Skip to main content

Development of Natural Killer cells

  • Chapter
Molecular Basis of Hematopoiesis
  • 778 Accesses

Abstract

Natural killer cells are found in blood, lymphoid organs, liver, lungs and uterus, where they participate in several aspects of health and disease. During development, NK cells express a set of genes that encode for cell surface receptors, which interact with other cell surface molecules within the individual, between individuals and across genomes. Examples of the elements recognized by NK cells are self-MHC antigens during NK cell maturation, stress-inducible ligands during infections or tumour transformation, donor antigens on tissue grafts, paternal antigens at the feto—maternal interface and viral products. The nature of these interactions sets the threshold for NK cell activation, which in turn has downstream consequences on innate immunity and adaptive responses. Being endowed with these important recognition systems and instant effector function potential, NK cells have taken centre stage in modern medicine as they participate in infection, reproduction, transplantation, autoimmunity and cancer. This chapter reviews the basics of NK cell development, with an emphasis on murine cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anfossi, N., Andre, P., Guia, S., Falk, C. S., Roetynck, S., Stewart, C. A., Breso, V., Frassati, C., Reviron, D., Middleton, D., et al. (2006). Human NK cell education by inhibitory receptors for MHC class I. Immunity 25, 331–342.

    Article  PubMed  CAS  Google Scholar 

  • Bloch-Queyrat, C., Fondaneche, M. C., Chen, R., Yin, L., Relouzat, F., Veillette, A., Fischer, A., and Latour, S. (2005). Regulation of natural cytotoxicity by the adaptor SAP and the Src- related kinase Fyn. J Exp Med 202, 181–192.

    Article  PubMed  CAS  Google Scholar 

  • Boos, M. D., Yokota, Y., Eberl, G., and Kee, B. L. (2007). Mature natural killer cell and lymphoid tissue-inducing cell development requires Id2-mediated suppression of E protein activity. J Exp Med 204, 1119–1130.

    Article  PubMed  CAS  Google Scholar 

  • Caraux, A., Lu, Q., Fernandez, N., Riou, S., Di Santo, J. P., Raulet, D. H., Lemke, G., and Roth, C. (2006). Natural killer cell differentiation driven by Tyro3 receptor tyrosine kinases. Nat Immunol 7, 747–754.

    Article  PubMed  CAS  Google Scholar 

  • Carlyle, J. R., Jamieson, A. M., Gasser, S., Clingan, C. S., Arase, H., and Raulet, D. H. (2004). Missing self-recognition of Ocil/Clr-b by inhibitory NKR-P1 natural killer cell receptors. Proc Natl Acad Sci USA 101, 3527–3532.

    Article  PubMed  CAS  Google Scholar 

  • Colucci, F., Di Santo, J. P., and Leibson, P. J. (2002). Natural killer cell activation in mice and men: different triggers for similar weapons? Nat Immunol 3, 807–813.

    Article  PubMed  CAS  Google Scholar 

  • Colucci, F., Caligiuri, M. A., and Di Santo, J. P. (2003). What does it take to make a natural killer? Nat Rev Immunol 3, 413–425.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, M. A., Fehniger, T. A., and Caligiuri, M. A. (2001). The biology of human natural killercell subsets. Trends Immunol 22, 633–640.

    Article  PubMed  CAS  Google Scholar 

  • Croy, B. A., van den Heuvel, M. J., Borzychowski, A. M., and Tayade, C. (2006). Uterine natural killer cells: a specialized differentiation regulated by ovarian hormones. Immunol Rev 214, 161–185.

    Article  CAS  Google Scholar 

  • Di Santo, J. P. (2006). Natural killer cell developmental pathways: a question of balance. Annu Rev Immunol 24, 257–286.

    Article  PubMed  CAS  Google Scholar 

  • Di Santo, J. P., and Vosshenrich, C. A. (2006). Bone marrow versus thymic pathways of natural killer cell development. Immunol Rev 214, 35–46.

    Article  PubMed  Google Scholar 

  • Fernandez, N. C., Treiner, E., Vance, R. E., Jamieson, A. M., Lemieux, S., and Raulet, D. H. (2005). A subset of natural killer cells achieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules. Blood 105, 4416–4423.

    Article  PubMed  CAS  Google Scholar 

  • Freud, A. G. and Caligiuri, M. A. (2006). Human natural killer cell development. Immunol Rev 214, 56–72.

    Article  PubMed  CAS  Google Scholar 

  • Freud, A. G., Becknell, B., Roychowdhury, S., Mao, H. C., Ferketich, A. K., Nuovo, G. J., Hughes, T. L., Marburger, T. B., Sung, J., Baiocchi, R. A., et al. (2005). A human CD34(+) subset resides in lymph nodes and differentiates into CD56bright natural killer cells. Immunity 22, 295–304.

    Article  PubMed  CAS  Google Scholar 

  • Haller, O., Kiessling, R., Orn, A., and Wigzell, H. (1977). Generation of natural killer cells: an autonomous function of the bone marrow. J Exp Med 145, 1411–1416.

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa, Y. and Smyth, M. J. (2006). CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity. J Immunol 176, 1517–1524.

    PubMed  CAS  Google Scholar 

  • Huntington, N. D., Vosshenrich, C. A., and Di Santo, J. P. (2007). Developmental pathways that generate natural-killer-cell diversity in mice and humans. Nat Rev Immunol 7, 703–714.

    Article  PubMed  CAS  Google Scholar 

  • Karre, K., Ljunggren, H. G., Piontek, G., and Kiessling, R. (1986). Selective rejection of H-2- deficient lymphoma variants suggests alternative immune defence strategy. Nature 319, 675–678.

    Article  PubMed  CAS  Google Scholar 

  • Kim, N., Saudemont, A., Webb, L., Camps, M., Ruckle, T., Hirsch, E., Turner, M., and Colucci, F. (2007). The p110delta catalytic isoform of PI3K is a key player in NK-cell development and cytokine secretion. Blood 110, 3202–3208.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S., Poursine-Laurent, J., Truscott, S. M., Lybarger, L., Song, Y. J., Yang, L., French, A. R., Sunwoo, J. B., Lemieux, S., Hansen, T. H., and Yokoyama, W. M. (2005). Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 436, 709–713.

    Article  PubMed  CAS  Google Scholar 

  • Koopman, L. A., Kopcow, H. D., Rybalov, B., Boyson, J. E., Orange, J. S., Schatz, F., Masch, R., Lockwood, C. J., Schachter, A. D., Park, P. J., and Strominger, J. L. (2003). Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J Exp Med 198, 1201–1212.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, V. and McNerney, M. E. (2005). A new self: MHC-class-I-independent natural-killer-cell self-tolerance. Nat Rev Immunol 5, 363–374.

    Article  CAS  Google Scholar 

  • Lanier, L. L. (2005). NK cell recognition. Annu Rev Immunol 23, 225–274.

    Article  PubMed  CAS  Google Scholar 

  • Lanier, L. L., Le, A. M., Civin, C. I., Loken, M. R., and Phillips, J. H. (1986). The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J Immunol 136, 4480–4486.

    PubMed  CAS  Google Scholar 

  • Lee, K. N., Kang, H. S., Jeon, J. H., Kim, E. M., Yoon, S. R., Song, H., Lyu, C. Y., Piao, Z. H., Kim, S. U., Han, Y. H., et al. (2005). VDUP1 is required for the development of natural killer cells. Immunity 22, 195–208.

    Article  PubMed  CAS  Google Scholar 

  • Lucas, M., Schachterle, W., Oberle, K., Aichele, P., and Diefenbach, A. (2007). Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity 26, 503–517.

    Article  PubMed  CAS  Google Scholar 

  • Moffett, A. and Loke, C. (2006). Immunology of placentation in eutherian mammals. Nat Rev Immunol 6, 584–594.

    Article  PubMed  CAS  Google Scholar 

  • Paffaro, V. A., Jr., Bizinotto, M. C., Joazeiro, P. P., and Yamada, A. T. (2003). Subset classification of mouse uterine natural killer cells by DBA lectin reactivity. Placenta 24, 479–488.

    Article  PubMed  CAS  Google Scholar 

  • Rosmaraki, E. E., Douagi, I., Roth, C., Colucci, F., Cumano, A., and Di Santo, J. P. (2001). Identification of committed NK cell progenitors in adult murine bone marrow. Eur J Immunol 31, 1900–1909.

    Article  PubMed  CAS  Google Scholar 

  • Ruggeri, L., Capanni, M., Urbani, E., Perruccio, K., Shlomchik, W. D., Tosti, A., Posati, S., Rogaia, D., Frassoni, F., Aversa, F., et al. (2002). Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295, 2097–2100.

    Article  PubMed  CAS  Google Scholar 

  • Salcedo, M., Colucci, F., Dyson, P. J., Cotterill, L. A., Lemonnier, F. A., Kourilsky, P., Di Santo, J. P., Ljunggren, H. G., and Abastado, J. P. (2000). Role of Qa-1(b)-binding receptors in the specificity of developing NK cells. Eur J Immunol 30, 1094–1101.

    Article  PubMed  CAS  Google Scholar 

  • Samson, S. I., Richard, O., Tavian, M., Ranson, T., Vosshenrich, C. A., Colucci, F., Buer, J., Grosveld, F., Godin, I., and Di Santo, J. P. (2003). GATA-3 promotes maturation, IFN-gamma production, and liver-specific homing of NK cells. Immunity 19, 701–711.

    Article  PubMed  CAS  Google Scholar 

  • Seaman, W. E., Gindhart, T. D., Greenspan, J. S., Blackman, M. A., and Talal, N. (1979). Natural killer cells, bone, and the bone marrow: studies in estrogen-treated mice and in congenitally osteopetrotic (mi/mi) mice. J Immunol 122, 2541–2547.

    PubMed  CAS  Google Scholar 

  • Sivori, S., Falco, M., Marcenaro, E., Parolini, S., Biassoni, R., Bottino, C., Moretta, L., and Moretta, A. (2002). Early expression of triggering receptors and regulatory role of 2B4 in human natural killer cell precursors undergoing in vitro differentiation. Proc Natl Acad Sci USA 99, 4526–4531.

    Article  PubMed  CAS  Google Scholar 

  • Tassi, I., Cella, M., Gilfillan, S., Turnbull, I., Diacovo, T. G., Penninger, J. M., and Colonna, M. (2007). p110gamma and p110delta phosphoinositide 3-kinase signaling pathways synergize to control development and functions of murine NK cells. Immunity 27, 214–227.

    Article  PubMed  CAS  Google Scholar 

  • Vivier, E., Nunes, J. A., and Vely, F. (2004). Natural killer cell signaling pathways. Science 306, 1517–1519.

    Article  PubMed  CAS  Google Scholar 

  • Vosshenrich, C. A., Ranson, T., Samson, S. I., Corcuff, E., Colucci, F., Rosmaraki, E. E., and Di Santo, J. P. (2005a). Roles for common cytokine receptor gamma-chain-dependent cytokines in the generation, differentiation, and maturation of NK cell precursors and peripheral NK cells in vivo. J Immunol 174, 1213–1221.

    CAS  Google Scholar 

  • Vosshenrich, C. A., Samson-Villeger, S. I., and Di Santo, J. P. (2005b). Distinguishing features of developing natural killer cells. Curr Opin Immunol 17, 151–158.

    Article  CAS  Google Scholar 

  • Vosshenrich, C. A., Garcia-Ojeda, M. E., Samson-Villeger, S. I., Pasqualetto, V., Enault, L., Richard-Le Goff, O., Corcuff, E., Guy-Grand, D., Rocha, B., Cumano, A.et al. (2006). A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127. Nat Immunol 7, 1217–1224.

    Article  PubMed  CAS  Google Scholar 

  • Yadi, H., Burke, S., Madeja, Z., Hemberger, M., Moffett, A., Colucci, F. (2008). Unique receptor repertoire in mouse uterine NK cells. J. Immunol 181:6140–6147.

    PubMed  CAS  Google Scholar 

  • Yokoyama, W. M., Kim, S., and French, A. R. (2004). The dynamic life of natural killer cells. Annu Rev Immunol 22, 405–429.

    Article  PubMed  CAS  Google Scholar 

  • Zompi, S. and Colucci, F. (2005). Anatomy of a murder — signal transduction pathways leading to activation of natural killer cells. Immunol Lett 97, 31–39.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Colucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Colucci, F. (2009). Development of Natural Killer cells. In: Wickrema, A., Kee, B. (eds) Molecular Basis of Hematopoiesis. Springer, New York, NY. https://doi.org/10.1007/978-0-387-85816-6_9

Download citation

Publish with us

Policies and ethics