Skip to main content

The Integrated Brain: Implications for Neuropsychological Evaluation

  • Chapter
  • First Online:
Subcortical Structures and Cognition

Abstract

If you have come this far, dear reader, you have come a long way in modifying your knowledge about brain–behavior relationships. You have learned information about brain structures that have traditionally been considered mainly as co-processors of movement. You have learned about the vertical organization of brain–behavior relationships. You have learned how movement is organized within the brain, and you have learned how to apply these concepts of movement to cognition and emotion, because you have learned that cognition and emotion are organized in a way that is parallel to movement.

“That is the story. Do you think there is any way of making them believe it?”

“Not in the first generation,” he said, “but you might succeed with the second or later generations.”

Plato

We put tirty spokes together and call it a wheel;

But it is on the space where there is nothing that the usefulness of the wheel depends.

Therefore just as we take advantage of what is, we should recognize the usefulness of what is not.

Tao Te Ching 11, trans. Waley

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ardila, A. (2008). On the evolutionary origins of executive functions. Brain and Cognition, 68(1), 92–99.

    Google Scholar 

  • Ashtari, M., Kumra, S., Bhaskar, S. L., Clarke, T., Thaden, E., Cervellione, K. L. et al. (2005). Attention-deficit/hyperactivity disorder: A preliminary diffusion tensor imaging study. Biological Psychiatry, 57, 448–455.

    Article  PubMed  Google Scholar 

  • Bigelow, N. O., Turner, B. M., Andreasen, N. C., Paulsen, J. S., O'Leary, D. S., & Ho, B. C. (2006). Prism adaptation in schizophrenia. Brain and Cognition, 61, 235–242.

    Article  PubMed  Google Scholar 

  • Bradshaw, J. L. (2001). Developmental disorders of the frontostriatal system. Philadelphia, PA: Psychology Press.

    Google Scholar 

  • Chen, C. C., Kiebel, S. J., & Friston, K. J. (2008). Dynamic causal modelling of induced responses. Neuroimage, 41, 1293–1312.

    Article  PubMed  Google Scholar 

  • Doya, K. (1999). What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Networks, 12, 961–974.

    Article  PubMed  Google Scholar 

  • Eitam, B., Hassin, R. R., & Schul, Y. (2008). Nonconscious goal pursuit in novel environments: The case of implicit learning. Psychological Science, 19, 261–267.

    Article  PubMed  Google Scholar 

  • Foerde, K., Poldrack, R. A., Khan, B. J., Sabb, F. W., Bookheimer, S. Y., Bilder, R. M., et al. (2008). Selective corticostriatal dysfunction in schizophrenia: Examination of motor and cognitive skill learning. Neuropsychology, 22, 100–109

    Article  PubMed  Google Scholar 

  • Fontenelle, L. F., Mendlowicz, M. V., Mattos, P., & Versiani, M. (2006). Neuropsychological findings in obsessive-compulsive disorder and its potential implications for treatment. Current Psychiatry Reviews, 2, 11–26.

    Article  Google Scholar 

  • Frank, M. J. (2005). Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. Journal of Cognitive Neuroscience, 17, 51–72.

    Article  PubMed  Google Scholar 

  • Frank, M. J. (2006). Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making. Neural Networks, 19, 1120–1136.

    Article  PubMed  Google Scholar 

  • Goldsamt, L. (1994). Neuropsychological findings in schizophrenia. In L. Koziol & C. Stout (Eds.), The neuropsychology of mental disorders: A practical guide (pp. 80–93). Springfield, IL: Charles C. Thomas.

    Google Scholar 

  • Heinke, D., & Mavritsaki, E. (2009). Computational modelling in behavioural neuroscience : Closing the gap between neurophysiology and behaviour. Hove, East Sussex; New York, NY: Psychology Press.

    Google Scholar 

  • Houk, J. C., Bastianen, C., Fansler, D., Fishbach, A., Fraser, D., Reber, P. J. et al. (2007). Action selection and refinement in subcortical loops through basal ganglia and cerebellum. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 362, 1573–1583.

    Article  PubMed  Google Scholar 

  • Ito, M. (2008). Control of mental activities by internal models in the cerebellum. Nature Reviews Neuroscience, 9, 304–313.

    Article  PubMed  Google Scholar 

  • Ito, M. (2007). On How Working Memory and the Cerebellum Collaborate to Produce Creativity and Innovation by L. R. Vandervert, P. H. Schimpf, & H. Liu. Creativity Research Journal, 19, 35–38.

    Google Scholar 

  • Kawakubo, Y., Rogers, M. A., & Kasai, K. (2006). Procedural memory predicts social skills in persons with schizophrenia. Journal of Nervous and Mental Disease, 194, 625–627.

    Article  PubMed  Google Scholar 

  • Kumari, V., Gray, J. A., Honey, G. D., Soni, W., Bullmore, E. T., Williams, S. C. et al. (2002). Procedural learning in schizophrenia: a functional magnetic resonance imaging investigation. Schizophrenia Research, 57, 97–107.

    Article  PubMed  Google Scholar 

  • Lawrence, N. S., Wooderson, S., Mataix-Cols, D., David, R., Speckens, A., & Phillips, M. L. (2006). Decision making and set shifting impairments are associated with distinct symptom dimensions in obsessive-compulsive disorder. Neuropsychology, 20, 409–419.

    Article  PubMed  Google Scholar 

  • Leggio, M. G., Tedesco, A. M., Chiricozzi, F. R., Clausi, S., Orsini, A., & Molinari, M. (2008). Cognitive sequencing impairment in patients with focal or atrophic cerebellar damage. Brain, 131(5), 1332–1343.

    Google Scholar 

  • Mackie, S., Shaw, P., Lenroot, R., Pierson, R., Greenstein, D. K., Nugent, T. F., III et al. (2007). Cerebellar development and clinical outcome in attention deficit hyperactivity disorder. American Journal of Psychiatry, 164, 647–655.

    Article  PubMed  Google Scholar 

  • Maddox, W. T., & Filoteo, J. V. (2001). Striatal contributions to category learning: quantitative modeling of simple linear and complex nonlinear rule learning in patients with Parkinson's disease. Journal of the International Neuropsychological Society, 7, 710–727.

    Article  PubMed  Google Scholar 

  • Mainzer, K. (2008). The emergence of mind and brain: an evolutionary, computational, and philosophical approach. Progres in Brain Research, 168, 115–132.

    Article  Google Scholar 

  • Marreiros, A. C., Kiebel, S. J., & Friston, K. J. (2008). Dynamic causal modelling for fMRI: A two-state model. Neuroimage, 39, 269–278.

    Article  PubMed  Google Scholar 

  • Mayberg, H. (2001a). Depression and frontal-subcortical circuits: Focus on prefrontal-limbic interactions. In D. G. Lichter & J. L. Cummings (Eds.), Frontal-subcortical circuits in psychiatric and neurological disorders (pp. 177–206). New York: The Guilford Press.

    Google Scholar 

  • Mayberg, H. (2001b). Frontal lobe dysfunction in secondary depression. In S. P. Salloway, P. F. Malloy, & J. D. Duffy (Eds.), The frontal lobes and neuropsychiatric illness (pp. 167–186). Washington, D.C.: American Psychiatric Publishing.

    Google Scholar 

  • Nicolson, R. (2000). Dyslexia and dyspraxia: Commentary. Dyslexia, 6, 203–204.

    Article  PubMed  Google Scholar 

  • Nicolson, R.I, & Fawcett, A. (2005). Developmental dyslexia, learning and the cerebellum. In W. W. Fleischhacker & D.J. Brooks (Eds.) Neurodevelopmental disorders (pp. 19–36). Vienna: Springer.

    Google Scholar 

  • Nicolson, R. I., & Fawcett, A. J. (2006). Do cerebellar deficits underlie phonological problems in dyslexia? Developmental Science, 9, 259–262.

    Article  PubMed  Google Scholar 

  • Nicolson, R. I., & Fawcett, A. J. (2007). Procedural learning difficulties: reuniting the developmental disorders? Trends Neuroscience, 30, 135–141.

    Article  Google Scholar 

  • Noppeney, U., Josephs, O., Hocking, J., Price, C. J., & Friston, K. J. (2008). The effect of prior visual information on recognition of speech and sounds. Cerebral Cortex, 18, 598–609.

    Article  PubMed  Google Scholar 

  • Picard, H., Amado, I., Mouchet-Mages, S., Olie, J. P., & Krebs, M. O. (2008). The role of the cerebellum in schizophrenia: An update of clinical, cognitive, and functional evidences. Schizophrenia Bulletin, 34, 155–172.

    Article  PubMed  Google Scholar 

  • Podell, K., Lovell, M., & Goldberg, E. (2001). Lateralization of frontal lobe functions. In S. Salloway, P. Malloy, & J. Duffy (Eds.), The frontal lobes and neuropsychiatric illness (pp. 83–100). Washington, D.C.: American Psychiatric.

    Google Scholar 

  • Porrill, J., & Dean, P. (2007). Recurrent cerebellar loops simplify adaptive control of redundant and nonlinear motor systems. Neural Computation, 19, 170–193.

    Article  PubMed  Google Scholar 

  • Rubia, K. (2007). Neuro-anatomic evidence for the maturational delay hypothesis of ADHD. Proceedings of the National Academy of Sciences of the United States of America, 104, 19663–19664.

    Google Scholar 

  • Sagvolden, T., Johansen, E. B., Aase, H., & Russell, V. A. (2005). A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behavioral and Brain Sciences, 28, 397–419.

    Article  PubMed  Google Scholar 

  • Scheres, A., Milham, M. P., Knutson, B., & Castellanos, F. X. (2007). Ventral striatal hyporesponsiveness during reward anticipation in attention-deficit/hyperactivity disorder. Biological Psychiatry, 61, 720–724.

    Article  PubMed  Google Scholar 

  • Schmahmann, J. D., Weilburg, J. B., & Sherman, J. C. (2007). The neuropsychiatry of the cerebellum – insights from the clinic. Cerebellum, 6, 254–267.

    Article  PubMed  Google Scholar 

  • Shaw, P., Eckstrand, K., Sharp, W., Blumenthal, J., Lerch, J. P., Greenstein, D. et al. (2007). Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proceedings of the National Academy of Sciences of the United States of America, 104, 19649–19654.

    Google Scholar 

  • Squire, L. R., Clark, R.E., & Bayley, P. J. (2004). Medial temporal lobe functions and memory. In M. Gazzaniga (Ed.), The cognitive neurosciences (3rd ed., pp. 691–708). Cambridge, MA: MIT.

    Google Scholar 

  • Strangman, G., Heindel, W. C., Anderson, J. A., & Sutton, J. P. (2005). Learning motor sequences with and without knowledge of governing rules. Neurorehabilitation and Neural Repair, 19, 93–114.

    Article  PubMed  Google Scholar 

  • Takano, K., Ito, M., Kobayashi, K., Sonobe, N., Kurosu, S., Mori, Y. et al. (2002). Procedural memory in schizophrenia assessed using a mirror reading task. Psychiatry Research, 109, 303–307.

    Article  PubMed  Google Scholar 

  • Ullman, M. T. (2001). The declarative/procedural model of lexicon and grammar. Journal of Psycholinguistic Research, 30, 37–69.

    Article  PubMed  Google Scholar 

  • Ullman, M. T. (2004). Contributions of memory circuits to language: the declarative/procedural model. Cognition, 92, 231–270.

    Article  PubMed  Google Scholar 

  • Ullman, M. T., Pancheva, R., Love, T., Yee, E., Swinney, D., & Hickok, G. (2005). Neural correlates of lexicon and grammar: evidence from the production, reading, and judgment of inflection in aphasia. Brain Lang, 93, 185–238.

    Article  PubMed  Google Scholar 

  • Ullman, M. T. & Pierpont, E. I. (2005). Specific language impairment is not specific to language: the procedural deficit hypothesis. Cortex, 41, 399–433.

    Article  PubMed  Google Scholar 

  • Vandervert, L. R., Schimpf, P. H., & Liu, H. (2007). How working memory and the cerebellum collaborate to produce creativity and innovation. Creativity Research Journal, 19, 1–18.

    Article  Google Scholar 

  • Walenski, M., Mostofsky, S. H., Gidley-Larson, J. C., & Ullman, M. T. (2007). Brief report: Enhanced picture naming in Autism. Journal of Autism and Developmental Disorders 45(11), 2447–2460.

    Google Scholar 

  • Yamazaki, T., & Tanaka, S. (2007). The cerebellum as a liquid state machine. Neural Network, 20, 290–297.

    Article  Google Scholar 

  • Zedkova, L., Woodward, N. D., Harding, I., Tibbo, P. G., & Purdon, S. E. (2006). Procedural learning in schizophrenia investigated with functional magnetic resonance imaging. Schizophrenia Research, 88, 198–207.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard F. Koziol .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Koziol, L.F., Budding, D.E. (2009). The Integrated Brain: Implications for Neuropsychological Evaluation. In: Subcortical Structures and Cognition. Springer, New York, NY. https://doi.org/10.1007/978-0-387-84868-6_12

Download citation

Publish with us

Policies and ethics