Skip to main content

High-Temperature Samarium Cobalt Permanent Magnets

  • Chapter
  • First Online:
Nanoscale Magnetic Materials and Applications

Abstract

This chapter reviews the development of SmCo-type magnets over the last 40 years. First, the physical metallurgy and crystal structures are considered; then the focus is on the recent developments in high-temperature Sm(CobalFe w Cu x Zr y ) z magnets suitable for operation temperatures up to 500°C. It is elucidated that the evolution of coercivity and microchemistry in the respective phases of the heterogeneous nanostructure as well as magnetic domain structure is very sensitive to details of the processing procedure, especially to the slow cooling ramp as the last step where the hard magnetic properties evolve. These changes give rise to rather complex pinning mechanisms in a three-phase precipitation structure, which again depend in a subtle manner on the microchemistry of the 1:5-type cell boundary phase in the 2:17-type magnets. It is the amount and distribution of Cu in and at the cell boundary phase which is the prevalent factor determining the pinning strength and which can yield a non-monotonic temperature dependence of coercivity. The chapter concludes with an overview of novel non-equilibrium processing routes used to obtain SmCo-type nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Omari, I.A., J. Shobaki, R. Skomski, D. Leslie-Pelecky, J. Zhou and D.J. Sellmyer. (2002). High-temperature magnetic properties of SmCo6.7 xCu0.6Tix magnets. Physica B: Cond. Matter 321: 107–111.

    Article  Google Scholar 

  2. Barthem, V.M.T.S., D. Givord, M.F. Rossignol and P. Tenaud. (2002). An approach to coercivity relating coercive field and activation volume. Physica B 319: 127–132.

    Article  Google Scholar 

  3. Buschow, K.H.J. and A.S. van der Goot. (1968). Intermetallic compounds in the system samarium-cobalt. J. Less-Common Met. 14: 323–328.

    Article  Google Scholar 

  4. Buschow, K.H.J. and A.S. van der Goot. (1971). Composition and crystal structure of hexagonal Cu-rich rare earth-copper compounds. Acta Cryst. B 27: 1085–1088.

    Article  Google Scholar 

  5. Buschow, K.H.J., (1989). Chapter 1, Permanent magnet materials based on 3d-rich ternary compounds. In: Ferromagnetic Materials, vol. 4, E. P. Wohlfarth and K.H.J. Buschow (eds.), North-Holland Elsevier, Amsterdam, Netherlands.

    Google Scholar 

  6. Buschow, K.H.J. (1997). Chapter 4, Magnetism and processing of permanent magnet materials. In: Handbook of Magnetic Materials, vol. 10, K.H.J. Buschow (ed.), North Holland Elsevier, Amsterdam, Netherlands.

    Google Scholar 

  7. Cataldo, L., A. Lefevre, F. Ducret, M.Th. Cohen-Adat, C.H. Allibert and N. Valignat. (1996). Binary system Sm-Co: revision of the phase diagram in the Co rich field. J. Alloys Comp. 241: 216–223.

    Article  Google Scholar 

  8. Chen, C., M.S. Walmer, M.H. Walmer, S. Liu, G.E. Kuhl and G. Simon. (1998). Sm2(Co, Fe, Cu, Zr)17 magnets for use at temperature ≥ 400ºC. J. Appl. Phys. 83: 6706–6708.

    Article  Google Scholar 

  9. Chen, C., M.S. Walmer, M.H. Walmer, S. Liu, G.E. Kuhl and G.K. Simon. (1999). New series of Sm2TM17 magnet materials for application at temperatures up to 550°C. In: MRS Symp. Proc. Advanced Hard and Soft Magnets, vol. 577, J. Fidler, M. Coey et al. (eds.), Materials Research Society, Pittsburgh, USA, pp. 277–287.

    Google Scholar 

  10. Chen, C., M.H. Walmer, E.H. Kottcamp and W. Gong. (2001). Surface reaction and Sm depletion at 550°C for high temperature Sm-TM magnets. IEEE Trans. Mag. 37: 2531–2533.

    Article  Google Scholar 

  11. Chikazumi, S. (1997). Physics of Ferromagnetism, 2nd ed. Oxford Science Publications, Oxford, p. 276.

    Google Scholar 

  12. Coey, J.M.D. (ed.). (1996) Rare Earth Iron Permanent Magnets. Clarendon Press, Oxford, UK.

    Google Scholar 

  13. Craik, D.J. and E.D. Isaac. (1960). Magnetic interaction domains. Proc. Phys. Soc. (Research Notes) 76.

    Google Scholar 

  14. Cullity, B.D. (1972). Introduction to Magnetic Materials. Addison-Wesley Publishing Company, Reading, MA.

    Google Scholar 

  15. Delannay, F., S. Derkaoui and C.H. Allibert. (1987a). The influence of zirconium on Sm(CoFeCuZr)7.2 alloys for permanent magnets I: identification of the phases by transmission electron microscopy. J. Less-Common Met. 134: 249–262.

    Article  Google Scholar 

  16. Delannay, F., S. Derkaoui and C.H. Allibert. (1987b). Transmission electron microscopy of Sm(CoFeCuZr)7.2 alloys for permanent magnet. Micron Microscopica Acta 18: 243.

    Article  Google Scholar 

  17. Derkaoui, S., C.H. Allibert, F. Delannay and J. Laforest. (1987). The influence of zirconium on Sm(Co,Fe,Cu,Zr)7.2 alloys for permanent magnets II: composition and lattice constants of the phases in heat-treated materials. J. Less-Common Met. 136: 75–86.

    Article  Google Scholar 

  18. Derkaoui, S. and C.H. Allibert. (1989). Redetermination of the phase equilibria in the system Sm-Co-Cu for Sm content 0–20 at.% at 850°C. J. Less-Common Met. 154: 309–315.

    Article  Google Scholar 

  19. Derkaoui, S., N. Valignat and C.H. Allibert. (1996a). Co corner of the system Sm-Co-Zr: decomposition of the phase 1:7 and equilibria at 850°C. J. Alloys Comp. 235: 112–119.

    Article  Google Scholar 

  20. Derkaoui, S., N. Valignat and C.H. Allibert. (1996b). Phase equilibria at 1150°C in the Co-rich alloys Sm-Co-Zr and structure of the 1:7 phase. J. Alloys Comp. 232: 296–301.

    Article  Google Scholar 

  21. Ding, J., P.G. McCormick and R. Street. (1994). A study of Sm13(Co1-xFex)87 prepared by mechanical alloying. J. Magn. Magn. Mat. 135: 200–204.

    Article  Google Scholar 

  22. Durst, K.D. and H. Kronmüller. (1985). Magnetic hardening mechanisms in sintered Nd-Fe-B and Sm(Co,Fe,Cu,Zr)7.6 permanent magnets. Proc. 4th Int. Symp. Magn. Anisotropy and Coercivity in RETM Alloys, Dayton, USA, pp. 725–735.

    Google Scholar 

  23. Durst, K.D., H. Kronmüller, F.T. Parker and H. Oesterreicher. (1986). Temperature dependence of coercivity of cellular Sm2Co17-SmCo5 permanent magnets. Phys. Stat. Sol. (a) 95: 213–219.

    Article  Google Scholar 

  24. Durst, K.D., H. Kronmüller and W. Ervens. (1988a). Investigations of the magnetic properties and demagnetisation processes of an extremely high coercive Sm(Co,Cu,Fe,Zr)7.6 permanent magnet – I Determination of intrinsic magnetic material parameters. Phys. Stat. Sol. (a) 108: 403–416.

    Article  Google Scholar 

  25. Durst, K.D., H. Kronmüller and W. Ervens. (1988b). Investigations of the magnetic properties and demagnetisation processes of an extremely high coercive Sm(Co,Cu,Fe,Zr)7.6 permanent magnet – II The coercivity mechanism. Phys. Stat. Sol. (a) 108: 705–719.

    Article  Google Scholar 

  26. Ervens, W. (1979). Rare earth-transition metal 2:17 permanent magnet alloys, state and trends. Goldschmidt Informiert 48: 3–9.

    Google Scholar 

  27. Fidler, J. and P. Skalicky. (1982a). Coercivity of precipitation hardened cobalt rare earth 17:2 permanent magnets. J. Magn. Magn. Mat. 30: 58–70.

    Article  Google Scholar 

  28. Fidler, J. and P. Skalicky (1982b, September). Domain wall pinning in REPM. In: Proc. 3rd Int. Symp. Magnetic Anisotropy and Coercivity in Rare Earth-Transition Metal Alloys, J. Fidler(ed.), Baden, Austria, pp. 585–597.

    Google Scholar 

  29. Gavigan, J.P. and D. Givord. (1990). Intrinsic and extrinsic properties of rare earth-transition metal compounds and permanent magnets. J. Magn. Magn. Mat. 84: 288–298.

    Article  Google Scholar 

  30. Givord, D., A. Lienard, P. Tenaud and T. Viadieu. (1987). Magnetic viscosity in Nd-Fe-B sintered magnets. J. Magn. Magn. Mat. 67: L281–L285.

    Article  Google Scholar 

  31. Givord, D., P. Tenaud and T. Viadieu. (1988). Coercivity mechanisms in ferrites and rare earth transition metal sintered magnets(SmCo5,Nd-Fe-B). IEEE Trans. Magn. 24: 1921–1923.

    Article  Google Scholar 

  32. Givord, D., M. Rossignol and V.M.T.S. Barthem. (2003). The physics of coercivity. J. Magn. Magn. Mat. 258–259: 1–5.

    Article  Google Scholar 

  33. Goll, D., I. Kleinschroth, W. Sigle and H. Kronmüller. (2000). Melt-spun precipitation-hardened Sm2(Co,Cu,Fe,Zr)17 magnets with abnormal temperature dependence of coercivity. Appl. Phys. Lett. 76: 1054–1056.

    Article  Google Scholar 

  34. Goll, D. and H. Kronmüller. (2002). Micromagnetic analysis of pinning-hardened nanostructured, nanocrystalline Sm2Co17 based alloys. Scripta Mat. 47: 545–550.

    Article  Google Scholar 

  35. Goll, D., H. Kronmüller and H.H. Stadelmaier. (2004). Micromagnetism and the microstructure of high-temperature permanent magnets. J. Appl. Phys. 96: 6534–6545.

    Article  Google Scholar 

  36. Gopalan, R., K. Hono, A. Yan and O. Gutfleisch. (2009). Direct evidence on Cu-concentration variation and its correlation to coercivity in Sm(Co0.74Fe0.1Cu0.12Zr0.4)7.4 ribbons, Scripta. Mat. 60: 764–767.

    Google Scholar 

  37. Gutfleisch, O. and I.R. Harris. (1996). Fundamental and practical aspects of the hydrogenation, disproportionation, desorption and recombination process. J. Phys. D: Appl. Phys. 29: 2255–2265.

    Article  Google Scholar 

  38. Gutfleisch, O., M. Kubis, A. Handstein, K.H. Müller and L. Schultz. (1998). Hydrogenation disproportionation desorption recombination in Sm–Co alloys by means of reactive milling. Appl. Phys. Lett. 73: 3001–3003.

    Article  Google Scholar 

  39. Gutfleisch, O. (2000). Controlling the properties of high energy density permanent magnetic materials by different processing routes. J. Phys. D: Appl. Phys. 33: R157–R172.

    Article  Google Scholar 

  40. Gutfleisch, O., N.M. Dempsey, A. Yan, K.-H. Müller and D. Givord. (2004). Coercivity analysis of melt-spun Sm2(Co,Fe,Cu,Zr)17. J . Magn. Magn. Mat. 272–276: 647–649.

    Article  Google Scholar 

  41. Gutfleisch, O., K.-H. Müller, K. Khlopkov, M. Wolf, A. Yan, R. Schäfer, T. Gemming and L. Schultz. (2006). Evolution of magnetic domain structures and coercivity in high-performance SmCo 2:17 type permanent magnets. Acta Mat. 54: 997–1008.

    Article  Google Scholar 

  42. Hadjipanayis, G.C. (1996). Microstructure and magnetic domains. In: Rare-Earth Iron Permanent Magnets, J.M.D. Coey (ed.), Oxford University Press, Oxford, UK, pp. 286–335.

    Google Scholar 

  43. Hadjipanayis, G.C., W. Tang, Y. Zhang, S.T. Chui, J.F. Liu, C. Chen and H. Kronmüller. (2000). High temperature 2:17 magnets: relationship of magnetic properties to microstructure and processing. IEEE Trans. Magn. 36: 3382–3387.

    Article  Google Scholar 

  44. Handstein, A., M. Kubis, O. Gutfleisch, B. Gebel and K.H. Müller. (1999). HDDR of Sm–Co alloys using high hydrogen pressures. J. Magn. Magn. Mat. 192: 73–76.

    Article  Google Scholar 

  45. Handstein, A., A. Yan, G. Martinek, O. Gutfleisch, K.H. Müller and L. Schultz. (2003). Stability of magnetic properties of Sm2Co17-type magnets at operating temperatures larger than 400ºC. IEEE Trans. Magn. 39: 2923–2925.

    Article  Google Scholar 

  46. Hofer, F. (1970). Physical metallurgy and magnetic measurements of SmCo5-SmCu5 alloys. IEEE Trans. Magn. 6: 221–224.

    Article  Google Scholar 

  47. Hubert, A. and R. Schäfer (1998). Magnetic Domains – The Analysis of Magnetic Microstructures. Springer Verlag, Berlin, Germany.

    Google Scholar 

  48. Kardelky, S., A. Gebert, O. Gutfleisch, A. Handstein, G. Martinek and L. Schultz. (2004). Corrosion behavior of Sm-Co based permanent magnets in oxidizing environments. IEEE Trans. Magn. 40: 2931–2933.

    Article  Google Scholar 

  49. Katter, M., J. Weber, W. Assmus, P. Schrey and W. Rodewald. (1996). A new model for the coercivity mechanism of Sm2(Co,Fe,Cu,Zr)17 magnets. IEEE Trans. Magn. 32: 4815–4817.

    Article  Google Scholar 

  50. Katter, M. (1998). Coercivity calculation of Sm2(Co,Fe,Cu,Zr)17 magnets. J. Appl. Phys. 83: 6721–6723.

    Article  Google Scholar 

  51. Kerschl, P., A. Handstein, K. Khlopkov, O. Gutfleisch, D. Eckert, K. Nenkov, J.-C. Téllez-Blanco, R. Grössinger, K.-H. Müller and L. Schultz. (2005). High-field magnetisation of SmCo5 xCux (x ≈ 2.5) determined in pulse fields up to 48 T. J. Magn. Magn. Mat. 290–291(part 1): 420–423.

    Google Scholar 

  52. Khan, Y. (1973). The crystal structures of R2Co17 intermetallic compounds. Acta Crystall. Section B 29: 2502–2507.

    Article  Google Scholar 

  53. Khlopkov, K., O. Gutfleisch, D. Eckert, D. Hinz, B. Wall, W. Rodewald, K.-H. Müller, and L. Schultz. (2004). Local texture in Nd-Fe-B sintered magnets with maximised energy density. J. Alloys Comp. 365: 259–265.

    Article  Google Scholar 

  54. Kronmüller, H., K.-D. Durst, W. Ervens and W. Fernengel. (1984). Micromagnetic analysis of precipitation hardened permanent magnets. IEEE Trans. Magn. 20: 1569–1571.

    Article  Google Scholar 

  55. Kronmüller, H. and D. Goll. (2002). Micromagnetic theory of the pinning of domain walls at phase boundaries. Physica B 319: 122–126.

    Article  Google Scholar 

  56. Kubis, M., A. Handstein, B. Gebel, O. Gutfleisch, K.H. Müller and L. Schultz. (1999). Highly coercive SmCo5 magnets prepared by a modified hydrogenation-disproportionation-desorption-recombination process. J. Appl. Phys. 85: 5666–5668.

    Article  Google Scholar 

  57. Kumar, K. (1988). RETM5 and RE2TM17 permanent magnets development. J. Appl. Phys. 63: R13–R57.

    Article  Google Scholar 

  58. Lectard, E., C.H. Allibert and R. Ballou. (1994). Saturation magnetization and anisotropy fields in the Sm(Co1–xCux)5 phases. J. Appl. Phys. 75: 6277–6279.

    Article  Google Scholar 

  59. Lefèvre, A., L. Cataldo, M.Th. Cohen-Adad, and B.F. Mentzen. (1997). A representation of the Sm-Co-Zr-Cu-Fe quinary system: a tool for optimisation of 2/17 permanent magnets. J. Alloys Comp. 262–263: 129–133.

    Article  Google Scholar 

  60. Li, D. and K.J. Strnat. (1984). Domain structures of two Sm-Co-Cu-Fe-Zr “2–17” magnets during magnetization reversal. J. Appl. Phys. 55: 2103–2105.

    Article  Google Scholar 

  61. Liu, J.F., T. Chui, D. Dimitrov and G.C. Hadjipanayis. (1998a). Abnormal temperature dependence of intrinsic coercivity in Sm(Co, Fe, Cu, Zr)z powder materials. Appl. Phys. Lett. 73: 3007–3009.

    Article  Google Scholar 

  62. Liu, J.F., Y. Zhang, Y. Ding, D. Dimitrov, and G.C. Hadjipanayis (1998b). Rare earth permanent magnets for high temperature applications. In: Proc. of 15th Int. Workshop on Rare Earth Magnets and their Appl., Dresden, Germany, vol. 2, pp. 607–622.

    Google Scholar 

  63. Liu, J.F., Y. Zhang, D. Dimitrov and G.C. Hadjipanayis. (1999). Microstructure and high temperature magnetic properties of Sm(Co,Cu,Fe,Zr)z (z = 6.7–9.1) permanent magnets. J. Appl. Phys. 85: 2800–2804.

    Article  Google Scholar 

  64. Livingston, J.D. and M.D. McConnell. (1972). Domain-wall energy in cobalt-rare-earth compounds. J. Appl. Phys. 43: 4756–4762.

    Article  Google Scholar 

  65. Livingston, J.D. (1975). Domains in sintered Co-Cu-Fe-Sm magnets. J. Appl. Phys. 46: 5259–5262.

    Article  Google Scholar 

  66. Livingston, J.D. and D.L. Martin. (1977). Microstructure of aged (Co,Cu,Fe)7Sm magnets. J. Appl. Phys. 48: 1350–1354.

    Article  Google Scholar 

  67. Matthias, T., G. Zehetner, J. Fidler, W. Scholz, T. Schrefl, D. Schobinger and G. Martinek. (2002). TEM-analysis of Sm(Co,Fe,Cu,Zr)z magnets for high-temperature applications. J. Magn. Magn. Mat. 242–245: 1353–1355.

    Article  Google Scholar 

  68. Maury, C., L. Rabenberg and C.H. Allibert. (1993). Genesis of the cell microstructure in the Sm(Co,Fe,Cu,Zr) permanent magnets with 2:17 type. Phys. Stat. Sol. (a) 140: 57–72.

    Article  Google Scholar 

  69. Meyer-Liautaud, F., S. Derkaoui, C.H. Allibert and R. Castanet. (1987). Structural and thermodynamic data on the pseudobinary phases R(Co1 xCux)5 with R ≡ Sm, Y, Ce. J. Less-Common Met. 127: 231–242.

    Article  Google Scholar 

  70. Morita, Y., T. Umeda and Y. Kimura. (1987). Phase transformation at high temperature and coercivity of Sm(Co,Cu,Fe,Zr)7-9 magnet alloys. IEEE Trans. Magn. 23: 2702–2704.

    Article  Google Scholar 

  71. Nagel, H. (1979). Coercivity and microstructure of Sm(Co0.87Cu0.13)7.8. J. Appl. Phys. 50: 1026–1030.

    Article  Google Scholar 

  72. Nesbitt, E.A., R.H. Willens, R.C. Sherwood and E. Bühler. (1968). New permanent magnet materials. Appl. Phys. Lett. 12: 361–362.

    Article  Google Scholar 

  73. Oesterreicher, H., F.T. Parker and M. Misroch. (1979). Giant intrinsic magnetic hardness in SmCo5-xCux. J. Appl. Phys. 50: 4273–4278.

    Article  Google Scholar 

  74. Ojima, T., S. Tomizawa, T. Yoneyama and T. Hori. (1977). Magnetic properties of new type of rare-earth cobalt magnets. IEEE Trans. Magn. 13: 1317–1319.

    Article  Google Scholar 

  75. Panagiotopoulos, I., M. Gjoka and D. Niarchos. (2002). Temperature dependence of the activation volume in high-temperature Sm(Co,Fe,Cu,Zr)Z magnets. J. Appl. Phys. 92: 7693–7695.

    Article  Google Scholar 

  76. Perkins, R.S., S. Gaiffi and A. Menth. (1975). Permanent magnet properties of Sm2(Co,Fe)17. IEEE Trans. Magn. 11: 1431–1433

    Article  Google Scholar 

  77. Perkins, R.S. and S. Strässler. (1977). Interpretation of the magnetic properties of pseudobinary Sm2(Co,M)17 compounds. I. Magnetocrystalline anisotropy. Phys. Rev. B 15: 477–489; Interpretation of the magnetic properties of pseudobinary Sm2(Co,M)17 compounds. II. Magnetization. Phys. Rev. B 15: 490–495.

    Article  Google Scholar 

  78. Perry, A.J. and A. Menth. (1975). Permanent magnets based on Sm(Co,Cu,Fe)z. IEEE Trans. Magn. 11: 1423–1425.

    Article  Google Scholar 

  79. Perry, A.J. (1977). The constitution of copper-hardened samarium-cobalt permanent magnets. J. Less-Common Met. 51: 153–162.

    Article  Google Scholar 

  80. Popov, A.G., A.V. Korolev and N.N. Shchegoleva. (1990). Temperature dependence of the coercive force of Sm(Co,Fe,Cu,Zr)7.3 alloys. Phys. Met. Metall. 69: 100–106.

    Google Scholar 

  81. Rabenberg, L., R.K. Mishra, and G. Thomas. (1982a). Microstructure of precipitation hardened SmCo permanent magnets. J. Appl. Phys. 53: 2389–2391.

    Article  Google Scholar 

  82. Rabenberg, L., R.K. Mishra, and G. Thomas. (1982b, September). Development of the cellular microstructure in the SmCo7.4-type magnets. In: Proc. 3rd Int. Symp. Magnetic Anisotropy and Coercivity in Rare Earth-Transition Metal Alloys, J. Fidler (ed.), Baden, Austria, pp. 599–608.

    Google Scholar 

  83. Ray, A.E. (1984). Metallurgical behavior of Sm(Co,Fe,Cu,Zr)z alloys. J. Appl. Phys. 55: 2094–2096.

    Article  Google Scholar 

  84. Ray, A.E. and S. Liu. (1992). Recent progress in 2:17 type permanent magnets. Proc. 12th Int. Workshop on RE Magnets and their Appl., Canberra, Australia, pp. 552–573.

    Google Scholar 

  85. Schobinger, D., O. Gutfleisch, D. Hinz, K.H. Müller, L. Schultz and G. Martinek. (2002). High temperature magnetic properties of 2:17 Sm–Co magnets. J. Magn. Magn. Mat. 242–245: 1347–1349.

    Article  Google Scholar 

  86. Schultz, L., K. Schnitzke, J. Wecker, M. Katter and C. Kuhrt. (1991). Permanent magnets by mechanical alloying. J. Appl. Phys. 70: 6339–6344.

    Article  Google Scholar 

  87. Skomski, R. (1997). Domain-wall curvature and coercivity in pinning type Sm-Co magnets. J. Appl. Phys. 81: 6527–5629.

    Google Scholar 

  88. Skomski, R. and J.M.D. Coey. (1999). Permanent Magnetism. Institute of Physics, Bristol.

    Google Scholar 

  89. Skomski, R., A. Kashyap, Y. Qiang, and D.J. Sellmyer. (2003). Exchange through nonmagnetic insulating matrix. J. Appl. Phys. 93: 6477–6479.

    Article  Google Scholar 

  90. Stadelmaier, H.H., E.-Th. Henig, G. Schneider and G. Petzow. (1988). The metallurgy of permanent magnets based on Co17Sm2. Z. Metallkd. 79: 313–316.

    Google Scholar 

  91. Stadelmaier, H.H., B. Reinsch, and G. Petzow. (1998). Samarium-cobalt phase equilibria revisited; relevance to permanent magnets. Z. Metallkd. 89: 114–118.

    Google Scholar 

  92. Stadelmaier, H.H., D. Goll, H. Kronmüller. (2005). Permanent magnet alloys based on Sm2Co17; phase evolution in the quinary system Sm-Zr-Fe-Co-Cu. Z. Metallkd. 96: 17–23.

    Google Scholar 

  93. Streibl, B., J. Fidler and T. Schrefl. (2000). Domain wall pinning in high temperature Sm(Co,Fe,Cu,Zr)7-8 magnets. J. Appl. Phys. 87: 4765–4767.

    Article  Google Scholar 

  94. Strnat, K.J., G. Hoffer, J. Olson, W. Ostertag and J.J. Becker. (1967). A family of new cobalt-base permanent magnetic materials. J. Appl. Phys. 38: 1001–1002.

    Article  Google Scholar 

  95. Strnat, K.J. (1988). Chapter 2, Rare earth–cobalt permanent magnets. In: Ferromagnetic Materials, vol. 4, E.P. Wohlfarth, K.H.J. Buschow (eds.), North-Holland, Amsterdam, Netherlands.

    Google Scholar 

  96. Strnat, K.J. and R.M.W. Strnat. (1991). Rare earth–cobalt permanent magnets. J. Magn. Magn. Mat. 100: 38–56.

    Article  Google Scholar 

  97. Tang, H., Y. Liu and D.J. Sellmyer. (2002). Nanocrystalline Sm12.5(Co,Zr)87.5 magnets: synthesis and magnetic properties. J. Magn. Magn. Mat. 241: 345–356.

    Article  Google Scholar 

  98. Tang, W., Y. Zhang and G.C. Hadjipanayis. (2000). Effect of Zr on the microstructure and magnetic properties of Sm(CobalFe0.1Cu0.088Zrx)8.5 magnets. J. Appl. Phys. 87: 399–403.

    Article  Google Scholar 

  99. Tang, W., A.M. Gabbay, Y. Zhang, G.C. Hadjipanayis and H. Kronmüller. (2001). Temperature dependence of coercivity and magnetisation reversal in Sm(CobalFe0.1CuyZr0.4)7.0 magnets. IEEE Trans. Magn. 37: 2515–2517.

    Article  Google Scholar 

  100. Walmer, M.S., C.H. Chen and M.H. Walmer. (2000). A new class of Sm-TM magnets for operating temperatures up to 550°C. IEEE Trans. Magn. 36: 3376–3381.

    Article  Google Scholar 

  101. Wecker, J., M. Katter and L. Schultz. (1991). Mechanically alloyed Sm-Co materials. J. Appl. Phys. 69: 6058–6060.

    Article  Google Scholar 

  102. Xiong, X.Y., T. Ohkubo, T. Koyama, K. Ohashi, T. Tawara and K. Hono. (2004). The microstructure of sintered Sm(Co0.72Fe0.20Cu0.055Zr0.025)7.5 permanent magnet studied by atom probe. Acta Mat. 52: 737–748.

    Article  Google Scholar 

  103. Yan, A., W.-Y. Zhang, H.-W. Zhang and B. Shen. (2000). Melt-spun magnetically anisotropic SmCo5 ribbons with high permanent performance. J. Magn. Magn. Mat. 210: 10–14.

    Article  Google Scholar 

  104. Yan, A., A. Bollero, O. Gutfleisch and K.H. Müller. (2002a). Microstructure and magnetization reversal in nanocomposite SmCo5/Sm2Co17 magnets. J. Appl. Phys. 91: 2192–2196.

    Article  Google Scholar 

  105. Yan, A., A. Bollero, K.-H. Müller and O. Gutfleisch. (2002b). Fast development of high coercivity in melt-spun Sm(Co,Fe,Cu,Zr)z magnets. Appl. Phys. Lett. 80: 1243–1245,

    Article  Google Scholar 

  106. Yan, A., A. Bollero, K.H. Müller and O. Gutfleisch. (2002c). Influence of Fe, Zr and Cu on microstructure and crystallographic texture of melt-spun 2:17 SmCo ribbons. J. Appl. Phys. 91: 8825–8827.

    Article  Google Scholar 

  107. Yan, A., K.H. Müller and O. Gutfleisch. (2002d). Highly coercive melt-spun Sm(Co, Fe, Cu, Zr)z magnets prepared by simple processing. IEEE Trans. Magn. 38: 2937–2939.

    Article  Google Scholar 

  108. Yan, A., O. Gutfleisch, T. Gemming and K.-H. Müller. (2003a). Microchemistry and reversal mechanism in 2:17-type Sm-Co magnets. Appl. Phys. Lett. 83: 2208–2210.

    Article  Google Scholar 

  109. Yan, A., O. Gutfleisch, A. Handstein, T. Gemming and K.-H. Müller. (2003b). Microstructure, microchemistry, and magnetic properties of melt-spun Sm(Co,Fe,Cu,Zr)y magnets. J. Appl. Phys. 93: 7975–7977.

    Article  Google Scholar 

  110. Yan, A., A. Bollero, O. Gutfleisch, K.-H. Müller, L. Schultz, (2004). Melt-spun precipitation hardened Sm(Co,Fe,Cu,Zr) z magnets, Mat. Sci. Eng. A375–377: 1169–1172.

    Google Scholar 

  111. Yang, W., W. Ping, S. Zhenhua and Z. Shouzeng. (1992). 2:17 type temperature compensated magnets with high coercivity. In: Proc. of the 12th Int. Workshop on RE Magnets and their Appl., Canberra, Australia, pp. 249–257.

    Google Scholar 

  112. Zhang, Y., W. Tang. G.C. Hadjipanayis, C. Chen, C. Nelson and K. Krishnan. (2000). Evolution of microstructure, microchemistry and coercivity in 2:17 type Sm–Co magnets with heat treatment. IEEE Trans. Magn. 37: 2525–2527.

    Article  Google Scholar 

  113. Zhou, J., I.A. Al-Omari, J P. Liu and D.J. Sellmyer. (2000). Structure and magnetic properties of SmCo7-xTix with TbCu7-type structure. J. Appl. Phys. 87: 5299–5301.

    Article  Google Scholar 

  114. Zhou, J., R. Skomski, and D.J. Sellmyer. (2003). Magnetic hysteresis of mechanically alloyed Sm–Co nanocrystalline powders. J. Appl. Phys. 93: 6495–6497.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Gutfleisch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gutfleisch, O. (2009). High-Temperature Samarium Cobalt Permanent Magnets. In: Liu, J., Fullerton, E., Gutfleisch, O., Sellmyer, D. (eds) Nanoscale Magnetic Materials and Applications. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-85600-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-85600-1_12

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-85598-1

  • Online ISBN: 978-0-387-85600-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics