Skip to main content

Current Status and Future Prospects in Breast Carcinoma of Positron Emission Tomography

  • Chapter
  • First Online:
Breast Cancer Risk Reduction and Early Detection

Abstract

In this communication, we explore the current status and future prospects of positron emission tomography (PET) imaging in breast carcinoma. While the use of FDG-PET in the evaluation and management of cancer patients continues to increase, its precise role in the management of breast carcinoma is not yet clearly defined. Currently the most useful applications are in monitoring response to therapy (especially neoadjuvant chemotherapy for locally advanced breast cancer), diagnosis of recurrent and metastatic disease, and defining tumor biology based upon FDG uptake in the lesion. PET has a limited role in diagnosing the primary malignancy, especially in patients with small tumors and those with lobular carcinoma, but can prove useful in certain specific and difficult situations (e.g., in patients with dense breast tissue, significant fibrocystic changes, fibrosis after radiotherapy, and inconclusive results from MR imaging and other imaging modalities). FDG-PET has a relatively low sensitivity for detection of diseased axillary nodes, but the predictive value of a positive PET is very high. We have found that quantitative FDG-PET parameters help define and predict tumor biology. FDG uptake in the index lesion correlates well with tumor aggressiveness, and partial volume correction of the standardized uptake value substantially improves its accuracy especially in lesions less than 2.5 cm in diameter. In this review, we discuss the clinical utility of PET vis-à-vis existing modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leopold KA, Recht A, Schnitt SJ, et al. Results of conservative surgery and radiation therapy for multiple synchronous cancers of one breast. Int J Radiat Oncol Biol Phys. 1989;16:11–16.

    Article  CAS  PubMed  Google Scholar 

  2. Avril N, Rose CA, Schelling M, et al. Breast imaging with positron emission tomography and fluorine-18 fluorodeoxyglucose: use and limitations. J Clin Oncol. 2000;18:3495–3502.

    CAS  PubMed  Google Scholar 

  3. Cermik TF, Mavi A, Basu S, et al. Impact of FDG PET on the preoperative staging of newly diagnosed breast cancer [see comment]. Eur J Nucl Med Mol Imag. 2008;35:475–483.

    Article  Google Scholar 

  4. Fletcher JW, Djulbegovic B, Soares HP, et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med. 2008;49:480–508.

    Article  PubMed  Google Scholar 

  5. Basu S, Nair N, Thorat M, et al. Uptake characteristics of FDG in multiple juvenile cellular fibroadenomata of the breast: FDG-PET and histopathologic correlation. Clin Nucl Med. 2007;32:203–204.

    Article  PubMed  Google Scholar 

  6. Mavi A, Urhan M, Yu JQ, et al. Dual time point 18F-FDG PET imaging detects breast cancer with high sensitivity and correlates well with histologic subtypes. J Nucl Med. 2006;47:1440–1446.

    PubMed  Google Scholar 

  7. Weinberg I Dedicated apparatus and method for emission mammography. IN US patent # 5, 830 (Ed.), 1993

    Google Scholar 

  8. Levine EA, Freimanis RI, Perrier ND, et al. Positron emission mammography: initial clinical results. Ann Surg Oncol. 2003;10:86–91.

    Article  PubMed  Google Scholar 

  9. Srinivas SM, Freifelder RH, Saffer JR, et al. A dedicated breast positron emission tomography (B-PET) scanner: Characterization and pilot patient study. Proceedings of the 52nd Annual Meeting of the Society of Nuclear Medicine, June 18–22, 2005, Toronto, Canada. J Nucl Med. 2005;46(5):208P.

    Google Scholar 

  10. Greco M, Crippa F, Agresti R, et al. Axillary lymph node staging in breast cancer by 2-fluoro-2-deoxy-D-glucose-positron emission tomography: clinical evaluation and alternative management. J Natl Cancer Inst. 2001;93:630–635.

    Article  CAS  PubMed  Google Scholar 

  11. Wahl RL, Siegel BA, Coleman RE, et al. Prospective multicenter study of axillary nodal staging by positron emission tomography in breast cancer: a report of the staging breast cancer with PET Study Group. J Clin Oncol. 2004;22:277–285.

    Article  PubMed  Google Scholar 

  12. Haffty B, Ward B, Pathare P, et al. Reappraisal of the role of axillary lymph node dissection in the conservative treatment of breast cancer. J Clin Oncol. 1997;15:691–700.

    CAS  PubMed  Google Scholar 

  13. Silverstein MJ, Gierson ED, Waisman JR, et al. Axillary lymph node dissection for T1a breast carcinoma. Is it indicated? Cancer. 1994;73:664–667.

    Article  CAS  PubMed  Google Scholar 

  14. Dees EC, Shulman LN, Souba WW, et al. Does information from axillary dissection change treatment in clinically node-negative patients with breast cancer? An algorithm for assessment of impact of axillary dissection. Ann Surg. 1997;226:279–286:discussion 286–277.

    Article  CAS  PubMed  Google Scholar 

  15. Cabanes PA, Salmon RJ, Vilcoq JR, et al. Value of axillary dissection in addition to lumpectomy and radiotherapy in early breast cancer. The Breast Carcinoma Collaborative Group of the Institut Curie.[see comment]. Lancet. 1992;339:1245–1248.

    Article  CAS  PubMed  Google Scholar 

  16. Basu S, Mavi A, Cermik T, et al. Implications of standardized uptake value measurements of the primary lesions in proven cases of breast carcinoma with different degree of disease burden at diagnosis: does 2-deoxy-2-[F-18]fluoro-D-glucose-positron emission tomography predict tumor biology? Mol Imag Biol. 2008;10:62–66.

    Article  Google Scholar 

  17. Basu S, Chen W, Tchou J, et al. Comparison of triple-negative and estrogen receptor-positive/progesterone receptor-positive/HER2-negative breast carcinoma using quantitative fluorine-18 fluorodeoxyglucose/positron emission tomography imaging parameters: a potentially useful method for disease characterization. Cancer. 2008;112:995–1000.

    Article  CAS  PubMed  Google Scholar 

  18. Bartelink H, Horiot JC, Poortmans P, et al. Recurrence rates after treatment of breast cancer with standard radiotherapy with or without additional radiation. N Engl J Med. 2001;345:1378–1387.

    Article  CAS  PubMed  Google Scholar 

  19. Nuyten DS, Kreike B, Hart AA, et al. Predicting a local recurrence after breast-conserving therapy by gene expression profiling. Breast Cancer Res. 2006;8:R62.

    Article  PubMed  CAS  Google Scholar 

  20. Coombs NJ, Boyages J. Multifocal and multicentric breast cancer: does each focus matter? J Clin Oncol. 2005;23:7497–7502.

    Article  PubMed  Google Scholar 

  21. Huang EH, Tucker SL, Strom EA, et al. Predictors of locoregional recurrence in patients with locally advanced breast cancer treated with neoadjuvant chemotherapy, mastectomy, and radiotherapy. Int J Radiat Oncol Biol Phys. 2005;62:351–357.

    Article  PubMed  Google Scholar 

  22. Katz A, Strom EA, Buchholz TA, et al. The influence of pathologic tumor characteristics on locoregional recurrence rates following mastectomy. Int J Radiat Oncol Biol Phys. 2001;50:735–742.

    Article  CAS  PubMed  Google Scholar 

  23. Eubank WB. Diagnosis of recurrent and metastatic disease using f-18 fluorodeoxyglucose-positron emission tomography in breast cancer. Radiol Clin North Am. 2007;45:659–667:vi.

    Article  PubMed  Google Scholar 

  24. Bender H, Kirst J, Palmedo H, et al. Value of 18fluoro-deoxyglucose positron emission tomography in the staging of recurrent breast carcinoma. Anticancer Res. 1997;17:1687–1692.

    CAS  PubMed  Google Scholar 

  25. Moon DH, Maddahi J, Silverman DH, et al. Accuracy of whole-body fluorine-18-FDG PET for the detection of recurrent or metastatic breast carcinoma. J Nucl Med. 1998;39:431–435.

    CAS  PubMed  Google Scholar 

  26. Lonneux M, Borbath II, Berliere M, et al. The Place of Whole-Body PET FDG for the Diagnosis of Distant Recurrence of Breast Cancer. Clin Positron Imaging. 2000;3:45–49.

    Article  PubMed  Google Scholar 

  27. Kim TS, Moon WK, Lee DS, et al. Fluorodeoxyglucose positron emission tomography for detection of recurrent or metastatic breast cancer. World J Surg. 2001;25:829–834.

    Article  CAS  PubMed  Google Scholar 

  28. Lin WY, Tsai SC, Cheng KY, et al. Fluorine-18 FDG-PET in detecting local recurrence and distant metastases in breast cancer – Taiwanese experiences. Cancer Invest. 2002;20:725–729.

    Article  PubMed  Google Scholar 

  29. Liu C-S, Shen Y-Y, Lin C-C, et al. Clinical impact of [18F]FDG-PET in patients with suspected recurrent breast cancer based on asymptomatically elevated tumor marker serum levels: a preliminary report. Jpn J Clin Oncol. 2002;32:244–247.

    Article  PubMed  Google Scholar 

  30. Suarez M, Perez-Castejon MJ, Jimenez A, et al. Early diagnosis of recurrent breast cancer with FDG-PET in patients with progressive elevation of serum tumor markers. Q J Nucl Med. 2002;46:113–121.

    CAS  PubMed  Google Scholar 

  31. Gallowitsch HJ, Kresnik E, Gasser J, et al. F-18 fluorodeoxyglucose positron-emission tomography in the diagnosis of tumor recurrence and metastases in the follow-up of patients with breast carcinoma: a comparison to conventional imaging. Invest Radiol. 2003;38:250–256.

    Article  PubMed  Google Scholar 

  32. Siggelkow W, Zimny M, Faridi A, et al. The value of positron emission tomography in the follow-up for breast cancer.[erratum appears in Anticancer Res. 2003;23:5370]. Anticancer Res. 2003;23:1859–1867.

    PubMed  Google Scholar 

  33. Kamel EM, Wyss MT, Fehr MK, et al. . [18F]-Fluorodeoxyglucose positron emission tomography in patients with suspected recurrence of breast cancer. J Cancer Res Clin Oncol. 2003;129:147–153.

    PubMed  Google Scholar 

  34. van der Hoeven JJ, Krak NC, Hoekstra OS, et al. 18F-2-fluoro-2-deoxy-d-glucose positron emission tomography in staging of locally advanced breast cancer. J Clin Oncol. 2004;22:1253–1259.

    Article  PubMed  CAS  Google Scholar 

  35. Adler LP, Crowe JP, al-Kaisi NK, et al. Evaluation of breast masses and axillary lymph nodes with [F-18] 2-deoxy-2-fluoro-D-glucose PET. Radiology. 1993;187:743–750.

    CAS  PubMed  Google Scholar 

  36. Utech CI, Young CS, Winter PF, et al. Prospective evaluation of fluorine-18 fluorodeoxyclucose positron emission tomography in breast cancer for staging of the axilla related to surgery and immunocytochemistry. Eur J Nucl Med. 1996;23:1588–1593.

    Article  CAS  PubMed  Google Scholar 

  37. Avril N, Dose J, Janicke F, et al. Assessment of axillary lymph node involvement in breast cancer patients with positron emission tomography using radiolabeled 2-(fluorine-18)-fluoro-2-deoxy-D-glucose. J Natl Cancer Inst. 1996;88:1204–1209.

    Article  CAS  PubMed  Google Scholar 

  38. Perez EA, Foo ML, Fulmer JT, et al. Management of locally advanced breast cancer. Oncology (Williston Park). 1997;11:9–17.

    CAS  Google Scholar 

  39. Coleman RE, Rubens RD, Coleman RE, et al. The clinical course of bone metastases from breast cancer. Br J Cancer. 1987;55:61–66.

    Article  CAS  PubMed  Google Scholar 

  40. Cook GJ, Houston S, Rubens R, et al. Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol. 1998;16:3375–3379.

    CAS  PubMed  Google Scholar 

  41. Du Y, Cullum I, Illidge TM, et al. Fusion of metabolic function and morphology: sequential [18F]fluorodeoxyglucose positron-emission tomography/computed tomography studies yield new insights into the natural history of bone metastases in breast cancer. J Clin Oncol. 2007;25:3440–3447.

    Article  PubMed  Google Scholar 

  42. Becker S, Becker-Pergola G, Wallwiener D, et al. Detection of cytokeratin-positive cells in the bone marrow of breast cancer patients undergoing adjuvant therapy. Breast Cancer Res Treat. 2006;97:91–96.

    Article  CAS  PubMed  Google Scholar 

  43. Basu S, Torigian D, Alavi A. Evolving concept of imaging bone marrow metastasis in the twenty-first century: critical role of FDG-PET. Eur J Nucl Med Mol Imaging. 2008;35:465–471.

    Article  PubMed  Google Scholar 

  44. Vranjesevic D, Filmont JE, Meta J, et al. Whole-body (18)F-FDG PET and conventional imaging for predicting outcome in previously treated breast cancer patients. J Nucl Med. 2002;43:325–329.

    PubMed  Google Scholar 

  45. Wahl RL, Zasadny K, Helvie M, et al. Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. J Clin Oncol. 1993;11:2101–2111.

    CAS  PubMed  Google Scholar 

  46. Schelling M, Avril N, Nahrig J, et al. Positron emission tomography using [(18)F]fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol. 2000;18:1689–1695.

    CAS  PubMed  Google Scholar 

  47. Smith IC, Welch AE, Hutcheon AW, et al. Positron emission tomography using [(18)F]-fluorodeoxy-D-glucose to predict the pathologic response of breast cancer to primary chemotherapy. J Clin Oncol. 2000;18:1676–1688.

    CAS  PubMed  Google Scholar 

  48. Gennari A, Donati S, Salvadori B, et al. Role of 2-[18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) in the early assessment of response to chemotherapy in metastatic breast cancer patients. Clin Breast Cancer. 2000;1:156–161:discussion 162–153.

    Article  CAS  PubMed  Google Scholar 

  49. Stafford SE, Gralow JR, Schubert EK, et al. Use of serial FDG PET to measure the response of bone-dominant breast cancer to therapy. Acad Radiol. 2002;9:913–921.

    Article  PubMed  Google Scholar 

  50. McGuire AH, Dehdashti F, Siegel BA, et al. Positron tomographic assessment of 16 alpha-[18F] fluoro-17 beta-estradiol uptake in metastatic breast carcinoma. J Nucl Med. 1991;32:1526–1531.

    CAS  PubMed  Google Scholar 

  51. Dehdashti F, Mortimer JE, Siegel BA, et al. Positron tomographic assessment of estrogen receptors in breast cancer: comparison with FDG-PET and in vitro receptor assays. J Nucl Med. 1995;36:1766–1774.

    CAS  PubMed  Google Scholar 

  52. Mortimer JE, Dehdashti F, Siegel BA, et al. Metabolic flare: indicator of hormone responsiveness in advanced breast cancer. J Clin Oncol. 2001;19:2797–2803.

    CAS  PubMed  Google Scholar 

  53. Mankoff D, Peterson L, Petra P, et al. Factors affecting the level and heterogeneity of uptake of [18F]Fluoroestradiol in patients with estrogen receptor positive breast cancer. J Nucl Med. 2002;43:286.

    Google Scholar 

  54. Liden H, Stekhova S, Link J, et al. . HER2 expression and uptake of 18F-Fluoroestradiol (FES) predict response of breast cancer to hormonal therapy. J Nucl Med. 2004;45:85.

    Google Scholar 

  55. Overgaard M, Hansen PS, Overgaard J, et al. Postoperative radiotherapy in high-risk premenopausal women with breast cancer who receive adjuvant chemotherapy. Danish Breast Cancer Cooperative Group 82b Trial. N Engl J Med. 1997;337:949–955.

    Article  CAS  PubMed  Google Scholar 

  56. Ragaz J, Jackson SM, Le N, et al. Adjuvant radiotherapy and chemotherapy in node-positive premenopausal women with breast cancer. N Engl J Med. 1997;337:956–962.

    Article  CAS  PubMed  Google Scholar 

  57. Cuzick J, Stewart HJ, Peto R, et al. Overview of randomized trials of postoperative adjuvant radiotherapy in breast cancer. Recent Results Cancer Res. 1988;111:108–129.

    CAS  PubMed  Google Scholar 

  58. Yap CS, Seltzer MA, Schiepers C, et al. Impact of whole-body 18F-FDG PET on staging and managing patients with breast cancer: the referring physician’s perspective. J Nucl Med . 2001;42:1334–1337.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by U.S. Public Health Services Research grant M01-RR00040 from the National Institutes of Health. It was also supported in part by the International Union against Cancer (UICC), Geneva, Switzerland, under the American Cancer Society International Fellowship for the Beginning Investigators (ACSBI fellowship).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip Basu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Basu, S., Rosenbaum, J.I., Alavi, A. (2010). Current Status and Future Prospects in Breast Carcinoma of Positron Emission Tomography. In: Sauter, E., Daly, M. (eds) Breast Cancer Risk Reduction and Early Detection. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-87583-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-87583-5_7

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-87582-8

  • Online ISBN: 978-0-387-87583-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics