Skip to main content

Renal Protection Strategies

  • Chapter
  • First Online:
Anesthesia and Perioperative Care for Aortic Surgery

Abstract

The well-known quote from the renal physiologist Dr. Homer Smith as he proposed that “…the composition of the blood is determined not by what the mouth ingests but by what the kidneys keep..”1 highlights not only the kidneys’ domain of influence, but why even the smallest functional perturbations can have widespread effects. The kidney plays a central role in homeostasis, including keeping extracellular composition and fluid volume constant, while excreting toxins and metabolic waste in the urine. Acute kidney injury (AKI) is a major complication of aortic surgery and highly associated with poor outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Smith HW. Lectures on the Kidney. Lawrence: University Extension Division, University of Kansas; 1943.

    Google Scholar 

  2. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8(4):R204–212.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mora-Mangano C, Diamondstone LS, Ramsay JG, Aggarwal A, Herskowitz A, Mangano DT. Renal dysfunction after myocardial revascularization: risk factors, adverse outcomes, and hospital resource utilization. The Multicenter Study of Perioperative Ischemia Research Group. Ann Intern Med. 1998;128(3):194–203.

    Article  Google Scholar 

  4. Sladen RN, Endo E, Harrison T. Two-hour versus 22-hour creatinine clearance in critically ill patients. Anesthesiology. 1987;67(6):1013–1016.

    Article  CAS  PubMed  Google Scholar 

  5. Alpert RA, Roizen MF, Hamilton WK, et al. Intraoperative urinary output does not predict postoperative renal function in patients undergoing abdominal aortic revascularization. Surgery. 1984;95(6):707–711.

    CAS  PubMed  Google Scholar 

  6. Conlon PJ, Stafford-Smith M, White WD, et al. Acute renal failure following cardiac surgery. Nephrol Dial Transplant. 1999;14(5):1158–1162.

    Article  CAS  PubMed  Google Scholar 

  7. Bloor GK, Welsh KR, Goodall S, Shah MV. Comparison of predicted with measured creatinine clearance in cardiac surgical patients. J Cardiothorac Vasc Anesth. 1996;10(7):899–902.

    Article  CAS  PubMed  Google Scholar 

  8. Gowans EM, Fraser CG. Biological variation of serum and urine creatinine and creatinine clearance: ramifications for interpretation of results and patient care [see comments]. Ann Clin Biochem. 1988;25(Pt 3):259–263.

    Article  CAS  PubMed  Google Scholar 

  9. Morgan DB, Dillon S, Payne RB. The assessment of glomerular function: creatinine clearance or plasma creatinine? Postgrad Med J. 1978;54(631):302–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31–41.

    Article  CAS  PubMed  Google Scholar 

  11. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999;130(6):461–470.

    Article  CAS  PubMed  Google Scholar 

  12. Ferguson TB Jr, Dziuban SW Jr, Edwards FH, et al. The STS National Database: current changes and challenges for the new millennium. Committee to Establish a National Database in Cardiothoracic Surgery, The Society of Thoracic Surgeons. Ann Thorac Surg. 2000;69(3):680–691.

    Article  PubMed  Google Scholar 

  13. Barrett BJ, Parfrey PS. Prevention of nephrotoxicity induced by radiocontrast agents. N Engl J Med. 1994;331(21):1449–1450.

    Article  CAS  PubMed  Google Scholar 

  14. Stafford-Smith M. Perioperative renal dysfunction: implications and strategies for protection. In: Newman MF, ed. Perioperative Organ Protection. Baltimore: Lippincott Williams and Wilkins; 2003:89–124.

    Google Scholar 

  15. Porter GA. Contrast-associated nephropathy: presentation, pathophysiology and management. Miner Electrolyte Metab. 1994;20(4):232–243.

    CAS  PubMed  Google Scholar 

  16. Stafford-Smith M, Podgoreanu M, Swaminathan M, et al. Association of genetic polymorphisms with risk of renal injury after coronary artery bypass graft surgery. Am J Kidney Dis. 2005;45(3):519–530.

    Article  CAS  PubMed  Google Scholar 

  17. Davila-Roman VG, Kouchoukos NT, Schechtman KB, Barzilai B. Atherosclerosis of the ascending aorta is a predictor of renal dysfunction after cardiac operations. J Thorac Cardiovasc Surg. 1999;117(1):111–116.

    Article  CAS  PubMed  Google Scholar 

  18. Sreeram GM, Grocott HP, White WD, Newman MF, Stafford-Smith M. Transcranial Doppler emboli count predicts rise in creatinine after coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth. 2004;18(5):548–551.

    Article  PubMed  Google Scholar 

  19. Thurlbeck W, Castleman B. Atheromatous emboli to the kidneys after aortic surgery. N Engl J Med. 1957;257:442–447.

    Article  CAS  PubMed  Google Scholar 

  20. Reichenspurner H, Navia JA, Berry G, et al. Particulate emboli capture by an intra-aortic filter device during cardiac surgery. J Thorac Cardiovasc Surg. 2000;119(2):233–241.

    Article  CAS  PubMed  Google Scholar 

  21. Barbut D, Yao FS, Lo YW, et al. Determination of size of aortic emboli and embolic load during coronary artery bypass grafting. Ann Thorac Surg. 1997;63(5):1262–1267.

    Article  CAS  PubMed  Google Scholar 

  22. Greenberg RK, Chuter TA, Lawrence-Brown M, Haulon S, Nolte L. Analysis of renal function after aneurysm repair with a device using suprarenal fixation (Zenith AAA Endovascular Graft) in contrast to open surgical repair. J Vasc Surg. 2004;39(6):1219–1228.

    Article  PubMed  Google Scholar 

  23. Schermerhorn ML, O’Malley AJ, Jhaveri A, Cotterill P, Pomposelli F, Landon BE. Endovascular vs. open repair of abdominal aortic aneurysms in the Medicare population. N Engl J Med. 2008;358(5):464–474.

    Article  CAS  PubMed  Google Scholar 

  24. Murphy EH, Beck AW, Clagett GP, DiMaio JM, Jessen ME, Arko FR. Combined aortic debranching and thoracic endovascular aneurysm repair (TEVAR) effective but at a cost. Arch Surg. 2009;144(3):222–227.

    Article  PubMed  Google Scholar 

  25. Chiesa R, Tshomba Y, Melissano G, Logaldo D. Is hybrid procedure the best treatment option for thoraco-abdominal aortic aneurysm? Eur J Vasc Endovasc Surg. 2009;38(1):26–34.

    Article  CAS  PubMed  Google Scholar 

  26. Garwood S, Mathew J, Hines R. Renal function and cardiopulmonary bypass: does time since catheterization impact renal performance? Anesthesiology. 1997;87:A90.

    Article  Google Scholar 

  27. Provenchere S, Plantefeve G, Hufnagel G, et al. Renal dysfunction after cardiac surgery with normothermic cardiopulmonary bypass: incidence, risk factors, and effect on clinical outcome. Anesth Analg. 2003;96(5):1258–1264.

    Article  PubMed  Google Scholar 

  28. Atkins JL. Effect of sodium bicarbonate preloading on ischemic renal failure. Nephron. 1986;44(1):70–74.

    Article  CAS  PubMed  Google Scholar 

  29. Merten GJ, Burgess WP, Gray LV, et al. Prevention of contrast-induced nephropathy with sodium bicarbonate: a randomized controlled trial. JAMA. 2004;291(19):2328–2334.

    Article  CAS  PubMed  Google Scholar 

  30. Haase M, Haase-Fielitz A, Bellomo R, et al. Sodium bicarbonate to prevent increases in serum creatinine after cardiac surgery: a pilot double-blind, randomized controlled trial. Crit Care Med. 2009;37(1):39–47.

    Article  CAS  PubMed  Google Scholar 

  31. Corwin HL, Schreiber MJ, Fang LS. Low fractional excretion of sodium: occurrence with hemoglobinuric- and myoglobinuric-induced acute renal failure. Arch Intern Med. 1984;144(5):981–982.

    Article  CAS  PubMed  Google Scholar 

  32. Shaw AD, Stafford-Smith M, White WD, et al. The effect of aprotinin on outcome after coronary-artery bypass grafting. N Engl J Med. 2008;358(8):784–793.

    Article  CAS  PubMed  Google Scholar 

  33. Stafford-Smith M, Phillips-Bute B, Reddan DN, Milano C, Newman MF, Winn M. The association of postoperative peak and fractional change in serum creatinine with mortality after coronary bypass surgery. Anesthesiology. 2000;93:A240.

    Google Scholar 

  34. Chertow GM, Lazarus JM, Christiansen CL, et al. Preoperative renal risk stratification. Circulation. 1997;95(4):878–884.

    Article  CAS  PubMed  Google Scholar 

  35. Zanardo G, Michielon P, Paccagnella A, et al. Acute renal failure in the patient undergoing cardiac operation: prevalence, mortality rate, and main risk factors. J Thorac Cardiovasc Surg. 1994;107(6):1489–1495.

    Article  CAS  PubMed  Google Scholar 

  36. Yeh T, Brackney E, Hall D, Ellison R. Renal complications of open-heart surgery: predisposing factors, prevention and management. J Thorac Cardiovasc Surg. 1964;47:79–95.

    Article  CAS  PubMed  Google Scholar 

  37. Porter GA, Kloster FE, Herr RJ, Starr A, Griswold HE, Kimsey J. Renal complications associated with valve replacement surgery. J Thorac Cardiovasc Surg. 1967;53(1):145–152.

    Article  CAS  PubMed  Google Scholar 

  38. McLeish KR, Luft FC, Kleit SA. Factors affecting prognosis in acute renal failure following cardiac operations. Surg Gynecol Obstet. 1977;145(1):28–32.

    CAS  PubMed  Google Scholar 

  39. Mangos GJ, Brown MA, Chan WY, Horton D, Trew P, Whitworth JA. Acute renal failure following cardiac surgery: incidence, outcomes and risk factors. Aust N Z J Med. 1995;25(4):284–289.

    Article  CAS  PubMed  Google Scholar 

  40. Llopart T, Lombardi R, Forselledo M, Andrade R. Acute renal failure in open heart surgery. Ren Fail. 1997;19(2):319–323.

    Article  CAS  PubMed  Google Scholar 

  41. Hilberman M, Myers BD, Carrie BJ, Derby G, Jamison RL, Stinson EB. Acute renal failure following cardiac surgery. J Thorac Cardiovasc Surg. 1979;77(6):880–888.

    Article  CAS  PubMed  Google Scholar 

  42. Heikkinen L, Harjula A, Merikallio E. Acute renal failure related to open-heart surgery. Ann Chir Gynaecol. 1985;74(5):203–209.

    CAS  PubMed  Google Scholar 

  43. Gailiunas P Jr, Chawla R, Lazarus JM, Cohn L, Sanders J, Merrill JP. Acute renal failure following cardiac operations. J Thorac Cardiovasc Surg. 1980;79(2):241–243.

    Article  PubMed  Google Scholar 

  44. Doberneck RC, Reiser MP, Lillehei CW. Acute renal failure after open-heart surgery utilizing extracorporeal circulation and total body perfusion. J Thorac Cardiovasc Surg. 1962;43:441–452.

    Article  CAS  PubMed  Google Scholar 

  45. Corwin HL, Sprague SM, DeLaria GA, Norusis MJ. Acute renal failure associated with cardiac operations: a case-control study. J Thorac Cardiovasc Surg. 1989;98(6):1107–1112.

    Article  CAS  PubMed  Google Scholar 

  46. Bhat JG, Gluck MC, Lowenstein J, Baldwin DS. Renal failure after open heart surgery. Ann Intern Med. 1976;84(6):677–682.

    Article  CAS  PubMed  Google Scholar 

  47. Andersson LG, Ekroth R, Bratteby LE, Hallhagen S, Wesslen O. Acute renal failure after coronary surgery–a study of incidence and risk factors in 2009 consecutive patients. Thorac Cardiovasc Surg. 1993;41(4):237–241.

    Article  CAS  PubMed  Google Scholar 

  48. Abel RM, Buckley MJ, Austen WG, Barnett GO, Beck CH Jr, Fischer JE. Etiology, incidence, and prognosis of renal failure following cardiac operations: results of a prospective analysis of 500 consecutive patients. J Thorac Cardiovasc Surg. 1976;71(3):323–333.

    Article  CAS  PubMed  Google Scholar 

  49. Mimran A, Ribstein J. Angiotensin converting enzyme inhibitors and renal function. J Hypertens Suppl. 1989;7(5):S3–9.

    CAS  PubMed  Google Scholar 

  50. Kamper AL, Nielsen AH, Baekgaard N, Just S. Renal graft failure after addition of an angiotensin II receptor antagonist to an angiotensin-converting enzyme inhibitor: unmasking of an unknown iliac artery stenosis. J Renin Angiotensin Aldosterone Syst. 2002;3(2):135–137.

    Article  PubMed  Google Scholar 

  51. Cittanova ML, Zubicki A, Savu C, et al. The chronic inhibition of angiotensin-converting enzyme impairs postoperative renal function. Anesth Analg. 2001;93(5):1111–1115.

    Article  CAS  PubMed  Google Scholar 

  52. Weightman WM, Gibbs NM, Sheminant MR, Whitford EG, Mahon BD, Newman MA. Drug therapy before coronary artery surgery: nitrates are independent predictors of mortality and beta-adrenergic blockers predict survival. Anesth Analg. 1999;88(2):286–291.

    CAS  PubMed  Google Scholar 

  53. Charlson M, Krieger KH, Peterson JC, Hayes J, Isom OW. Predictors and outcomes of cardiac complications following elective coronary bypass grafting. Proc Assoc Am Physicians. 1999;111(6):622–632.

    Article  CAS  PubMed  Google Scholar 

  54. Cittanova ML, Leblanc I, Legendre C, Mouquet C, Riou B, Coriat P. Effect of hydroxyethylstarch in brain-dead kidney donors on renal function in kidney-transplant recipients. Lancet. 1996;348(9042):1620–1622.

    Article  CAS  PubMed  Google Scholar 

  55. Peron S, Mouthon L, Guettier C, Brechignac S, Cohen P, Guillevin L. Hydroxyethyl starch-induced renal insufficiency after plasma exchange in a patient with polymyositis and liver cirrhosis. Clin Nephrol. 2001;55(5):408–411.

    CAS  PubMed  Google Scholar 

  56. Winkelmayer WC, Glynn RJ, Levin R, Avorn J. Hydroxyethyl starch and change in renal function in patients undergoing coronary artery bypass graft surgery. Kidney Int. 2003;64(3):1046–1049.

    Article  PubMed  Google Scholar 

  57. De Labarthe A, Jacobs F, Blot F, Glotz D. Acute renal failure secondary to hydroxyethylstarch administration in a surgical patient. Am J Med. 2001;111(5):417–418.

    Article  PubMed  Google Scholar 

  58. Schortgen F, Lacherade JC, Bruneel F, et al. Effects of hydroxyethylstarch and gelatin on renal function in severe sepsis: a multicentre randomised study. Lancet. 2001;357(9260):911–916.

    Article  CAS  PubMed  Google Scholar 

  59. Kumle B, Boldt J, Piper S, Schmidt C, Suttner S, Salopek S. The influence of different intravascular volume replacement regimens on renal function in the elderly. Anesth Analg. 1999;89(5):1124–1130.

    Article  CAS  PubMed  Google Scholar 

  60. Wilkes NJ, Woolf R, Mutch M, et al. The effects of balanced versus saline-based hetastarch and crystalloid solutions on acid-base and electrolyte status and gastric mucosal perfusion in elderly surgical patients. Anesth Analg. 2001;93(4):811–816.

    Article  CAS  PubMed  Google Scholar 

  61. Parekh N. Hyperchloremic acidosis. Anesth Analg. 2002;95:1821.

    Article  PubMed  Google Scholar 

  62. Wilcox C. Regulation of renal blood flow by plasma chloride. J Clin Invest. 1983;71:726–735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hansen PB, Jensen BL, Skott O. Chloride regulates afferent arteriolar contraction in response to depolarization. Hypertension. 1998;32(6):1066–1070.

    Article  CAS  PubMed  Google Scholar 

  64. Andersson LG, Bratteby LE, Ekroth R, et al. Renal function during cardiopulmonary bypass: influence of pump flow and systemic blood pressure. Eur J Cardiothorac Surg. 1994;8(11):597–602.

    Article  CAS  PubMed  Google Scholar 

  65. Reves JG, Karp RB, Buttner EE, et al. Neuronal and adrenomedullary catecholamine release in response to cardiopulmonary bypass in man. Circulation. 1982;66(1):49–55.

    Article  CAS  PubMed  Google Scholar 

  66. Laffey J, Boylan J, Cheng D. The systemic inflammatory response to cardiac surgery: implications for the anesthesiologist. Anesthesiology. 2002;97:215–252.

    Article  CAS  PubMed  Google Scholar 

  67. Fischer UM, Weissenberger WK, Warters RD, Geissler HJ, Allen SJ, Mehlhorn U. Impact of cardiopulmonary bypass management on postcardiac surgery renal function. Perfusion. 2002;17(6):401–406.

    Article  PubMed  Google Scholar 

  68. Urzua J, Troncoso S, Bugedo G, et al. Renal ­function and cardiopulmonary bypass: effect of perfusion pressure. J Cardiothorac Vasc Anesth. 1992;6(3):299–303.

    Article  CAS  PubMed  Google Scholar 

  69. Swaminathan M, Knauth K, Phillips-Bute B, Smith P, Stafford-Smith M. Lowest CPB Hematocrit is inversely associated with creatinine rise after coronary bypass surgery. Anesth Analg. 2002;94:S70.

    Google Scholar 

  70. Conlon PJ, Crowley J, Stack R, et al. Renal artery stenosis is not associated with the development of acute renal failure following coronary artery bypass grafting. Ren Fail. 2005;27(1):81–86.

    Article  PubMed  Google Scholar 

  71. DeFoe G, Ross C, Olmstead E, et al. Group NNECDS: lowest hematocrit on bypass and adverse outcomes associated with coronary artery bypass grafting. Ann Thorac Surg. 2001;71:769–776.

    Article  CAS  PubMed  Google Scholar 

  72. Fang WC, Helm RE, Krieger KH, et al. Impact of minimum hematocrit during cardiopulmonary bypass on mortality in patients undergoing coronary artery surgery. Circulation. 1997;96(9 Suppl):II-194–199.

    Google Scholar 

  73. Ranucci M, Pavesi M, Mazza E, et al. Risk factors for renal dysfunction after coronary surgery: the role of cardiopulmonary bypass technique. Perfusion. 1994;9(5):319–326.

    Article  CAS  PubMed  Google Scholar 

  74. Swaminathan M, Phillips-Bute BG, Conlon PJ, Newman S, Smith PK, Stafford-Smith M. The association of lowest hematocrit during cardiopulmonary bypass with acute renal injury after coronary bypass surgery. Ann Thorac Surg. 2003;76(3):784–791.

    Article  PubMed  Google Scholar 

  75. Karkouti K, Beattie WS, Wijeysundera DN, et al. Hemodilution during cardiopulmonary bypass is an independent risk factor for acute renal failure in adult cardiac surgery. J Thorac Cardiovasc Surg. 2005;129(2):391–400.

    Article  CAS  PubMed  Google Scholar 

  76. Habib RH, Zacharias A, Schwann TA, et al. Role of hemodilutional anemia and transfusion during cardiopulmonary bypass in renal injury after coronary revascularization: implications on operative outcome. Crit Care Med. 2005;33(8):1749–1756.

    Article  PubMed  Google Scholar 

  77. Kincaid EH, Ashburn DA, Hoyle JR, Reichert MG, Hammon JW, Kon ND. Does the combination of aprotinin and angiotensin-converting enzyme inhibitor cause renal failure after cardiac surgery? Ann Thorac Surg. 2005;80(4):1388–1393.

    Article  PubMed  Google Scholar 

  78. Ip-Yam PC, Murphy S, Baines M, Fox MA, Desmond MJ, Innes PA. Renal function and proteinuria after cardiopulmonary bypass: the effects of temperature and mannitol. Anesth Analg. 1994;78(5):842–847.

    Article  CAS  PubMed  Google Scholar 

  79. Regragui IA, Izzat MB, Birdi I, Lapsley M, Bryan AJ, Angelini GD. Cardiopulmonary bypass perfusion temperature does not influence perioperative renal function. Ann Thorac Surg. 1995;60(1):160–164.

    Article  CAS  PubMed  Google Scholar 

  80. Swaminathan M, East C, Phillips-Bute B, et al. Report of a substudy on warm versus cold cardiopulmonary bypass: changes in creatinine clearance. Ann Thorac Surg. 2001;72(5):1603–1609.

    Article  CAS  PubMed  Google Scholar 

  81. Bakirtas H, Eroglu M, Naldoken S, Akbulut Z, Tekdogan UY. Nephron-sparing surgery: the effect of surface cooling and temporary renal artery occlusion on renal function. Urol Int. 2009;82(1):24–27.

    Article  PubMed  Google Scholar 

  82. Van den Berghe G, Wouters P, Weekers F, et al. Intensive insulin therapy in the critically ill patients. N Engl J Med. 2001;345(19):1359–1367.

    Article  PubMed  Google Scholar 

  83. Gandhi GY, Nuttall GA, Abel MD, et al. Intensive intraoperative insulin therapy versus conventional ­glucose management during cardiac surgery: a randomized trial. Ann Intern Med. 2007;146(4):233–243.

    Article  PubMed  Google Scholar 

  84. Burchardi H, Kaczmarczyk G. The effect of anaesthesia on renal function. Eur J Anaesthesiol. 1994;11(3):163–168.

    CAS  PubMed  Google Scholar 

  85. Sladen RN, Landry D. Renal blood flow regulation, autoregulation, and vasomotor nephropathy. Anesthesiol Clin N Am. 2000;18(4):791–807. ix.

    Article  CAS  Google Scholar 

  86. Page US, Washburn T. Using tracking data to find complications that physicians miss: the case of renal failure in cardiac surgery. Jt Comm J Qual Improv. 1997;23(10):511–520.

    CAS  PubMed  Google Scholar 

  87. Bellomo R, Chapman M, Finfer S, Hickling K, Myburgh J. Low-dose dopamine in patients with early renal dysfunction: a placebo- controlled randomised trial. Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group. Lancet. 2000;356(9248):2139–2143.

    Article  CAS  PubMed  Google Scholar 

  88. Marik PE. Low-dose dopamine: a systematic review. Intensive Care Med. 2002;28(7):877–883.

    Article  CAS  PubMed  Google Scholar 

  89. Kellum JA, Decker JM. Use of dopamine in acute renal failure: a meta-analysis. Crit Care Med. 2001;29(8):1526–1531.

    Article  CAS  PubMed  Google Scholar 

  90. Prins I, Plotz FB, Uiterwaal CS, van Vught HJ. ­Low-dose dopamine in neonatal and pediatric intensive care: a systematic review. Intensive Care Med. 2001;27(1):206–210.

    Article  CAS  PubMed  Google Scholar 

  91. Friedrich JO, Adhikari N, Herridge MS, Beyene J. Meta-analysis: low-dose dopamine increases urine output but does not prevent renal dysfunction or death. Ann Intern Med. 2005;142(7):510–524.

    Article  CAS  PubMed  Google Scholar 

  92. Bove T, Landoni G, Grazia Calabro M, et al. Renoprotective action of Fenoldopam in high-risk patients undergoing cardiac surgery: a prospective, double-blind, randomized clinical trial. Circulation. 2005;111(24):3230–3235.

    Article  CAS  PubMed  Google Scholar 

  93. Caimmi PP, Pagani L, Micalizzi E, et al. Fenoldopam for renal protection in patients undergoing cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2003;17(4):491–494.

    Article  PubMed  Google Scholar 

  94. Tumlin J, Finckle K, Murray P, Shaw A. Dopamine receptor 1 agonists in early acute tubular necrosis: a prospective, randomized, double blind, placebo-controlled trial of fenoldopam mesylate. J Am Soc Nephrol. 2003;14:PUB001.

    Google Scholar 

  95. Tumlin JA, Finkel KW, Murray PT, Samuels J, Cotsonis G, Shaw AD. Fenoldopam mesylate in early acute tubular necrosis: a randomized, double-blind, placebo-controlled clinical trial. Am J Kidney Dis. 2005;46(1):26–34.

    Article  CAS  PubMed  Google Scholar 

  96. Halpenny M, Rushe C, Breen P, Cunningham AJ, Boucher-Hayes D, Shorten GD. The effects of fenoldopam on renal function in patients undergoing elective aortic surgery. Eur J Anaesthesiol. 2002;19(1):32–39.

    Article  CAS  PubMed  Google Scholar 

  97. Landoni G, Biondi-Zoccai GG, Marino G, et al. Fenoldopam reduces the need for renal replacement therapy and in-hospital death in cardiovascular surgery: a meta-analysis. J Cardiothorac Vasc Anesth. 2008;22(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  98. Renton MC, Snowden CP. Dopexamine and its role in the protection of hepatosplanchnic and renal perfusion in high-risk surgical and critically ill patients. Br J Anaesth. 2005;94(4):459–467.

    Article  CAS  PubMed  Google Scholar 

  99. Albright RC Jr. Acute renal failure: a practical update. Mayo Clin Proc. 2001;76(1):67–74.

    Article  PubMed  Google Scholar 

  100. Hager B, Betschart M, Krapf R. Effect of postoperative intravenous loop diuretic on renal function after major surgery. Schweiz Med Wochenschr. 1996;126(16):666–673.

    CAS  PubMed  Google Scholar 

  101. Shilliday IR, Quinn KJ, Allison ME. Loop diuretics in the management of acute renal failure: a prospective, double-blind, placebo-controlled, randomized study. Nephrol Dial Transplant. 1997;12(12):2592–2596.

    Article  CAS  PubMed  Google Scholar 

  102. Nuutinen L, Hollmen A. The effect of prophylactic use of furosemide on renal function during open heart surgery. Ann Chir Gynaecol. 1976;65(4):258–266.

    CAS  PubMed  Google Scholar 

  103. Lassnigg A, Donner E, Grubhofer G, Presterl E, Druml W, Hiesmayr M. Lack of renoprotective effects of dopamine and furosemide during cardiac surgery. J Am Soc Nephrol. 2000;11(1):97–104.

    Article  CAS  PubMed  Google Scholar 

  104. Solomon R, Werner C, Mann D, D’Elia J, Silva P. Effects of saline, mannitol, and furosemide to ­prevent acute decreases in renal function induced by ­radiocontrast agents. N Engl J Med. 1994;331(21):1416-20. 331:1416–1420.

    Article  CAS  PubMed  Google Scholar 

  105. Myers BD, Miller DC, Mehigan JT, et al. Nature of the renal injury following total renal ischemia in man. J Clin Invest. 1984;73(2):329–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Carcoana OV, Mathew JP, Davis E, et al. Mannitol and dopamine in patients undergoing cardiopulmonary bypass: a randomized clinical trial. Anesth Analg. 2003;97(5):1222–1229.

    Article  CAS  PubMed  Google Scholar 

  107. Visweswaran P, Massin EK, Dubose TD Jr. Mannitol-induced acute renal failure. J Am Soc Nephrol. 1997;8(6):1028–1033.

    Article  CAS  PubMed  Google Scholar 

  108. Joffy S, Rosner MH. Natriuretic peptides in ESRD. Am J Kidney Dis. 2005;46(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  109. Deegan PM, Ryan MP, Basinger MA, Jones MM, Hande KR. Protection from cisplatin nephrotoxicity by A68828, an atrial natriuretic peptide. Ren Fail. 1995;17(2):117–123.

    Article  CAS  PubMed  Google Scholar 

  110. Allgren RL, Marbury TC, Rahman SN, et al. Anaritide in acute tubular necrosis. Auriculin Anaritide Acute Renal Failure Study Group. N Engl J Med. 1997;336(12):828–834.

    Article  CAS  PubMed  Google Scholar 

  111. Lewis J, Salem MM, Chertow GM, et al. Atrial natriuretic factor in oliguric acute renal failure. Anaritide Acute Renal Failure Study Group. Am J Kidney Dis. 2000;36(4):767–774.

    Article  CAS  PubMed  Google Scholar 

  112. Meyer M, Pfarr E, Schirmer G, et al. Therapeutic use of the natriuretic peptide ularitide in acute renal failure. Ren Fail. 1999;21(1):85–100.

    Article  CAS  PubMed  Google Scholar 

  113. Sackner-Bernstein JD, Skopicki HA, Aaronson KD. Risk of worsening renal function with nesiritide in patients with acutely decompensated heart failure. Circulation. 2005;111(12):1487–1491.

    Article  CAS  PubMed  Google Scholar 

  114. Teerlink JR, Massie BM. Nesiritide and worsening of renal function: the emperor’s new clothes? Circulation. 2005;111(12):1459–1461.

    Article  PubMed  Google Scholar 

  115. Mentzer RM Jr, Oz MC, Sladen RN, et al. Effects of perioperative nesiritide in patients with left ventricular dysfunction undergoing cardiac surgery: the NAPA trial. J Am Coll Cardiol. 2007;49(6):716–726.

    Article  CAS  PubMed  Google Scholar 

  116. Chen HH, Sundt TM, Cook DJ, Heublein DM, Burnett JC Jr. Low dose nesiritide and the preservation of renal function in patients with renal dysfunction undergoing cardiopulmonary-bypass surgery: a double-blind placebo-controlled pilot study. Circulation. 2007;116(11 Suppl):I-134–138.

    CAS  Google Scholar 

  117. Hoffmann U, Fischereder M, Kruger B, Drobnik W, Kramer BK. The value of N-acetylcysteine in the prevention of radiocontrast agent-induced ­nephropathy seems questionable. J Am Soc Nephrol. 2004;15(2):407–410.

    Article  CAS  PubMed  Google Scholar 

  118. Kshirsagar AV, Poole C, Mottl A, et al. N-acetylcysteine for the prevention of radiocontrast induced nephropathy: a meta-analysis of prospective controlled trials. J Am Soc Nephrol. 2004;15(3):761–769.

    Article  CAS  PubMed  Google Scholar 

  119. Pannu N, Manns B, Lee HH, Tonelli M. Systematic review of the impact of N-acetylcysteine n contrast nephropathy. Kidney Int. 2004;65(4):1366–1374.

    Article  CAS  PubMed  Google Scholar 

  120. Alonso A, Lau J, Jaber BL, Weintraub A, Sarnak MJ. Prevention of radiocontrast nephropathy with N-acetylcysteine in patients with chronic kidney disease: a meta-analysis of randomized, controlled trials. Am J Kidney Dis. 2004;43(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  121. Kretzschmar M, Klein U, Palutke M, Schirrmeister W. Reduction of ischemia-reperfusion syndrome after abdominal aortic aneurysmectomy by N-acetylcysteine but not mannitol. Acta Anaesthesiol Scand. 1996;40(6):657–664.

    Article  CAS  PubMed  Google Scholar 

  122. Cote G, Denault A, Belisle S, Martineau R, Perrault L. N-acetylcysteine in the preservation of renal function in patients undergoing cardiac surgery. ASA Annual Meeting Abstracts. 2003;99(3A):A420.

    Google Scholar 

  123. Burns KE, Chu MW, Novick RJ, et al. Perioperative N-acetylcysteine to prevent renal dysfunction in high-risk patients undergoing cabg surgery: a randomized controlled trial. JAMA. 2005;294(3):342–350.

    Article  CAS  PubMed  Google Scholar 

  124. Kulka PJ, Tryba M, Zenz M. Preoperative alpha2-adrenergic receptor agonists prevent the deterioration of renal function after cardiac surgery: results of a randomized, controlled trial. Crit Care Med. 1996;24(6):947–952.

    Article  CAS  PubMed  Google Scholar 

  125. Wijeysundera DN, Naik JS, Beattie WS. Alpha-2 adrenergic agonists to prevent perioperative cardiovascular complications: a meta-analysis. Am J Med. 2003;114(9):742–752.

    Article  CAS  PubMed  Google Scholar 

  126. Wijeysundera DN, Beattie WS, Rao V, Karski J. Calcium antagonists reduce cardiovascular complications after cardiac surgery: a meta-analysis. J Am Coll Cardiol. 2003;41(9):1496–1505.

    Article  CAS  PubMed  Google Scholar 

  127. Bookstein JJ, Clark RL. Renal microvascular disease: angiographic-microangiographic correlates. In: HL A, ed. Library of Radiology. 1st ed. Boston: Little, Brown and Company; 1980.

    Google Scholar 

  128. Stafford-Smith M, Patel UD, Phillips-Bute BG, Shaw AD, Swaminathan M. Acute kidney injury and chronic kidney disease after cardiac surgery. Adv Chronic Kidney Dis. 2008;15:257–277.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Stafford-Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Stafford-Smith, M., Hughes, C., Shaw, A.D., Swaminathan, M. (2011). Renal Protection Strategies. In: Subramaniam, K., Park, K., Subramaniam, B. (eds) Anesthesia and Perioperative Care for Aortic Surgery. Springer, New York, NY. https://doi.org/10.1007/978-0-387-85922-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-85922-4_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-85921-7

  • Online ISBN: 978-0-387-85922-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics