Skip to main content

Designed Magnetic Nanostructures

  • Chapter
  • First Online:
Nanoscale Magnetic Materials and Applications

Abstract

The fabrication, structure, and magnetism of a variety of designed nanostructures are reviewed, from self-assembled thin-film structures and magnetic surface alloys to core–shell nanoparticles and clusters embedded in bulk matrices. The integration of clusters and other nanoscale building blocks in complex two- and three-dimensional nanostructures leads to new physics and new applications. Some explicitly discussed examples are interactions of surface-supported or embedded impurities and clusters, the behavior of quantum states in free and embedded clusters, the preasymptotic coupling of transition-metal dots through substrates, inverted hysteresis loops (proteresis) in core–shell nanoparticles, and nanoscale entanglement of anisotropic magnetic nanodots for future quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://math.nist.gov/oommf/

  2. 2.

    The other eigenvalues have no transparent physical meaning, because |m i| > 0 below T c and the approximation m i = 0 are no longer valid.

References

  1. Feynman, R. P.: There’s plenty of room at the bottom. Eng. Sci. 23, 22 (1960)

    Google Scholar 

  2. Solzi, M., et al.: Macroscopic Magnetic Properties of Nanostructured and Nanocomposites Systems. In H. S. Nalwa (Ed.), Magnetic nanostructures, pp. 123–201. American Scientific, Stephenson Ranch (2002)

    Google Scholar 

  3. Skomski, R.: Nanomagnetics. J. Phys.: Condens. Matter 15, R841 (2003)

    Google Scholar 

  4. Sellmyer, D. J. and Skomski, R. (Eds.): Advanced Magnetic Nanostructures. Springer, Berlin (2006)

    Google Scholar 

  5. Terris, B. D., et al.: Ion-beam patterning of magnetic films using stencil masks. Appl. Phys. Lett. 75, 403 (1999)

    Google Scholar 

  6. Coehoorn, R., et al.: Meltspun permanent magnet materials containing Fe3B as the main phase. J. Magn. Magn. Mater. 80, 101 (1989)

    Google Scholar 

  7. Toshima, N., et al.: Novel synthesis, structure and catalysis of inverted core/shell structured Pd/Pt bimetallic nanoclusters. Eur. Phys. J. D 16, 209 (2001)

    Google Scholar 

  8. Wei, X.-H., et al.: Proteresis in Co:CoO core-shell nanoclusters. J. Appl. Phys. 103, 07D514-1-3 (2008)

    Google Scholar 

  9. Khanna, S. N., et al.: Magic numbers in metallo-inorganic clusters: chromium encapsulated in silicon cages. Phys. Rev. Lett. 89, 016803-1-4 (2002)

    Google Scholar 

  10. Bland, J. A. C. and Heinrich, B. (Eds.): Ultrathin Magnetic Structures I. Springer, Berlin (2005)

    Google Scholar 

  11. Himpsel, F. J., et al.: Magnetic nanostructures. Adv. Phys. 47, 511 (1998)

    Google Scholar 

  12. Sawicki, M., et al.: Exchange springs in antiferromagnetically coupled DyFe2-YFe2 superlattices. Phys. Rev. B 62, 5817 (2000)

    Google Scholar 

  13. Al-Omari, A. and Sellmyer, D. J.: Magnetic properties of nanostructured CoSm/FeCo films. Phys. Rev. B 52, 3441 (1995)

    Google Scholar 

  14. Sellmyer, D. J.: Applied physics: strong magnets by self-assembly. Nature 420, 374 (2002)

    Google Scholar 

  15. Zeng, H., et al.: Curie temperature of FePt:B2O3 nanocomposite films. Phys. Rev. B 66, 184425 (2002)

    Google Scholar 

  16. Sellmyer, D. J., et al.: Nanoscale design of films for extremely high density magnetic recording. Phys. Low-Dim. Struct. 1–2, 155 (1998)

    Google Scholar 

  17. Rao, B. K. and Jena, P.: Giant magnetic moments of nitrogen-doped Mn clusters and their relevance to ferromagnetism in Mn-Doped GaN. Phys. Rev. Lett. 89, 185504 (2002)

    Google Scholar 

  18. Sui, Y. C., et al.: Nanotube magnetism. Appl. Phys. Lett. 84, 1525 (2004)

    Google Scholar 

  19. Kumar, K.: RETM5 and RE2TM17 permanent magnets development. J. Appl. Phys. 63, R13–57 (1988)

    Google Scholar 

  20. Zhou, J., et al.: Sm-Co-Ti high-temperature permanent magnets. Appl. Phys. Lett. 77, 1514 (2000)

    Google Scholar 

  21. Wernsdorfer, W., et al.: Macroscopic quantum tunneling of magnetization of single ferrimagnetic nanoparticles of barium ferrite. Phys. Rev. Lett. 79, 4014 (1997)

    Google Scholar 

  22. Rong, Ch.-B., et al.: Structural phase transition and ferromagnetism in monodisperse 3 nm FePt particles. J. Appl. Phys. 101, 043913-1-4 (2007)

    Google Scholar 

  23. Skomski, R. and Coey, J. M. D.: Giant energy product in nanostructured two-phase magnets. Phys. Rev. B 48, 15812 (1993)

    Google Scholar 

  24. Samorjai, G. A.: Introduction to Surface Chemistry and Catalysis. Wiley, New York (1994)

    Google Scholar 

  25. Wieckowski, A., Savinova, E. R. and Constantinos, V. G. (Eds.): Catalysis and Electrocatalysis at Nanoparticle Surfaces. Marcel Dekker, New York (2003)

    Google Scholar 

  26. Skomski, R. and Sellmyer, D. J.: Magnetic impurities in magic-number clusters.

    Google Scholar 

  27. Pankhurst, Q. A., et al.: J. Phys. D: Appl. Phys. 36, R167–R181 (2003).

    Google Scholar 

  28. Sun, S., et al.: Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989 (2000)

    Google Scholar 

  29. Weller, D., et al.: High Ku materials approach to 100 Gbits/in2. IEEE Trans. Magn. 36, 10 (2000)

    Google Scholar 

  30. Billas, I. M. L., et al.: Magnetism from the atom to the bulk in Iron, Cobalt, and Nickel clusters. Science 265, 1682 (1994)

    Google Scholar 

  31. Stepanyuk, V. S., et al.: Magnetism of 3d, 4d, and 5d transition-metal impurities on Pd(001) and Pt(001) surfaces. Phys. Rev. B 53, 2121 (1996)

    Google Scholar 

  32. Pastor, M., et al.: Magnetic anisotropy of 3d transition-metal clusters. Phys. Rev. Lett. 75, 2, 326 (1995)

    Google Scholar 

  33. Nonas, B., et al.: Strongly enhanced orbital moments and anisotropies of adatoms on the Ag(001) surface. Phys. Rev. Lett. 86, 10, 2146 (2001)

    Google Scholar 

  34. Goldoni, A., et al.: Experimental evidence of magnetic ordering at the Rh(100) surface. Phys. Rev. Lett. 82, 15, 3156 (1999)

    Google Scholar 

  35. Martin, T. P.: Shells of atoms. Phys. Rept. 273, 199 (1996)

    Google Scholar 

  36. Heiz, U., et al.: Size-dependent molecular dissociation on mass-selected, supported metal clusters. J. Am. Chem. Soc. 120, 9668 (1998)

    Google Scholar 

  37. Lee, H. K., et al.: Monte Carlo simulations of interacting magnetic nanoparticles. J. Appl. Phys. 91, 10, 6926 (2002)

    Google Scholar 

  38. Pierce, J. B., et al.: Ferromagnetic stability in Fe nanodot assemblies on Cu(111) induced by indirect coupling through the substrate. Phys. Rev. Lett. 92, 23, 237201 (2004)

    Google Scholar 

  39. Dürr, H. A., et al.: Spin and orbital magnetization in self-assembled Co clusters on Au(111). Phys. Rev. B 59, 2, R701 (1999)

    Google Scholar 

  40. Fruchart, O., et al.: Enhanced coercivity in submicrometer-sized ultrathin epitaxial dots with in-plane magnetization. Phys. Rev. Lett. 82, 6, 1305 (1999)

    Google Scholar 

  41. Edmonds, K. W., et al.: Doubling of the orbital magnetic moment in nanoscale Fe clusters. Phys. Rev. B 60, 1, 472 (1999)

    Google Scholar 

  42. Guevara, J., et al.: Large variations in the magnetization of Co clusters induced by noble-metal coating. Phys. Rev. Lett. 81, 24, 5306 (1998)

    Google Scholar 

  43. Redinger, J., et al.: Ferromagnetism of 4d and 5d transition-metal monolayers on Ag(111). Phys. Rev. B 51, 19, 13852 (1995)

    Google Scholar 

  44. Allwood, D. A., et al.: Nanoscale magnetics magnetic domain wall logic. Science 309, 1688 (2005)

    Google Scholar 

  45. Sorge, K. D., et al.: Interactions and switching behavior of anisotropic magnetic dots. J. Appl. Phys. 95, 7414 (2004)

    Google Scholar 

  46. Weller, D. and Moser, A.: Thermal effect limits in ultrahigh density magnetic recording. IEEE Trans. Magn. 35, 4423 (1999)

    Google Scholar 

  47. Suess, D., et al.: Exchange spring media for perpendicular recording. Appl. Phys. Lett. 87, 012504 (2005)

    Google Scholar 

  48. Suess, D.: Multilayer exchange spring media for magnetic recording. Appl. Phys. Lett. 89, 113105-1-3 (2006)

    Google Scholar 

  49. Victora, R. H. and Shen, X.: Composite media for perpendicular magnetic recording. IEEE Trans. Magn. 41, 537 (2005)

    Google Scholar 

  50. Sellmyer, D. J., et al.: High-anisotropy nanocomposite films for magnetic recording. IEEE Trans. Magn. 37, 1286 (2001)

    Google Scholar 

  51. Wang, J.-P., et al.: Composite media (dynamic tilted media) for magnetic recording. Appl. Phys. Lett. 86, 142504-1-3 (2005)

    Google Scholar 

  52. Goodman, S. J., et al.: Micromagnetics of hysteresis loops in CGC perpendicular media. IEEE Trans. Magn. 39, 2329 (2003)

    Google Scholar 

  53. Dobin, A. Yu., et al.: Domain wall assisted magnetic recording. Appl. Phys. Lett. 89, 062512-1-3 (2006)

    Google Scholar 

  54. Baettig, P., et al.: Ab initio prediction of a multiferroic with large polarization and magnetization. Appl. Phys. Lett. 86, 012505-1-3 (2005)

    Google Scholar 

  55. Barth, J. V., et al.: Engineering atomic and molecular nanostructures at surfaces. Nature 437, 671 (2005)

    Google Scholar 

  56. Wang, F. and Lakhtakia, A. (Eds.): Selected Papers on Nanotechnology—Theory and Modeling, Milestone Series 182. SPIE Press, Bellingham (2006)

    Google Scholar 

  57. Skomski, R., et al.: Micromagnetics of ultrathin films with perpendicular magnetic anisotropy. Phys. Rev. B 58, 3223 (1998)

    Google Scholar 

  58. Skomski, R.: Nanomagnetic scaling. J. Magn. Magn. Mater. 272–276, 1476–1481 (2004)

    Google Scholar 

  59. Skomski, R.: Role of thermodynamic fluctuations in magnetic recording. J. Appl. Phys. 101, 09B104-1-6 (2007)

    Google Scholar 

  60. Qiang, Y., et al.: Magnetism of Co nanocluster films. Phys. Rev. B 66, 064404 (2002)

    Google Scholar 

  61. Sellmyer, D. J., et al.: Magnetism of Fe, Co and Ni nanowires in self-assembled arrays. J. Phys.: Condens. Matter 13, R433–R460 (2001)

    Google Scholar 

  62. Liou, S. H. and Yao, Y. D.: Development of high coercivity magnetic force microscopy tips. J. Magn. Magn. Mater. 190, 130 (1998)

    Google Scholar 

  63. Kent, A. D., et al.: Properties and measurement of scanning tunneling microscope fabricated ferromagnetic particle arrays. J. Appl. Phys. 76, 6656 (1994)

    Google Scholar 

  64. Xu, Y. F., et al.: Cluster-Assembled Nanocomposites. In D. J. Sellmyer and R. Skomski (Eds.), Advanced magnetic nanostructures, ch. 8, pp. 207–238. Springer, Berlin (2006)

    Google Scholar 

  65. Enders, A., et al.: Magnetism of low-dimensional metallic structures. In H. Kronmüller and S. Parkin (Eds.), The handbook of magnetism and advanced magnetic materials, Vol. 1: Fundamentals and theory, pp. 577–598. Chichester, UK: John Wiley & Sons Ltd. (2006)

    Google Scholar 

  66. Barth, J. V.: Molecular architectonic on metal surfaces. Annu. Rev. Phys. Chem. 58, 375 (2007)

    Google Scholar 

  67. Gambardella, P., et al.: Ferromagnetism in one-dimensional monatomic metal chains. Nature 416, 301 (2002)

    Google Scholar 

  68. Repetto, D., et al.: Structure and magnetism of atomically thin Fe layers on flat and vicinal Pt surfaces. Phys. Rev. B 74, 054408 (2006)

    Google Scholar 

  69. Skomski, R. and Coey, J. M. D.: Permanent Magnetism. Institute of Physics, Bristol (1999)

    Google Scholar 

  70. Skomski, R., et al.: Effective Demagnetizing Factors of Complicated Particle Mixtures. IEEE Trans. Magn. 43, (6), 2956 (2007)

    Google Scholar 

  71. Zhang, J., et al.: Magnetism of Fe clusters formed by buffer-layer assisted growth on Pt(997). Eur. Phys. J. D 45, 515 (2007)

    Google Scholar 

  72. Rusponi, S., et al.: The Remarkable Difference Between Surface and Step Atoms in the Magnetic Anisotropy of Two-Dimensional Nanostructures. Nature Mat. 2, 546 (2003)

    Google Scholar 

  73. Brihuega, I., et al.: Electronic decoupling and templating of Co nanocluster arrays on the boron nitride nanomesh. Surf. Sci. Letters 602(14) (2008) L95–L99.

    Google Scholar 

  74. Lingenfelder, M., et al.: Towards surface-supported supramolecular architectures: tailored coordination assembly of 1,4-benzenedicarboxylate and Fe on Cu(100). Chem. Eur. J. 10, 1913 (2004)

    Google Scholar 

  75. Dmitriev, A., et al.: Design of extended surface-supported chiral metal-organic arrays comprising mononuclear iron centers. Langmuir 41, 4799 (2004)

    Google Scholar 

  76. Bromann, K., et al.: Controlled deposition of size-selected Silver nanoclusters. Science 274, 956 (1996)

    Google Scholar 

  77. Weaver, J. and Waddill, G.: Cluster assembly of interfaces: Nanoscale Engineering. Science 251, 1444 (1991), G. Kerner and M. Asscher, “Laser patterning of metallic films via buffer layer”, ibid.

    Google Scholar 

  78. Huang, L., et al.: Buffer-layer-assisted growth of nanocrystals: Ag-Xe-Si(111). Phys. Rev. Lett. 80, 18, 4095 (1998)

    Google Scholar 

  79. Haley, C. and Weaver, J.: Buffer-layer-assisted nanostructure growth via two-dimensional cluster–cluster aggregation. Surf. Sci. 518, 243 (2002)

    Google Scholar 

  80. Weaver, J. and Antonov, V. N.: Synthesis and patterning of nanostructures of (almost) anything on anything. Surf. Sci. 557, 1 (2004)

    Google Scholar 

  81. Hahn, E., et al.: Orientational instability of vicinal Pt surfaces close to (111). Phys. Rev. Lett., 72 3378 (1994)

    Google Scholar 

  82. Corso, M., et al.: Boron nitride nanomesh. Science 303, 217 (2004)

    Google Scholar 

  83. Bansmann, J., et al. : Magnetic and structural properties of isolated and assembled clusters. Surf. Sci. Repts. 56, 189 (2005)

    Google Scholar 

  84. Shen, J., et al.: The effect of spatial confinement on magnetism: films, stripes and dots of Fe on Cu(111). J. Phys.: Cond. Mat. 15, R1 (2003)

    Google Scholar 

  85. Repetto, D., et al.: Magnetism of Fe clusters and islands on Pt surfaces. Appl. Phys. A 82, 109 (2006)

    Google Scholar 

  86. Yeomans, J. M.: Statistical Mechanics of Phase Transitions. University Press, Oxford (1992)

    Google Scholar 

  87. Yokoyama, T., et al.: Selective assembly on a surface of supramolecular aggregates with controlled size and shape. Nature 413, 619 (2001)

    Google Scholar 

  88. Grill, L., et al.: Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotech. 2, 687 (2007)

    Google Scholar 

  89. Dmitriev, A., et al.: Modular assembly of two-dimensional metal-organic coordination networks at a metal surface. Angew. Chem. Int. Ed. 42, 2670 (2003)

    Google Scholar 

  90. Stepanow, S., et al.: Steering molecular organization and host-guest interactions using two-dimensional nanoporous coordination systems. Nat. Mater. 3, 229 (2004)

    Google Scholar 

  91. Ruben, M., et al.: 2D supramolecular assemblies of Benzene 1,3,5-tri-yl Tribenzoic Acid: Temperature-induced phase transformations and hierarchical organization with macrocyclic molecules. J. Am. Chem. Soc. 128, 15644 (2006)

    Google Scholar 

  92. Hauschild, A., et al.: Molecular distortions and chemical bonding of a large π-conjugated molecule on a metal surface. Phys. Rev. Lett. 94, 036106 (2005)

    Google Scholar 

  93. Boehringer, M., et al.: Two-dimensional self-assembly of supramolecular clusters and chains. Phys. Rev. Lett. 83, 324 (1999)

    Google Scholar 

  94. Klemmer, T., et al.: Magnetic hardening and coercivity in L10 Ordered FePd ferromagnets. Scripta Met. Mater. 33, 1793 (1995)

    Google Scholar 

  95. T.-Lee, et. al.: Growth and surface alloying of Fe on Pt(997). Surf. Sci. 600, 3266 (2006)

    Google Scholar 

  96. Ravindran, P., et al.: Large magnetocrystalline anisotropy in bilayer transition metal phases from first-principles full-potential calculations Phys. Rev. B 63, 144409-1-18 (2001)

    Google Scholar 

  97. Komelj, M., et al.: Influence of the substrate on the magnetic anisotropy of monatomic nanowires. Phys. Rev. B 73, 134428 (2006)

    Google Scholar 

  98. Lee, T.-Y., et al.: Growth and surface alloying of Fe on Pt(997). Surf. Sci. 600 (16) 3266 (2006)

    Google Scholar 

  99. Skomski, R., et al.: Substrate-controlled growth and magnetism of nanosize Fe clusters on Pt. J. Appl. Phys. 103, 07D519-1-3 (2008)

    Google Scholar 

  100. Ising E.: Beitrag zur Theorie des Ferromagnetismus. Z. Phys. 31, 253 (1925)

    Google Scholar 

  101. De Jongh, L. J. and Miedema, A. R.: Experiments on simple magnetic model systems. Advan. Phys. 23, 1 (1974)

    Google Scholar 

  102. Shen, J., et al.: Magnetism in one dimension: Fe on Cu(111). Phys. Rev. B 56, 2340 (1997)

    Google Scholar 

  103. Alefeld, G.: Wasserstoff in Metallen als Beispiel für ein Gittergas mit Phasenumwandlungen. Phys. stat. sol. 32, 67 (1969)

    Google Scholar 

  104. Wagner, H. and Horner, H.: Elastic interaction and the phase transition in coherent metal-hydrogen system. Adv. Phys. 23, 587 (1974)

    Google Scholar 

  105. Skomski, R.: Interstitial Modification, In J. M. D. Coey (Ed.), Rare-earth—iron permanent magnets, pp. 178–217. University Press, Oxford (1996)

    Google Scholar 

  106. Wood, R.: The feasibility of magnetic recording at 1 Terabit per square inch. IEEE Trans. Magn. 36, 36 (2000)

    Google Scholar 

  107. Sellmyer, D. J., et al.: High-anisotropy nanocomposite films for magnetic recording. IEEE Trans. Magn. 37, 1286 (2001)

    Google Scholar 

  108. McCurrie, R. A. and Gaunt, P.: The magnetic properties of platinum-cobalt near the equiatomic composition. I. The experimental data. Philos. Mag. 13, 567 (1966)

    Google Scholar 

  109. Zeng, H., et al.: Orientation-controlled nonepitaxial L10 CoPt and FePt films. Appl. Phys. Lett. 80, 2350 (2002)

    Google Scholar 

  110. Yan, M. L. et al.: Fabrication of nonepitaxially grown double-layered FePt:C/FeCoNi thin films for perpendicular recording. Appl. Phys. Lett. 83, 3332 (2003)

    Google Scholar 

  111. Xu, Y., et al.: Magnetic properties of dilute FePt:C nanocluster films. J. Appl. Phys. 97, 10J320 (2005)

    Google Scholar 

  112. Xu, Y., et al.: Magnetic properties of L10 FePt and FePt:Ag nanocluster films. J. Appl. Phys. 93, 10 (2003) 8289

    Google Scholar 

  113. Stoner, E. C. and Wohlfarth, E. P.: A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. London, Ser. A 240, 599 (1948); reprinted by IEEE Trans. Magn. 27, 3475 (1991)

    MATH  Google Scholar 

  114. Kersten, M.: Zur Theorie der ferromagnetischen Hysterese und der Anfangspermeabilität. Z. Phys. 44, 63 (1943)

    Google Scholar 

  115. Yoshizawa, Y., et al.: New Fe-based soft magnetic alloys composed of ultrafine grain structure. J. Appl. Phys. 64, 6044 (1988)

    Google Scholar 

  116. Herzer, G.: Nanocrystalline soft magnetic materials. J. Magn. Magn. Mater. 112, 258 (1992)

    Google Scholar 

  117. Chikazumi, S., Physics of ferromagnetism, Second edition. Oxford University Press, (1997)

    Google Scholar 

  118. Kittel, Ch.: Theory of the structure of ferromagnetic domains in films and small particles. Phys. Rev. 70, 965 (1946)

    Google Scholar 

  119. Kronmüller, H. and Schrefl, T.: Interactive and cooperative magnetization processes in hard magnetic materials. J. Magn. Magn. Mater. 129, 66 (1994)

    Google Scholar 

  120. Skomski, R.: Simple Models of Magnetism. University Press, Oxford (2008)

    Google Scholar 

  121. Skomski, R., et al.: Magnetization reversal in cubic nanoparticles with uniaxial surface anisotropy. IEEE Trans. Magn. 43, (6), 2890 (2007)

    Google Scholar 

  122. Kronmüller, H.: Theory of nucleation fields in inhomogeneous ferromagnets. Phys. Stat. Sol. (b) 144, 385 (1987)

    Google Scholar 

  123. Nieber, S. and Kronmüller, H.: Nucleation fields in periodic multilayer’s. Phys. Stat. Sol. (b) 153, 367 (1989)

    Google Scholar 

  124. Kneller, E. F. and Hawig, R.: The exchange-spring magnet: a new material principle for permanent magnets. IEEE Trans. Magn. 27, 3588 (1991)

    Google Scholar 

  125. Gradmann, U.: In Handbook of Magnetic Materials Vol. 7, In K. H. J. Buschow (Ed.), Elsevier Science Publishers B. V., New York, (1993)

    Google Scholar 

  126. Kachkachi, H. and Bonet, E.: Surface-induced cubic anisotropy in nanomagnets. Phys. Rev. B 73, 224402-1-7 (2006)

    Google Scholar 

  127. Komelj, M., et al.: From the bulk to monatomic wires: An ab initio study of magnetism in Co systems with various dimensionality. Phys. Rev. B 66, 140407-1-4 (2002)

    Google Scholar 

  128. Daalderop, G. H. O., et al.: First-principles calculation of the magnetic anisotropy energy of (Co)n/(X)m multilayers. Phys. Rev. B 42, 11, 7270 (1990)

    Google Scholar 

  129. Wang, D.-Sh., et al.: First-principles theory of surface magnetocrystalline anisotropy and the diatomic-pair model. Phys. Rev. B 47, 14932 (1993)

    Google Scholar 

  130. Skomski, R.: Exchange-Controlled Magnetic Anisotropy. J. Appl. Phys. 91, 8489 (2002)

    Google Scholar 

  131. Sander, D., et al.: Reversible H-induced switching of the magnetic easy axis in Ni/Cu(001) thin films. Phys. Rev. Lett. 93, 247203-1-4 (2004)

    Google Scholar 

  132. Brooks, H.: Ferromagnetic anisotropy and the itinerant electron model. Phys. Rev. 58, 909 (1940)

    MATH  Google Scholar 

  133. Sander, D., et al.: Film stress and domain wall pinning in sesquilayer iron films on W(110). Phys. Rev. Lett. 77, 2566 (1996)

    Google Scholar 

  134. Morales, M. A., et al.: Surface anisotropy and magnetic freezing of MnO nanoparticles. Phys. Rev. B 75, 134423 (1–5) (2007)

    Google Scholar 

  135. Gambardella, P., et al.: Giant magnetic anisotropy of single cobalt atoms and nanoparticles. Science 300, 1130 (2003)

    Google Scholar 

  136. Ŝipr, O., et al.: Magnetic structure of free iron clusters compared to iron crystal surfaces. Phys. Rev. B 70, 174423 (2004)

    Google Scholar 

  137. Kechrakos, D. and Trohidou, K.: Magnetic properties of dipolar interacting single-domain particles. Phys. Rev. B 58, 12169 (1998)

    Google Scholar 

  138. Novosad, V., et al. : Effect of interdot magnetostatic interaction on magnetization reversal in circular dot arrays. Phys. Rev. B 65, 60402 (2002)

    Google Scholar 

  139. Stepanyuk, V. S., et al.: Magnetism of 3d, 4d, and 5d transition-metal impurities on Pd(001) and Pt(001) surfaces. Phys. Rev. B 53, 2121(1996)

    Google Scholar 

  140. Ederer, C., et al.: Magnetism in systems with various dimensionalities: A comparison between Fe and Co. Phys. Rev. B 68, 52402 (2003)

    Google Scholar 

  141. Garibay-Alonso, R. and López-Sandoval, R.: Ground-state spin local magnetic moments of deposited Fe clusters Solid State Comm. 134, 503 (2005)

    Google Scholar 

  142. Skomski, R., et al.: Finite-temperature anisotropy of PtCo magnets. IEEE Trans. Magn. 39, 2917 (2003)

    Google Scholar 

  143. Mryasov, O. N., et al.: Temperature-dependent magnetic properties of FePt: Effective spin Hamiltonian model. Europhys. Lett. 69, 805 (2005)

    Google Scholar 

  144. Skomski, R., et al.: Finite-temperature anisotropy of magnetic alloys. J. Appl. Phys. 99, 08E916-1-4 (2006)

    Google Scholar 

  145. Tserkovnyak, Y., et al.: Enhanced Gilbert damping in thin ferromagnetic films. Phys. Rev. Lett. 88, 117601-1-4 (2002)

    Google Scholar 

  146. Chipara, M. I., et al.: Magnetic modes in Ni nanowires. J. Magn. Magn. Mater. 249, 246 (2002)

    Google Scholar 

  147. Skomski, R., et al: Incoherent magnetization reversal in nanowires. J. Magn. Magn. Mater. 249, 175 (2002)

    Google Scholar 

  148. McMichael, R. D., et al.: Localized ferromagnetic resonance in inhomogeneous thin films. Phys. Rev. Lett. 90, 227601-1-4 (2003)

    Google Scholar 

  149. Andersen, T., et al.: Substrate effects on surface magnetism of Fe/W(110) from first principles. Phys. Rev. B 74, 184415-1-8 (2006)

    Google Scholar 

  150. Kashyap, A., et al.: Magnetism of L10 compounds with the composition MT (M = Rh, Pd, Pt, Ir and T = Mn, Fe, Co, Ni). J. Appl. Phys. 95, 7480 (2004)

    Google Scholar 

  151. Umetsu, R. Y., et al.: Magnetic anisotropy energy of antiferromagnetic L10-type equiatomic Mn alloys. Appl. Phys. Lett. 89, 052504-1-3 (2006)

    Google Scholar 

  152. Willoughby, S., et al.: Electronic, Magnetic and Structural Properties of L10 FePtxPd1-x Alloys. J. Appl. Phys. 91, 8822 (2002)

    Google Scholar 

  153. McHenry, M. E., et al.: First principles calculations of the electronic structure of Fe1-xCoxPt IEEE Trans. Mag. 37, 1277 (2001)

    Google Scholar 

  154. Skomski, R.: Phase formation in L10 magnets. J. Appl. Phys. 101, 09N517-1-3 (2007)

    Google Scholar 

  155. Skomski, R. and Sellmyer, D.J.: Curie Temperature of Multiphase Nanostructures. J. Appl. Phys. 87, 4756 (2000)

    Google Scholar 

  156. Evetts, J. E. (Ed.): Concise Encyclopedia of Magnetic and Superconducting Materials, Pergamon, Oxford, (1992)

    Google Scholar 

  157. O’Shea, M. J. and Al-Sharif, A. L.: Inverted hysteresis in magnetic systems with interface exchange. J. Appl. Phys. 75, 6673 (1994)

    Google Scholar 

  158. Skomski, R., et al.: Quantum entanglement of anisotropic magnetic nanodots. Phys. Rev. A 70, Art. No. 062307-1-4 (2004)

    Google Scholar 

  159. Tejada, J., et al.: Macroscopic resonant tunneling of magnetization in ferritin. Phys. Rev. Lett. 79, 1754 (1997);

    Google Scholar 

  160. Lambrecht, W. R. L. and Andersen, O. K.: Minimal basis sets in the linear muffin-tin orbital method: Application to the diamond-structure crystals C, Si, and Ge. Phys. Rev. B 34, 2439 (1986)

    Google Scholar 

  161. Tank, R. W. and Arcangeli, C.: An introduction to the third-generation LMTO method. Phys. Stat. Sol. (b) 217, 89 (2000)

    Google Scholar 

  162. Andersen, O. K., et al.: Muffin-tin orbitals of arbitrary order. Phys. Rev. B 62, R16219–R16222 (2000)

    Google Scholar 

  163. Löwdin, P.-O.: A note on the Quantum-Mechanical Perturbation Theory. J. Chem. Phys. 19, 1396 (1951)

    MathSciNet  Google Scholar 

  164. Ashcroft, N. W. and Mermin, N. D.: Solid State Physics. Saunders, Philadelphia (1976)

    Google Scholar 

  165. Skomski, R.: RKKY Interactions between nanomagnets of arbitrary shape. Europhys. Lett. 48, 455 (1999)

    Google Scholar 

  166. Mattis, D. C.: Theory of Magnetism. Harper and Row, New York, (1965)

    Google Scholar 

  167. Skomski, R., et al.: Indirect exchange in dilute magnetic semiconductors. J. Appl. Phys. 99, 08D504-1-3 (2006)

    Google Scholar 

  168. Dietl, T., et al.: Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019 (2000)

    Google Scholar 

  169. Priour Jr., D. J., et al.: A disordered RKKY lattice mean field theory for ferromagnetism in diluted magnetic semiconductors. Phys. Rev. Lett. 92, 117201 (2004)

    Google Scholar 

  170. Coey, J. M. D., et al.: Ferromagnetism in Fe-doped SnO2 thin films. APL 84, 1332 (2004)

    Google Scholar 

  171. Das Pemmaraju, Ch. and Sanvito, S.: Ferromagnetism driven by intrinsic point defects in HfO2. Phys. Rev. Lett. 94, 217205, 1–4 (2005)

    Google Scholar 

  172. Venkatesan, M., et al.: Unexpected magnetism in a dielectric oxide. Nature 430, 630 (2004)

    Google Scholar 

  173. Coey, J. M. D., et al.: Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173 (2005)

    Google Scholar 

  174. Griffin, K. A., et al.: Intrinsic ferromagnetism in insulating cobalt doped anatase TiO2. Phys. Rev. Lett. 94, 157204-1-4 (2005)

    Google Scholar 

  175. Zhang, J., et al.: Temperature-dependent orbital-moment anisotropy in dilute magnetic oxides. Phys. Rev. B 75, 214417-1-5 (2007)

    Google Scholar 

  176. Antel, Jr, W. J., et al.: Induced ferromagnetism and anisotropy of Pt layers in Fe/Pt(001) multilayers. Phys. Rev. B 60, 12933 (1999)

    Google Scholar 

  177. Janak, J. F.: Uniform susceptibilities of metallic elements. Phys. Rev. B 16, 255 (1977)

    Google Scholar 

  178. Fulde, P.: Electron Correlations in Molecules and Solids. Springer, Berlin (1991)

    Google Scholar 

  179. Celinski, Z. and Heinrich, B.: Exchange coupling through Fe/Cu, Pd, Ag, Au/Fe Trilayers. J. Magn. Magn. Mater. 99, L25 (1991)

    Google Scholar 

  180. Qi, Q.-N., et al., Strong ferromagnets: Curie temperature and density of states. J. Phys.: Condens. Matter 6, 3245 (1994)

    Google Scholar 

  181. Mohn, P.: Magnetism in the Solid State. Springer, Berlin (2003)

    Google Scholar 

  182. Fischer, K.-H. and Hertz, A. J.: Spin Glasses. University Press, Cambridge (1991)

    Google Scholar 

  183. Kouvenhoven, L. and Glazman, L.: Revival of the Kondo effect. Phys. World, Jan., 33 (2001)

    Google Scholar 

  184. Kondo, J.: Sticking to my bush. J. Phys. Soc. Jpn. 74, 1 (2005)

    Google Scholar 

  185. Madhavan, V., et al.: Tunneling into a Single Magnetic Atom: Spectroscopic Evidence of the Kondo Resonance. Science 280, 567 (1998)

    Google Scholar 

  186. Li, J., et al.: Kondo scattering observed at a single magnetic impurity. Phys. Rev. Lett. 80, 2893 (1998)

    Google Scholar 

  187. Újsághy, O., et al.: Theory of the fano resonance in the STM tunneling density of states due to a single kondo impurity. Phys. Rev. Lett. 85, 2557 (2000)

    Google Scholar 

  188. Plihal, M. and Gadzuk, J.: Nonequilibrium theory of scanning tunneling spectroscopy via adsorbate resonances: Nonmagnetic and Kondo impurities. Phys. Rev. B 63, 085404 (2001)

    Google Scholar 

  189. Cronenwett, S. M., et al.: A tunable Kondo effect in quantum dots. Science 281, 540 (1998)

    Google Scholar 

  190. Manoharan, H. C., et al.: Quantum mirages formed by coherent projection of electronic structure. Nature 403, 512 (2000)

    Google Scholar 

  191. Nilius, N., et al.: Tailoring electronic properties of atomic chains assembled by STM. Appl. Phys. A 80, 951 (2005)

    Google Scholar 

  192. Giete, G. A., et al.: Kondo effect and STM spectra through ferromagnetic nanoclusters. Phys. Rev. B 66, 024431 (2002)

    Google Scholar 

  193. Jamneala, T., et al.: Kondo Response of a single antiferromagnetic Chromium trimer. Phys. Rev. Lett. 87, 25, 256804 (2001)

    Google Scholar 

  194. Madhavan, V., et al.: Observation of spectral evolution during the formation of a Ni2 Kondo molecule. Phys. Rev. B 66, 212411 (2002)

    Google Scholar 

  195. Wahl, P., et al.: Exchange interaction between single magnetic atoms. Phys. Rev. Lett. 98, 056601(2007)

    Google Scholar 

  196. Schneider, M. A., et al.: Kondo state of Co impurities at noble metal surfaces. Appl. Phys. A 80, 937 (2005)

    Google Scholar 

  197. Zhao, A., et al.: Controlling the Kondo effect on an adsorbed magnetic ion through its chemical bonding. Science 309, 1542 (2005)

    Google Scholar 

  198. Fu, Y.-S., et.al.: Manipulating the Kondo resonance through quantum size effects. Phys. Rev. Lett. 99, 256601 (2007)

    Google Scholar 

  199. Nielsen, M. A. and Chuang, I. L.: Quantum computation and quantum information. University Press, Cambridge (2000)

    MATH  Google Scholar 

  200. Burkard, G., et al.: Coupled quantum dots as quantum gates. Phys. Rev. B 59, 2070 (1999)

    Google Scholar 

  201. Yao, W., et al.: Nanodot-Cavity quantum electrodynamics and photon entanglement. Phys. Rev. Lett. 92, 217402 (2004)

    Google Scholar 

  202. Reimann, S. M. and Manninen, M.: Electronic structure of quantum dots. Rev. Mod. Phys. 74, 1283 (2002)

    Google Scholar 

  203. Schofield, A. J.: Non-Fermi liquids. Contemporary Phys. 40, 95 (1999)

    Google Scholar 

  204. Aharoni, A.: Introduction to the Theory of Ferromagnetism. University Press, Oxford (1996)

    Google Scholar 

  205. Kutner, R., et al.: Diffusion in concentrated lattice gases. II. Particles with attractive nearest-neighbor interaction on three-dimensional lattices. Phys. Rev. B 26, 2967 (1982)

    Google Scholar 

  206. Skomski, R., et al: Ruderman-Kittel-Kasuya-Yosida interactions between spin distributions of arbitrary shape. J. Appl. Phys. 85, 5890 (2000)

    Google Scholar 

  207. Mahadevan, P., et al.: Unusual directional dependence of exchange energies in GaAs diluted with Mn: Is the RKKY description relevant? Phys. Rev. Lett. 93, 177201-1-4 (2004)

    Google Scholar 

  208. Michalski, S. A. and Kirby, R. D. unpublished (2007)

    Google Scholar 

  209. Smart, J. S.: Effective field theories of magnetism. Sunders, Philadelphia (1966)

    Google Scholar 

  210. Skomski, R., et al.: Superparamagnetic ultrathin films. J. Appl. Phys. 81, 4710 (1997)

    Google Scholar 

  211. Das Sarma, S., et al.: Temperature-dependent magnetization in diluted magnetic semiconductors. Phys. Rev. B 67, 155201 (2003)

    Google Scholar 

Download references

Acknowledgments

The contribution of A.E. to this work was supported by NSF CAREER (DMR-0747704), that of R.S. by DoE, and D.J.S. by NSF-MRSEC and INSIC. The authors havebenefited from discussions with X.-H. Wei, R. D. Kirby, S. A. Michalski, S. Enders, J. Zhang, R. Zhang, J. Zhou (Nebraska), and J. Honolka, J. Zhang, V. Sessi, I. Brihuega, and K. Kern (Stuttgart).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Enders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Enders, A., Skomski, R., Sellmyer, D. (2009). Designed Magnetic Nanostructures. In: Liu, J., Fullerton, E., Gutfleisch, O., Sellmyer, D. (eds) Nanoscale Magnetic Materials and Applications. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-85600-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-85600-1_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-85598-1

  • Online ISBN: 978-0-387-85600-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics