterol regulatory element binding proteins modulate transcription of the Niemann-Pick C1 gene in steroidogenic tissues. J Lipid Res 2008; 49:1024–33

    Google Scholar 

  71. Bernard DJ, Chapman SC, Woodruff TK. Mechanisms of inhibin signal transduction. Recent Prog Horm Res 2001; 56:417–50.

    Article  PubMed  CAS  Google Scholar 

  72. Wood JR, Strauss JF, III. Multiple signal transduction pathways regulate ovarian steroidogenesis. Rev Endocr Metab Disord 2002; 3:33–46.

    Article  PubMed  CAS  Google Scholar 

  73. Ito M, Park Y, Weck J, et al. Synergistic activation of the inhibin alpha-promoter by steroidogenic factor-1 and cyclic adenosine 3',5'-monophosphate. Mol Endocrinol 2000; 14:66–81.

    Article  PubMed  CAS  Google Scholar 

  74. Weck J, Mayo KE. Switching of NR5A proteins associated with the inhibin alpha-subunit gene promoter after activation of the gene in granulosa cells. Mol Endocrinol 2006; 20:1090–103.

    Article  PubMed  CAS  Google Scholar 

  75. Gregoraszczuk E, Wojtowicz AK, Tauboll E, et al. Valproate-induced alterations in testosterone, estradiol and progesterone secretion from porcine follicular cells isolated from small- and medium-sized ovarian follicles. Seizure 2000; 9:480–5.

    Article  PubMed  CAS  Google Scholar 

  76. Isojarvi JI, Laatikainen TJ, Pakarinen AJ, et al. Polycystic ovaries and hyperandrogenism in women taking valproate for epilepsy. N Engl J Med 1993; 329:1383–8.

    Article  PubMed  CAS  Google Scholar 

  77. Nelson-DeGrave VL, Wickenheisser JK, Cockrell JE, et al. Valproate potentiates androgen biosynthesis in human ovarian theca cells. Endocrinology 2004; 145:799–808.

    Article  PubMed  CAS  Google Scholar 

  78. Wood JR, Nelson-DeGrave VL, Jansen E, et al. Valproate-induced alterations in human theca cell gene expression: clues to the association between valproate use and metabolic side effects. Physiol Genomics 2005; 20:233–43.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holly A. LaVoie .

Editor information

Editors and Affiliations

 

Aurora kinases:

a family of serine/threonine kinases important for cell division

CBP/p300:

CREB-binding protein and related E1A binding protein p300

CEBPβ:

CCAAT enhancer binding protein beta

ChIP:

chromatin immunoprecipitation

CL:

corpus luteum

CoREST:

corepressor for RE1 silencing transcription factor (REST)

CYP11A:

gene coding for P450scc

CYP17:

gene coding for cytochrome P450 17α-hydroxylase/17,20-lyase

DNMT1 and DNMT3:

DNA cytosine-5 methyltransferases 1 and 3

FOS:

gene coding for c-Fos

GATA:

family of transcription factors that contain a two-zinc-finger motif and bind to the DNA sequence (A/T)GATA(A/G)

GCN5:

an histone acetyltransferase

GRMO2:

rat granulosa stable cell line

H2A.X:

core histone 2A variant

HATs:

histone acetyltransferases

HDAC1/2:

histone deacetylases 1 and 2

HDACs:

histone deacetylases

HMTs:

histone methyltransferases

HP1:

heterochromatin 1 protein

HSD3B:

gene(s) coding for 3β-HSD

JMJD2A-D:

histone demethylases of the Jumonji family

JMJD6:

histone demethylase of the Jumonji family

KLF13:

Kruppel-like factor 13

LDL:

low-density lipoprotein

LSD1:

lysine specific demethylase 1

MSK1/2:

mitogen- and stress-activated protein kinases 1 and 2

NPC1:

Niemann-Pick C1 gene

NuRD:

nucleosome remodeling and deacetylase

Pak1:

p21-activated kinase-1

PCAF:

p300/CBP-associated factor

PCOS:

polycystic ovary syndrome

PKA:

protein kinase A

PP1:

phosphatase type 1

PP2A:

phosphatase type 2A

PRMTs:

protein arginine methyltransferases

rPRL:

rat placental lactogen

RSK2:

ribosomal S6 kinase 2

SET domain:

a domain found in some lysine methyltransferases, derived from Drosophilia proteins designated suppressor of variegation, enhancer of zeste and trithorax

SF-1:

transcription factor steroidogenic factor 1, also termed NR5A1

Sin3:

a SWI independent corepressor found in complexes with HDACs

Sin3A:

Sin3 family member A

SNF2L:

nucleosome-remodeling ATPase

Sp1 and Sp3:

transcription factor specificity proteins 1 and 3

SRC-1:

steroid receptor coactivator

STAR:

gene coding for steroidogenic acute regulatory (STAR) protein

STAT:

signal transducers and activators of transcription

SWI:

SWItch proteins, part of chromatin remodeling ATPase complexes

TAF250:

an histone acetyltransferase

TSA:

trichostatin A, an HDAC inhibitor

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

LaVoie, H.A. (2009). Epigenetic Mechanisms of Ovarian Gene Regulation. In: Chedrese, P. (eds) Reproductive Endocrinology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-88186-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-88186-7_24

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-88185-0

  • Online ISBN: 978-0-387-88186-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics