Skip to main content

Physico-chemical Properties of Milk

  • Chapter
  • First Online:
Advanced Dairy Chemistry

Abstract

Milk is a complex colloidal dispersion containing fat globules, casein micelles and whey proteins in an aqueous solution of lactose, minerals and a few other minor compounds. Its physical and chemical properties depend on intrinsic compositional and structural factors, extrinsic factors such as temperature and post-milking treatments. An understanding of these properties is important in the technological and engineering design and operation of milk processes and processing equipment, the design of modern methods of milk analysis, the determination of milk microstructures and the elucidation of complex chemical reactions that occur in milk. Measurement of some of the physico-chemical properties is used to assess milk quality. Various physical and chemical properties of milk have been reviewed previously (Jenness and Patton, 1959; Jenness et al., 1974; Walstra and Jenness, 1984; Lewis, 1987; Sherbon, 1988; Singh et al., 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adda, J., Blanc-Platin, E., Jeunet, R., Grappin, R., Mocquot, G., Poujardieu, B., Ricordeau, G. 1968. Trial of the infrared analyzer. Lait. 48, 145–154.

    Article  CAS  Google Scholar 

  • Anon. 1996. Physical Properties of Dairy Products. 3rd edn. MAF Quality Management, Hamilton, New Zealand.

    Google Scholar 

  • AOAC. 1995a. AOAC Official Method 972.16. Fat, lactose, protein, and solids in milk. Mid-infrared spectroscopic method. Official Methods of Analysis of the Association of Official Analytical Chemists. 16th edn. Vol. 2. AOAC, Arlington, VA, 33, pp. 23–26.

    Google Scholar 

  • AOAC. 1995b. AOAC Official Method 990.22. Freezing point of milk. Thermistor cryoscope method. Official Methods of Analysis of the Association of Official Analytical Chemists. 16th edn. Vol. 2. AOAC, Arlington, VA, 33, pp. 5–7.

    Google Scholar 

  • Aschaffenburg, R. 1945. Surface activity and proteins of milk. J. Dairy Res. 14, 316–329.

    Article  Google Scholar 

  • Bakalor, S. 1965. The estimation of protein in milk from its fluorescence in the ultraviolet region. Aust. J. Dairy Technol. 20, 151–153.

    CAS  Google Scholar 

  • Bakshi, A.S., Smith, D.E. 1984. Effect of fat content and temperature on viscosity in relation of pumping requirements of fluid milk products. J. Dairy Sci., 67, 1157–1160.

    Article  Google Scholar 

  • Bertsch, A.J. 1982. La chaleur massique du lait entier et ecreme de 50°C a 140°C. Lait. 62, 265–275.

    Article  Google Scholar 

  • Bertsch, A.J. 1983. Surface tension of whole and skim milk between 18 and 135°C. J. Dairy Res., 50, 259–267.

    Article  Google Scholar 

  • Bertsch, A.J., Cerf, O. 1983. Dynamic viscosities of milk and cream from 70 to 135°C. J. Dairy Res. 50, 193–200.

    Article  Google Scholar 

  • Bertsch, A.J., Bimbenet, J.J., Cerf, O. 1982. La masse volumique du lait et de cremes de 65°C a 140°C. Lait. 62, 250–64.

    Article  Google Scholar 

  • Bhandari, V., Singh, H. 2003. Analysis of milk and milk products; physical methods. In: Encyclopaedia of Dairy Sciences, Vol. 1 (H. Roginski, J.W. Fuquay, P.F. Fox, eds.), pp. 93–101, Academic Press, London.

    Google Scholar 

  • Bienvenue, A., Jiménez-Flores, R., Singh, H. 2003a. Rheological properties of concentrated skim milk: importance of soluble minerals in the changes in viscosity during storage. J. Dairy Sci. 86, 3813–3821.

    Google Scholar 

  • Bienvenue, A., Jiménez-Flores, R., Singh, H. 2003b. Rheological properties of concentrated skim milk: influence of heat treatment and genetic variants on the changes in viscosity during storage. J. Agric. Food Chem. 51, 6488–6494.

    Google Scholar 

  • Biggs, D.A. 1964. Infra-red analysis of milk for fat, protein, lactose and solids-not-fat. Conv. Proc. Milk Ind. Found. 1964, 28–34.

    Google Scholar 

  • Biggs, D.A. 1979a. Infrared estimation of fat, protein and lactose in milk: collaborative study. J. Assoc. Off. Anal. Chem. 61, 1015–1034.

    Google Scholar 

  • Biggs, D.A. 1979b. Performance specifications for infrared milk analysis. J. Assoc. Off. Anal. Chem. 62, 1211–1214.

    Google Scholar 

  • Binh T., Haisman, D., Khanh T.T. 2007a. Rheological characterization of age thickening with special reference to milk concentrates. J. Dairy Res. 74, 106–115.

    Google Scholar 

  • Binh T., Haisman, D., Khanh T.T. 2007b. Effect of total solids content and temperature on the rheological behaviour of reconstituted whole milk concentrates. J. Dairy Res. 74, 116–123.

    Google Scholar 

  • Brathen, G. 1983. Factors Affecting the Freezing Point of Genuine Cow's Milk. Bulletin 154, pp. 6– 11, International Dairy Federation, Brussels.

    Google Scholar 

  • Buchanan, J.H., Peterson, E.E. 1927. Buffers of milk and buffer value. J. Dairy Sci. 10, 224–231.

    Article  CAS  Google Scholar 

  • Calandron, A., Grillet, L. 1964. Measurement of the surface tension of certain milks with a Nouy tensiometer. Lait. 44, 505–509.

    Article  Google Scholar 

  • Chatelain, Y., Aloui, J, Guggisberg, D., Bosset, J.O. 2003. La couleur du lait et des produits laitiers et sa mesure – un article de synthese [The colour of milk and dairy products and its measurement – a review article]. Mitteil. Lebensmittel. Hygiene 94, 461–488.

    CAS  Google Scholar 

  • Clemmensen, K. 1980. Modified fat determination. Dairy Field, 163 (12), 51–52, 54.

    Google Scholar 

  • Cooper, J.R., Le Fevre, E.J. 1979. Thermophysical Properties of Water Substance, Edward Arnold Publishers Ltd., London.

    Google Scholar 

  • Cuevas, R., Cheryan, M. 1978. Thermal conductivity of liquid foods -a review. J. Food Process Eng. 2, 283–306.

    Article  Google Scholar 

  • Culioli, J., Bon, J.P., Maubois, J.L. 1974. Etudes de la viscosité des ‘rétentats’ et des ‘préfromages’ obtenus après traitment du lait par ultrafiltration sur membrane [Viscosity of ‘retentates’ and ‘pre-cheeses’ obtained by ultrafiltration of milk]. Lait. 54, 481–500.

    Article  Google Scholar 

  • Datta, N., Deeth, H.C. 2001. Age gelation of UHT milk – a review. Food Bioprod. Proc. 79(Part C), 197–210.

    Article  Google Scholar 

  • Davis, J.G., MacDonald, F.J. 1953. Richmond's Dairy Chemistry. 5th edn, Charles Griffin & Co., London.

    Google Scholar 

  • de Jong, P., van der Linden, H.J.L.J. 1998. Polymerization model for prediction of heat-induced protein denaturation and viscosity changes in milk. J. Agric. Food Chem. 46, 2136–2142.

    Article  Google Scholar 

  • de Kruif, C.G. 1998. Supra-aggregates of casein micelles as a prelude to coagulation. J. Dairy Sci. 81, 3019–3028.

    Article  Google Scholar 

  • de Kruif, C.G., Jeurnink, Th.J.M., Zoon, P. 1992. The viscosity of milk during the early stages of renneting. Neth. Milk Dairy J. 46, 123–137.

    Google Scholar 

  • Demott, B. 1967. The influence of vacuum pasteurisation upon the freezing point and specific gravity of milk. Milk Food Techno/. 30, 253–255.

    Google Scholar 

  • Dunkley, W.L. 1951. Hydrolytic rancidity in milk. 1. Surface tension and fat acidity as measures of rancidity. J. Dairy Sci. 34, 515–520.

    Article  CAS  Google Scholar 

  • Edsall, J.L., Wyman, J. 1958. Acid-base equilibria. In: Biophysical Chemistry, pp. 406–549, Academic Press, New York.

    Google Scholar 

  • Eilers, H., Saal, R.H.J., van den Waarden, M. 1947. Chemical and Physical Investigations on Dairy Products, Elsevier Publishing Co., New York.

    Google Scholar 

  • Eisses, J., Zee, B. 1980. The freezing point of authentic cow’s milk and farm tank milk in the Netherlands. Neth. Milk Dairy J., 34, 162–180.

    Google Scholar 

  • Fernández-Martin, F. 1972a. Influence of temperature and composition on some physical properties of milk and milk concentrates. I. Heat capacity. J. Dairy Res., 39, 65–73.

    Google Scholar 

  • Fernández-Martin, F. 1972b. Influence of temperature and composition on some physical properties of milk and milk concentrates. II. Viscosity. J. Dairy Res., 39, 75–82.

    Google Scholar 

  • Fernández-Martin, F. 1975. Influence of temperature and composition on some physical properties of milk and milk concentrates. IV. Thermal expansion. Z. Lebensm. Unters.-Forsch., 157, 14–18.

    Article  Google Scholar 

  • Fernández-Martin, F., Montes, F. 1972. Influence of temperature and composition on some physical properties of milk and milk concentrates. III. Thermal conductivity. Milchwissenschaft, 27, 772–776.

    Google Scholar 

  • Fernández-Martin, F., Montes, F. 1977. Thermal conductivity of creams. J. Dairy Res., 44, 103–109.

    Article  Google Scholar 

  • Fernández-Martin, F., Sanz, P.D. 1985. Influence of temperature and composition on some physical properties of milk and milk concentrates: V. Electrical conductivity. Int. Agrophy. 1 (1), 41–54.

    Google Scholar 

  • Figura, L.O., Teixeira, A.A. 2007. Food Physics. Physical Properties – Measurement and Applications. Springer, Berlin.

    Google Scholar 

  • Fitzgerald, J.W., Ringo, G.R., Winder, W.C. 1961. An ultrasonic method for measurement of solids-not-fat and milk fat in fluid milk. I. Acoustic properties. J. Dairy Sci. 44, 1165.

    Google Scholar 

  • Fox, K.K., Holsinger, V.H., Pallansch, M.J. 1963. Fluorimetry as a method of determining protein content of milk. J. Dairy Sci. 46, 302–309.

    Article  CAS  Google Scholar 

  • Gillickson, I.S. 1983. Applications of infrared to the analysis of milk and milk products. J. Sci. Food Agric. 34, 1026–1027.

    Google Scholar 

  • Goulden, J.D.S. 1963. Determination of SNF of milk and unsweetened condensed milk from refractive index measurements. J. Dairy Res. 30, 411–417.

    Article  CAS  Google Scholar 

  • Goulden, J.D.S., Sherman, P. 1962. A simple spectroturbimetric method for the determination of the fat content of homogenized ice cream mixes. J. Dairy Res. 29, 47–53.

    Article  Google Scholar 

  • Goulden, J.D.S., Shields, J., Haswell, R. 1964. The infrared milk analyser. J. Soc. Dairy Technol. 17, 28–33.

    Article  Google Scholar 

  • Grappin, R., Jeunet, R. 1970. The 'Milko-Tester Automatic' for routine determination of fat in milk. Lait. 50, 233–256.

    Article  Google Scholar 

  • Greenbank, G.R., Wright, P.A. 1951. The deaeration of raw whole milk before heat treatment as a factor in retarding the development of the tallowy flavor in its dried product. J. Dairy Sci. 34, 815–818.

    Article  CAS  Google Scholar 

  • Grikshtas, R., Motekaitis, P. 1990. Cream rheological properties investigation. Brief Communications of the XXIII International Dairy Congress, Montreal, 8–12 October, Vol. II, p. 506.

    Google Scholar 

  • Gustavsson, M., Gustafsson, S.E. 2006. Thermal conductivity as an indicator of fat content in milk. Thermochim. Acta. 442, 1–5.

    Article  CAS  Google Scholar 

  • Hallström, M., Dejmek, P. 1988a. Rheological properties of ultrafiltered milk. I. Effects of pH, temperature and heat treatment. Milchwissenschaft, 43, 31–33.

    Google Scholar 

  • Hallström, M., Dejmek, P. 1988b. Rheological properties of ultrafiltered skim milk. II. Protein voluminosity. Milchwissenschaft, 43, 95–97.

    Google Scholar 

  • Hamann, J., Zecconi, A. 1998. Evaluation of the electrical conductivity of milk as a mastitis indicator. Bulletin, No. 334. International Dairy Federation, Brussels.

    Google Scholar 

  • Harding, F. 1983. Measurement of extraneous water by the freezing point test. Bulletin, No. 154. International Dairy Federation, Brussels.

    Google Scholar 

  • Harkins, W.D. 1952. The Physical Chemistry of Surface Films, Reinhold Publishing Corp., New York.

    Google Scholar 

  • Harland, H.A., Coulter, S.T., Jenness, R. 1952. The interrelationship of processing treatments and oxidation-reduction systems as factors affecting the keeping quality of dry whole milk. J. Dairy Sci. 34, 643–654.

    Article  Google Scholar 

  • Haugaard, G., Pettinati, J.D. 1959. Photometric milk fat determination. J. Dairy Sci. 42, 1255–1275.

    Article  CAS  Google Scholar 

  • Henningson, R.W. 1963. The variability of the freezing point of fresh raw milk. J. Assoc. Off. Anal. Chem. 46, 1036–1042.

    CAS  Google Scholar 

  • Henningson, R.W. 1969. Thermistor cryoscopic determination of the freezing point value of milk produced in North America. J. Assoc. Off. Anal. Chem. 52, 142–151.

    Google Scholar 

  • Herrington, B.L., Sherbon, J.W., Ledford, R.A., Houghton, G.E. 1972. Composition of milk in New York State. New York’s Food and Life Sciences Bulletin, Issue No 18, Cornell University, Ithaca.

    Google Scholar 

  • Higginbottom, C., Taylor, M.M. 1960. The oxidation-reduction potential of sterilized milk. J. Dairy Res. 27, 245–257.

    Article  Google Scholar 

  • Hinrichs, J. 1999. Influence of volume fraction of constituents on rheological properties and heat stability of concentrated milk. Milchwissenschaft, 54, 450–454.

    Google Scholar 

  • Hogeveen, H., Ouweltjes, W. 2003. Automatic on-line detection of abnormal milk. In: Encyclopedia of Dairy Sciences (H. Roginski, J.W. Fuquay, P.F. Fox eds.), pp. 1735–1740, Academic Press, London.

    Google Scholar 

  • Holt, C. 1975. Casein micelle size from elastic and quasi-elastic light scattering measurements. Biochim. Biophys. Acta. 400, 293–301.

    Article  CAS  Google Scholar 

  • Horne, D.S. 1993. Viscosity of milk and its concentrates. In: Food Colloids and Polymers: Stability and Mechanical Properties (E. Dickinson, P. Walstra, eds.), pp. 260–265, Royal Society of Chemistry, Cambridge.

    Google Scholar 

  • Houška, M., Adam, M., Celba, J., Havlíček, Z., Jeschke, J., Kubešová, A., Neumannová, J., Pokorný, D., Šesták, J., Šrámek, P. 1994. Milk, Milk Products and Semiproducts: Thermophysical and Rheological Properties of Foods, Institute of Agricultural and Food Information, Prague.

    Google Scholar 

  • IDF 1990. International Standard for the Determination of the Milkfat, Protein and Lactose Content of Milk. Guide for the Operation of Mid-Infra-Red Instruments. Standard 141A, International Dairy Federation, Brussels.

    Google Scholar 

  • International Organization for Standardization 1974. Milk and liquid milk products -density hydrometers for use in products with a surface tension of approximately 45 mN/m. ISO 2449-1974 (cited in Dairy Sci. Abst. 1974, 36, p. 514).

    Google Scholar 

  • Jackson, J. 1936. Factors in the reduction of methylene blue in milk. J. Dairy Res., 7, 31–40.

    Article  CAS  Google Scholar 

  • Janal, R., Blahovec, J. 1974. Thermal hysteresis of milk viscosity. Proc. 19th Int. Dairy Cong. (New Delhi), 1E, 170–172.

    Google Scholar 

  • Jenness, R. 1988. Composition of milk. In: Fundamentals of Dairy Chemistry (N.P. Wong, R. Jenness, M. Keanny, E.H. Marth, eds.), pp. 1–38, Van Nostrand Reinhold, New York.

    Chapter  Google Scholar 

  • Jenness, R., Patton, S. 1959. Principles of Dairy Chemistry, John Wiley, New York.

    Google Scholar 

  • Jenness, R., Shipe, W.F., Sherbon, J.W. 1974. Physical properties of milk. In: Fundamentals of Dairy Chemistry, 2nd edn. (B.H. Webb, A.H. Johnson, J.A. Alford, eds.), pp. 402–441, AVI Publishing Company, Inc., Westport, CT.

    Google Scholar 

  • Jeurnink, T.J.M., de Kruif, K.G. 1993. Changes in milk on heating: viscosity measurements. J. Dairy Res. 60, 139–150.

    Article  Google Scholar 

  • Josephson, D.V., Doan, F.J. 1939. Observations on cooked flavor in milk: its source and significance. Milk Dealer 29 (2), 35–36, 54, 56, 58–60, 62.

    CAS  Google Scholar 

  • Kessler, H.G. 1981. Food Engineering and Dairy Technology. Verlag A. Kessler, Freising, Germany.

    Google Scholar 

  • Kessler, H.G. 1984. Effects of technological processes on the freezing point of milk. Milchwissenschaft 39, 339–341.

    Google Scholar 

  • King, R.L., Dunkley, W.L. 1959. Relation of natural copper in milk to incidence of spontaneous oxidized flavor. J. Dairy Sci. 42, 420–427.

    Article  CAS  Google Scholar 

  • Kirchmeier, O. 1979. Titrimetric studies on milk and milk products. J. Dairy Res. 46, 397–400.

    Article  CAS  Google Scholar 

  • Kirchmeier, O. 1980. Pufferkapzitaten und puffergleichgewichte der milch. Milchwissenschaft 35, 667–670.

    CAS  Google Scholar 

  • Kneifel, W., Ulberth, F., Schaffer, E. 1992. Tristimulus colour reflectance measurement of milk and dairy products. Lait. 72, 383–391.

    Article  Google Scholar 

  • Knorr, D., Zenker, M., Heinz, V., Lee, D-U. 2004. Applications and potential of ultrasonics in food processing. Trends Food Sci. Technol. 15, 261–266.

    Article  CAS  Google Scholar 

  • Konev, S.V., Kozunin, 1.1. 1961. Fluorescence method for the determination of protein in milk. Dairy Sci. Abstr. 23, 103–105.

    Google Scholar 

  • Konrad, H., Rambke, K. 1971. Physikalische Eigenschaften flüssiger Milchprodukte. 4. Mitt. Wärmeleitfähigheit von Milch, Rahm und Milchkonzentraten [Physical properties of fluid milk products. Part IV. Heat conductivity of milk, cream and milk concentrates]. Die Nahrung 15, 269–277.

    Article  CAS  Google Scholar 

  • Kostaropoulos, A.E., Speiss, W.E.L., Wolf, W. 1975. Anhaltswerte für die Temperaturleitnihigkeit von Lebensmitteln. Lebensm. Wiss. Technol. 8, 108–110.

    Google Scholar 

  • Kristensen, D., Jensen, P.Y., Madsen, F., Birdi, K.S. 1997. Rheology and surface tension of selected processed dairy fluids: influence of temperature. J. Dairy Sci. 80, 2282–2290.

    Article  CAS  Google Scholar 

  • Kudra, T., Raghavan, V., Akyel, C., Bosisio, R., van de Voort, F. 1992. Electromagnetic properties of milk and its constituents at 2.45 GHz. J. Microw. Power Electromagne. Energy 27 (4), 199–204.

    Google Scholar 

  • Kuttruff, H. 2007. Acoustics An Introduction, Taylor & Francis, London.

    Google Scholar 

  • Kyazze, G., Starov, V. 2004. Viscosity of milk: influence of cluster formation. Colloid J. 66, 316–321.

    Article  CAS  Google Scholar 

  • Langley, K.R., Temple, D.M. 1985. Viscosity of heated skim milk. J. Dairy Res. 52, 223–227.

    Article  Google Scholar 

  • Lawton, B.A., Pethig, R. 1993. Determining the fat content of milk and cream using AC conductivity measurements. Meas. Sci. Technol. 4 38–41.

    Article  Google Scholar 

  • Lewis, M.J. 1987. Physical Properties of Foods and Food Processing Systems, Ellis Horwood, Chichester, England.

    Google Scholar 

  • Lide, D.R., Frederikse, H.P.R. 1996. CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton.

    Google Scholar 

  • Lindqvist, B. 1976. The air content of milk. An instrument for determining the content of dispersed gas in flowing milk. Nordisk Mejeriindust. 3, 317–320 (cited in Dairy Sci. Abstr., 1977, 39, p. 78).

    Google Scholar 

  • Lucey, J.A. 1992. Acid-base Buffering and Rennet Coagulation Properties of Milk Systems, PhD Thesis, National University of Ireland, Cork.

    Google Scholar 

  • Lucey, J.A., Hauth, B., Gorry, C., Fox, P.F. 1993. Acid-base buffering of milk. Milchwissenschaft, 48, 268–272.

    CAS  Google Scholar 

  • Mabrook, M.F., Petty, M.C. 2002. Application of electrical admittance measurements to the quality of milk. Sens. Actuators B, 84, 136–141.

    Article  Google Scholar 

  • Mabrook, M.F., Petty, M.C. 2003. effect of composition on the electrical conductance of milk. J. Food Eng., 60, 321–325.

    Article  Google Scholar 

  • McCarthy, O.J. 2006. Physical characterization of milk fat and milk fat-based products. In: Advanced Dairy Chemistry Volume 2 Lipids (P.F. Fox, P.L.H. McSweeney, eds.), pp. 725–778, Springer, New York.

    Chapter  Google Scholar 

  • McMahon, D.J. 1996. Age-gelation of UHT milk: changes that occur during storage, their effect on shelf life and the mechanism by which age-gelation occurs. In: Heat Treatments and Alternative Methods, IDF symposium, Vienna, pp. 315–326, International Dairy Federation, Brussels.

    Google Scholar 

  • Mason, T.J., Riera, E., Vercet, A., Lopez-Buesa, P. 2005. Application of ultrasound. In: Emerging Technologies for Food Processing (Da-Wen Sun ed.), pp. 323–351, Elsevier, Amsterdam.

    Google Scholar 

  • McIntyre, RT., Parrish, D.B., Fountain, F.E. 1952. Properties of the colostrum of the dairy cow. VII. pH, buffer capacity and osmotic pressure. J. Dairy Sci. 23, 405–22.

    Google Scholar 

  • McClements, D.J. 1995. Advances in the application of ultrasound in food analysis and processing. Trends Food Sci. Technol. 6, 293–299.

    Article  CAS  Google Scholar 

  • McClements, D.J. 1997. Ultrasonic characterization of foods and drinks: principles, methods, and applications. Crit. Rev. Food Sci. Nutr. 37, 1–46.

    Article  CAS  Google Scholar 

  • McClements, D.J. 1998. Particle sizing of food emulsions using ultrasonic spectrometry: principles, techniques and applications. In: Ultrasound in Food Processing (M.J.W. Povey, Mason, T.J. eds.), pp. 85–104, Blackie Academic & Professional, London.

    Google Scholar 

  • Michalski, M.C., Briard, V. 2003. Fat-related surface tension and wetting properties of milk. Milchwissenschaft 58, 26–29.

    CAS  Google Scholar 

  • Miles, C.A., van Beek, G., Veerkamp, E.H. 1983. Calculation of thermophysical properties of foods. In: Physical Properties of Foods (R. Jowitt, F. Escher, B. Hallström, H.F.T. Meffert, W.E.L. Speiss, G. Vos, eds.), pp. 269–312, Applied Science Publishers, London.

    Google Scholar 

  • Mills, B.L., van de Voort, F.R. 1982. Evaluation of CH stretch measurement for estimation of fat in aqueous fat emulsions using infrared spectroscopy. J. Assoc. Off. Anal. Chem. 65, 1357–1361.

    CAS  Google Scholar 

  • Miyagawa, K., Namba, A. 1988. Buffer capacity of cow’s milk. Nippon Shokuhin kogyo gakkaiski 35, 417–422.

    Article  CAS  Google Scholar 

  • Mohr, W., Brockmann, C. 1930. Surface tension measurements of milk. Milchwiss. Forsch. 10, 72–95.

    CAS  Google Scholar 

  • More, G.R., Prasad, S. 1988. Thermal conductivity of concentrated whole milk. J. Food Proc. Eng. 10, 105–112.

    Article  Google Scholar 

  • Moy, C.F., Winder, W.C. 1971. Development of an ultrasonic method for continuously monitoring the fat and solids-not-fat content of fluid milk. J. Dairy Sci. 54, 757(abstr.).

    Google Scholar 

  • Mucchetti, G., Gatti, M., Neviana, E. 1994. Electrical conductivity changes in milk caused by acidification: determining factors. J. Dairy Sci. 77 940–944.

    Article  CAS  Google Scholar 

  • Mudgett, R.E., Smith, A.C., Wang, D.I.C., Goldblith, S.A. 1974. Prediction of dielectric properties in nonfat milk at frequencies and temperatures of interest in microwave processing. J. Food Sci. 39, 52–54.

    Article  CAS  Google Scholar 

  • Mulder, H., Walstra, P. 1974. The Milk Fat Globule, Commonwealth Agricultural Bureaux, Farnham Royal, Bucks., England.

    Google Scholar 

  • Nakai, S., Le, A.C. 1970. Spectrophotometric determination of protein and fat in milk simultaneously. J. Dairy Sci. 53, 276–278.

    Article  CAS  Google Scholar 

  • Nelson, V. 1949. The physical properties of evaporated milk with respect to surface tension, grain formation and color. J. Dairy Sci. 32, 775–785.

    Article  CAS  Google Scholar 

  • Norberg, E. 2005. Electrical conductivity of milk as a phenotypic and genetic indicator of bovine mastitis: a review. Livest. Prod. Sci. 96, 129–139.

    Article  Google Scholar 

  • Norberg, E., Hogeveen, H., Korsgaard, I.R., Friggens, N.C., Sloth, K.H.M.N., Løvendahl, P. 2004. Electrical conductivity of milk: ability to predict mastitis status. J. Dairy Sci. 87, 1099–1107.

    Article  CAS  Google Scholar 

  • Nunes, A.C., Bohigas, X., Tejada, J. 2006. Dielectric study of milk for frequencies between 1 and 20 GHz. J. Food Eng. 76, 250–255.

    Article  Google Scholar 

  • O'Brien, J. 1995. Heat-induced changes in lactose: isomerization, degradation, Maillard browning. In: Heat-Induced Changes in Milk, 2nd edn. (P.F. Fox, ed.), pp. 134–170, Special Issue 9501, International Dairy Federation, Brussels.

    Google Scholar 

  • Ohlsson, T. 1983. The measurement of thermal properties. In: Physical Properties of Foods (R. Jowitt, F. Escher, B. Hallstrom, et al., eds.), pp. 313–328, Applied Science Publishers, London.

    Google Scholar 

  • Parkash, S. 1963. Studies in physico-chemical properties of milk. XIV. Surface tension of milk. Indian J. Dairy Sci. 16, 98–100.

    Google Scholar 

  • Phipps, L.W. 1957. A calorimetric study of milk, cream and the fat in cream. J. Dairy Res. 24, 51–67.

    Article  CAS  Google Scholar 

  • Phipps, L.W. 1969. The interrelationship of the viscosity, fat content and temperature of cream between 40° and 80°C. J. Dairy Res. 36, 417–426.

    Article  Google Scholar 

  • Porter, R.M. 1965. Fluorometric determination of protein in whole milk, skim milk and milk serum. J. Dairy Sci. 48, 99–100.

    Article  CAS  Google Scholar 

  • Povey, M.J.W. 1998. Rapid determination of food material properties. In: Ultrasound in Food Processing (M.J.W. Povey, Mason, T.J. eds.), pp. 30–65, Blackie Academic & Professional, London.

    Google Scholar 

  • Prentice, J.H. 1962. The conductivity of milk – the effect of the volume and the degree of dispersion of the fat. J. Dairy Res. 29, 131–139.

    Google Scholar 

  • Prentice, J.H. 1972. The temperature coefficient of electrolytic conductivity of milk. J. Dairy Res. 39, 275–278.

    Article  CAS  Google Scholar 

  • Prentice, J.H. 1992. Dairy Rheology, VCH Publishers, Cambridge, England.

    Google Scholar 

  • Prouty, C.C. 1940. Observations on the growth responses of Streptococcus lactis in mastitic milk. J. Dairy Sci. 23, 899–904.

    Article  CAS  Google Scholar 

  • Pyne, G.T., McGann, T.C.A. 1960. The colloidal calcium phosphate of milk. II. Influence of citrate. J. Dairy Res. 27, 9–17.

    Article  CAS  Google Scholar 

  • Rahman, S. 1995. Food Properties Handbook. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Rambke, K., Konrad, H. 1970. Physikalische Eigenschaften flüssiger Milchprodukte. 3. Mitt. Spezifische Wärmekapazität von Milch, Rahm und Milchkonzentraten [Physical properties of fluid milk products. Part III. Specific heat of milk, cream and milk concentrates]. Die Nahrung 14, 475–483.

    Article  Google Scholar 

  • Randhahn, H. 1973. Beitrag zum Fließverhalten von Milch- und Milchkonzebtraten [Flow properties of milk and milk concentrates]. Milchwissenschaft 28, 620–628.

    Google Scholar 

  • Randhahn, H. 1974. Contribution to the rheology of milk. Proc. 19th Int. Dairy Congr. (New Delhi), IE, 202.

    Google Scholar 

  • Randhahn, H. 1976. The flow properties of skim milk concentrates obtained by ultrafiltration. J. Text. Studies 7, 205–217.

    Article  Google Scholar 

  • Randhahn, H., Reuter, H. 1978. The rheological behaviour of raw milk cream. Proc. 20th Int. Dairy Congr. (Paris), pp. 854–855, Congrilait, Paris.

    Google Scholar 

  • Rao, D., Pantulu, P.C., Sudheendranath, C.S., Rao, M.B., Anantakrishnan, C.P. 1989. The inter relationship of electrical conductivity, relative viscosity and absolute temperature of skim milk. Indian J. Dairy Sci. 42, 543–546.

    Google Scholar 

  • Raoult, F.M. 1884. The general law on the freezing of solvents. Ann. Chem. Phys. 2, 66–93.

    Google Scholar 

  • Reuter, H., Randhahn, H. 1978. Relation between fat globule size distribution and viscosity of raw milk. Proc. 20th Int. Dairy Congr (Paris), pp. 281–287, Congrilait, Paris.

    Google Scholar 

  • Riedel, L. 1949. Warmeleitfiihigkeitmessungen an Zuckerlosungen. Fruchtsafen Milch. Chem. Ing. Technik 21, 340–341.

    Article  CAS  Google Scholar 

  • Riedel, L. 1955. Kalorimetrische Untersuchungen tiber das Schmelzverhalten von Fetten und Olen. Fette Seifen Anstrichm. 57, 771–782.

    Article  CAS  Google Scholar 

  • Riedel, L. 1976. Kalorimetrische Untersuchungen an Milch und Milchprodukten [Calorimetric measurements on milk and milk products]. Chem. Milkrobiol. Technol. Lebensm. 4, 177–185

    Google Scholar 

  • Robin, O., Britten, M., Paquin, P. 1994. Influence of the dispersed phase distribution on the electrical conductivity of liquid O/W model and dairy emulsions. J. Colloid Interface Sci. 167, 401–413.

    Article  CAS  Google Scholar 

  • Rohm, H., Müller, A., Hend-Milnera, I. 1996. Effects of composition on raw milk viscosity. Milchwissenschaft 51, 259–261.

    CAS  Google Scholar 

  • Rudzik, L., Wöbbecke, R. 1982. Notwendigkeit der homogenisierung dei infrarot-messungen in milch. Moklerei-Zeitung Welt Milch 36, 298, 307 (cited in Dairy Sci. Abstr., 1982, 44, p. 949).

    Google Scholar 

  • Ruegg, M., Moor, U. 1985. Effect of temperature between 15 and 25°C on the density of milk. Schweiz. Milchwirtsch. Forsch. 14 (3), 7–10 (cited in Dairy Sci. Abstr., 1988, 50, p. 300).

    Google Scholar 

  • Rutz, W.D, Whitnah, C.H., Baetz, G.D. 1955. Some physical properties of milk. I. Density. J. Dairy Sci. 38, 1312–1318.

    Article  CAS  Google Scholar 

  • Sadowska, J., Gryzowska, A., Wodecki, E. 1990. Rheological characteristic of cream with high fat content. In: Engineering and Food. Vol 1. Physical Properties and Process Control (W.E.L. Speiss, H. Schubert, eds.), pp. 169–175, Elsevier, London.

    Google Scholar 

  • Sahin, S., Sumnu, S. G. 2006. Physical Properties of Foods. Springer, New York.

    Google Scholar 

  • Salaün, F., Mietton, B., Gaucheron, F. 2005. Buffering capacity of dairy products. Int. Dairy J. 15, 95–109.

    Article  CAS  Google Scholar 

  • Savaroglu, G., Aral, E. 2007. Acoustic parameters of cow’s milk added hydrogen peroxide [sic] and sodium bicarbonate at different temperatures. J. Food Eng. 79, 287–292

    Article  CAS  Google Scholar 

  • Sharma, R.R. 1963. Determination of surface tension of milk by the drop method and the ring method. Indian J. Dairy Sci. 16, 101–108.

    Google Scholar 

  • Sharma, G.S., Roy, N.K. 1976. Influence of temperature on the electrical conductivity of buffalo milk. J. Dairy Res. 43, 321–323.

    Article  CAS  Google Scholar 

  • Sharp, P.F., Krukovsky, V.N. 1939. Differences in absorption of solid and liquid fat globules as influencing the surface tension and creaming of milk. J. Dairy Sci. 22, 743–751.

    Article  CAS  Google Scholar 

  • Sherbon, J.W. 1988. Physical properties of milk, in Fundamentals of Dairy Chemistry, 3rd edn. (N.P. Wong, R. Jenness, M. Kenny, E.H. Marth, eds.), pp. 410–414, Van Nostrand Reinhold, New York.

    Google Scholar 

  • Shipe, W.F. 1959. The freezing point of milk. A review. J. Dairy Sci. 42, 1745–1762.

    Article  CAS  Google Scholar 

  • Shipe, W.F. 1964. Effect of vacuum treatment on freezing point of milk. J. Assoc. Off. Agric. Chem. 47, 570–572.

    Google Scholar 

  • Shipe, W.F., Senyk, G.F. 1973. Collaborative study of the Foss Milko-Tester method for measuring fat in milk. J. Assoc. Off. Anal. Chem. 56, 538–540.

    Google Scholar 

  • Shipe, W.F., Senyk, G.F. 1975. Collaborative study of the Milko-Tester method for measuring fat in homogenized and unhomogenized milk. J. Assoc. Off. Anal. Chem. 58, 572–575.

    Google Scholar 

  • Shipe, W.F., Senyk, G.F. 1980. Evaluation of Milko-Tester Minor for determining fat in milk. J. Assoc. Off. Anal. Chem. 63, 716–719.

    CAS  Google Scholar 

  • Sierzant, R., Smith, D.E. 1993. Flow behaviour properties and density of whole milk retentates as affected by temperature. Milchwissenschaft 48, 6–10.

    Google Scholar 

  • Singh, H., McCarthy, O.J., Lucey, J.A. 1997. Physico-chemical properties of milk. In: Advanced Dairy Chemistry, Volume 3, Lactose, Water, Salts and Vitamins, 2nd edn. (P.F. Fox ed.), pp. 469–518, Chapman and Hall, London.

    Google Scholar 

  • Singh, R.R.B., Patil, G.R. 1990. Kinetics of whitening of milk during UHT processing. Milchwissenschaft 45, 367–369.

    Google Scholar 

  • Smith, J.M., Van Ness, H.C. 1987. Introduction to Chemical Engineering Thermodynamics, 4th edn. McGraw-Hill, New York.

    Google Scholar 

  • Snoeren, T.H.M., Damman, A.J., Klok, H.J. 1982. The viscosity of skim-milk concentrates. Neth. Milk Dairy J. 36, 305–316.

    CAS  Google Scholar 

  • Snoeren, T.H.M., Damman, A.J., Klok, H.J. 1983. The viscosity of whole milk concentrate and its effect on the properties of dried whole milk. Zuivelzicht 75, 847–849.

    Google Scholar 

  • Snoeren, T.H.M., Brinkhuis, J.A., Damman, A.J., Klok, H.J. 1984. Viscosity and age-thickening of skim-milk concentrate. Neth. Milk Dairy J. 38, 43–53.

    CAS  Google Scholar 

  • Srilaorkul, S., Ozimek, L., Wolfe, F., Dziuba, J. 1989. The effect of ultrafiltration on physicochemical properties of retentate. Can. Inst. Food Sci. Technol. J. 5, 56–62.

    Google Scholar 

  • Starov, V.M., Zhdanov, V.G. 2003. Viscosity of emulsions: influence of flocculation. J. Colloid Interface Sci. 258, 404–414.

    Article  CAS  Google Scholar 

  • Stepp, B.L., Smith, D.E. 1991. Effect of concentration and temperature on the density and viscosity of skim milk retentates. Milchwissenschaft 46, 484–487.

    Google Scholar 

  • Tanford, C. 1962. The interpretation of hydrogen ion titration curves of proteins. Adv. Protein Chem. 17, 69–165.

    Article  CAS  Google Scholar 

  • Toenjes, D.A., Strasser, S., Bath, D.L. 1991. Specific gravity: a better test of first-milk quality. Calif. Agric. 45 (3), 23–24.

    Google Scholar 

  • Unnikrishnan, V., Doss, K.D.V.V. 1982. Effect of citrate and calcium contents on buffer capacity of cow’s milk. Asian J. Dairy Res. 1, 83–87.

    Google Scholar 

  • Vahcic, N., Palic, A., Ritz, M. 1992. Mathematical evaluation of relationships between copper, iron, ascorbic acid and redox potential of milk. Milchwissenschaft, 47, 228–230.

    CAS  Google Scholar 

  • van der Have, A.J., Deen, J.R., Mulder, H. 1979. The composition of cow's milk. 4. The calculation of the titratable acidity studied with separate milkings of individual cows. Neth. Milk Dairy J. 33, 164–171.

    Google Scholar 

  • van Vliet, T., Walstra, P. 1980. Relationship between viscosity and fat content of milk and cream. J. Text. Stud. 11, 65–68.

    Article  Google Scholar 

  • Vélez-Ruiz, J.F., Barbosa-Cánovas, G.V. 1997. Rheological properties of selected dairy products. Crit. Rev. Food Sci. Nutr. 37, 311–359.

    Article  Google Scholar 

  • Vélez-Ruiz, J.F., Barbosa-Cánovas, G.V. 1998. Rheological properties of concentrated milk as a function of concentration, temperature and storage time. J. Food Eng. 35, 177–190.

    Article  Google Scholar 

  • Walstra, P. 1965. Light scattering by milk fat globules. Neth. Milk Dairy J. 19, 93–109.

    CAS  Google Scholar 

  • Walstra, P., de Roos, A.L. 1993. Proteins at air-water and oil-water interfaces: static and dynamic aspects. Food Rev. Int. 9, 503–525.

    Article  CAS  Google Scholar 

  • Walstra, P., Jenness, R. 1984. Dairy Chemistry and Physics, John Wiley, New York.

    Google Scholar 

  • Watson, P.D. 1958. Effect of variations in fat and temperature on the surface tension of various milks. J. Dairy Sci. 41, 1693–1698.

    Article  CAS  Google Scholar 

  • Watson, P.D., Tittsler, R.P. 1961. The density of milk at low temperatures. J. Dairy Sci. 44, 416–424.

    Article  Google Scholar 

  • Wayne, J.E.B., Shoemaker, C.F. 1988. Rheological characterization of commercially processed fluid milks. J. Text. Studies 19, 143–152.

    Article  Google Scholar 

  • Webb, RH. 1933. A note on the surface tension of homogenized cream. J. Dairy Sci. 16, 369–373.

    Article  Google Scholar 

  • White, J.C.D., Davies, DT. 1958. The relation between the chemical composition of milk and the stability of the caseinate complex. I. General considerations, description of samples, methods and chemical composition of samples. J. Dairy Res. 25, 236–55.

    Article  CAS  Google Scholar 

  • Whitnah, C.H. 1956. Some physical properties of milk. II. Effects of age upon the viscosity of pasteurized whole milk. J. Dairy Sci. 39, 356–363.

    Article  CAS  Google Scholar 

  • Whitnah, C.H. 1959. The surface tension of milk. A review. J. Dairy Sci. 42, 1437–1449.

    Article  CAS  Google Scholar 

  • Whitnah, C.H., Medved, T.M., Rutz, W.D. 1957. Some physical properties of milk. IV. Maximum density of milk. J. Dairy Sci. 40, 856–861.

    Article  CAS  Google Scholar 

  • Whittier, E.O. 1929. Buffer intensities of milk and milk constituents. I. Buffer action of casein in milk. J. BioI. Chem. 83, 79–88.

    CAS  Google Scholar 

  • Whittier, E.O. 1933. Buffer intensities of milk and milk constituents. 2. Buffer action of calcium phosphate. J. BioI. Chem. 102, 733–47.

    CAS  Google Scholar 

  • Wiley, W.J. 1935a. A study of the titratable acidity of milk. 1. The influence of the various milk buffers on the titration curves of fresh and sour milk. J. Dairy Res. 6, 71–85.

    Google Scholar 

  • Wiley, W.J. 1935b. A study of the titratable acidity of milk. 2. The buffer curves of milk. J. Dairy Res. 6, 86–90.

    Google Scholar 

  • Winder, W.C., Consigny, N.C., Rodriguez-Lopez, B. 1961. An ultrasonic method for measurement of solids-not-fat and milk fat in fluid milk. II. An evaluation of the method. J. Dairy Sci. 44, 1165.

    Google Scholar 

  • Wunderlich, B. 1990. Thermal Analysis, Academic Press, New York.

    Google Scholar 

  • Żywica, R., Budny, J. 2000. Changes of selected physical and chemical parameters of raw milk during storage. Czech J. Food Sci. 18(Special Issue), 241–242.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

McCarthy, O.J., Singh, H. (2009). Physico-chemical Properties of Milk. In: McSweeney, P., Fox, P. (eds) Advanced Dairy Chemistry. Springer, New York, NY. https://doi.org/10.1007/978-0-387-84865-5_15

Download citation

Publish with us

Policies and ethics