Skip to main content

Evolution and Development of the Flower

  • Chapter
Petunia
  • 1373 Accesses

Abstract

The development of the angiosperm flower has been an important morphological innovation in plant evolution. Through studying the molecular basis of flower development in different model species we are offered insights into the diversification of developmental networks that underly the vast array of angiosperm floral morphologies. The evolution of the MADS-box transcription factor family appears to play a pivotal role in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angenent, G.C., Busscher, M., Franken, J., Mol, J. and van Tunen, A.J. (1992) Differential Expression of two MADS box genes in wild-type and mutant Petunia flowers. Plant Cell 4, 983–993.

    Article  CAS  PubMed  Google Scholar 

  • Angenent, G.C., Franken, J., Busscher, M., Colombo, L. and van Tunen, A.J. (1993) Petal and stamen formation in Petunia is regulated by the homeotic gene Fbp1. Plant J. 4, 101–112.

    Article  CAS  PubMed  Google Scholar 

  • Angenent, G.C., Franken, J., Busscher, M., Weiss, D. and van Tunen, A.J. (1994) Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant J. 5, 33–44.

    Article  CAS  PubMed  Google Scholar 

  • Angenent, G.C., Busscher, M., Franken, J., Dons, H. and van Tunen, A.J. (1995a) Functional interaction between the homeotic genes FBP1 and pMADS1 during Petunia floral organogenesis. Plant Cell 7, 507–516.

    Google Scholar 

  • Angenent, G.C., Franken, J., Busscher, M., van Dijken, A., van Went, J.L., Dons, H. and van Tunen, A.J. (1995b) A novel class of MADS box genes is involved in ovule development in Petunia. Plant Cell 7, 1569–1582.

    Google Scholar 

  • Angenent, G.C., Stuurman, J., Snowden, K.C. and Koes, R. (2005) Use of Petunia to unravel plant meristem functioning. Trends Plant Sci. 10, 243–250.

    Article  CAS  PubMed  Google Scholar 

  • Becker, A., Saedler, H. and Theissen, G. (2003) Distinct MADS-box gene expression patterns in the reproductive cones of the gymnosperm Gnetum gnemon. Devel. Genes Evol. V213, 567–572.

    Article  CAS  Google Scholar 

  • Berbel, A., Navarro, C., Ferrandiz, C., Canas, L.A., Beltran, J.-P. and Madueno, F. (2005) Functional conservation of PISTILLATA activity in a pea homolog lacking the PI motif. Plant Physiol. 139, 174–185.

    Article  CAS  PubMed  Google Scholar 

  • Bowman, J.L., Smyth, D.R. and Meyerowitz, E.M. (1989) Genes directing flower development in Arabidopsis. Plant Cell 1, 37–52.

    Article  CAS  PubMed  Google Scholar 

  • Bowman, J.L., Smyth, D.R. and Meyerowitz, E.M. (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112, 1–20.

    CAS  PubMed  Google Scholar 

  • Bowman, J., Sakai, H., Jack, T., Weigel, D., Mayer, U. and Meyerowitz, E. (1992) SUPERMAN, a regulator of floral homeotic genes in Arabidopsis. Development 114, 599–615.

    CAS  PubMed  Google Scholar 

  • Bowman, J.L., Alvarez, J., Weigel, D., Meyerowitz, E.M. and Smyth, D.R. (1993) Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119, 721–743.

    CAS  Google Scholar 

  • Canas, L.A., Busscher, M., Angenent, G.C., Beltran, J.-P. and van Tunen, A.J. (1994) Nuclear localization of the petunia MADS box protein FBP1. Plant J. 6, 597–604.

    Article  CAS  Google Scholar 

  • Cartolano, M., Castillo, R., Efremova, N., Kuckenberg, M., Zethof, J., Gerats, T., Schwarz-Sommer, Z. and Vandenbussche, M. (2007) A conserved microRNA module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral organ identity. Nature Genet. 39, 901–905.

    Article  CAS  PubMed  Google Scholar 

  • Coen, E.S. and Meyerowitz, E.M. (1991) The war of the whorls: Genetic interactions controlling flower development. Nature 353, 31–37.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, X.-F., Wittich, P.E., Kieft, H., Angenent, G., XuHan, X. and van Lammeren, A.A.M. (2000) Temporal and spatial expression of MADS box genes, FBP7 and FBP11, during initiation and early development of ovules in wild type and mutant Petunia hybrida. Plant Biol. 2, 693–702.

    Article  CAS  Google Scholar 

  • Chen, X. (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303, 2022–2025.

    Article  CAS  PubMed  Google Scholar 

  • Colombo, L., Franken, J., Koetje, E., van Went, J., Dons, H., Angenent, G.C. and van Tunen, A.J. (1995) The Petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7, 1859–1868.

    Article  CAS  PubMed  Google Scholar 

  • Colombo, L., Franken, J., Van der Krol, A.R., Wittich, P.E., Dons, H. and Angenent, G.C. (1997) Downregulation of ovule-specific MADS box genes from Petunia results in maternally controlled defects in seed development. Plant Cell 9, 703–715.

    Article  CAS  PubMed  Google Scholar 

  • Crepet, W.L. (2000) Progress in understanding angiosperm history, success, and relationships: Darwin's abominably “perplexing phenomenon”. Proc. Natl. Acad. Sci., USA 97, 12939–12941.

    Google Scholar 

  • Davies, B., Cartolano, M. and Schwarz-Sommer, Z. (2006) Flower development: The Antirrhinum perspective. Adv. Bot. Res. Incorp. Adv. Plant Path. 44, 278–319.

    Google Scholar 

  • de Folter, S., Shchennikova, A.V., Franken, J., Busscher, M., Baskar, R., Grossniklaus, U., Angenent, G.C. and Immink, R.G.H. (2006) A Bsister MADS-box gene involved in ovule and seed development in petunia and Arabidopsis. Plant J. 47, 934–946.

    Article  PubMed  CAS  Google Scholar 

  • de Martino, G., Pan, I., Emmanuel, E., Levy, A. and Irish, V.F. (2006) Functional analyses of two tomato APETALA3 genes demonstrate diversification in their roles in regulating floral development. Plant Cell 18, 1833–1845.

    Article  PubMed  CAS  Google Scholar 

  • Ditta, G., Pinyopich, A., Robles, P., Pelaz, S. and Yanofsky, M.F. (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr. Biol. 14, 1935–1940.

    Article  CAS  PubMed  Google Scholar 

  • Favaro, R., Pinyopich, A., Battaglia, R., Kooiker, M., Borghi, L., Ditta, G., Yanofsky, M.F., Kater, M.M. and Colombo, L. (2003) MADS-Box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell 15, 2603–2611.

    Article  CAS  PubMed  Google Scholar 

  • Ferrario, S., Immink, R.G.H., Shchennikova, A., Busscher-Lange, J. and Angenent, G.C. (2003) The MADS box gene FBP2 is required for SEPALLATA function in Petunia. Plant Cell 15, 914–925.

    Article  CAS  PubMed  Google Scholar 

  • Ferrario, S., Busscher, J., Franken, J., Gerats, T., Vandenbussche, M., Angenent, G.C. and Immink, R.G.H. (2004) Ectopic expression of the Petunia MADS box gene UNSHAVEN accelerates flowering and confers leaf-like characteristics to floral organs in a dominant-negative manner. Plant Cell 16, 1490–1505.

    Article  CAS  PubMed  Google Scholar 

  • Ferrario, S., Shchennikova, A.V., Franken, J., Immink, R.G.H. and Angenent, G.C. (2006) Control of floral meristem determinacy in Petunia by MADS box transcription factors. Plant Physiol. 140, 890–898

    Article  CAS  PubMed  Google Scholar 

  • Furutani, I., Sukegawa, S. and Kyozuka, J. (2006) Genome-wide analysis of spatial and temporal gene expression in rice panicle development. Plant J. 46, 503–511.

    Article  CAS  PubMed  Google Scholar 

  • Gerats, T. and Vandenbussche, M. (2005) A model system for comparative research. Petunia. Trends in Plant Sci. 10, 251–256.

    Article  CAS  Google Scholar 

  • Gomez-Mena, C., de Folter, S., Costa, M.M.R., Angenent, G.C. and Sablowski, R. (2005) Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development 132, 429–438.

    Article  CAS  PubMed  Google Scholar 

  • Goto, K. and Meyerowitz, E. (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 8, 1548–1560.

    Article  CAS  PubMed  Google Scholar 

  • Gunn, C.R. and Gaffney, F.B. (1974) Seed characteristics of 42 economically important species of Solanaceae in the United States. U.S.D.A., Technical Bulletin 1417, 1–33.

    Google Scholar 

  • Haughn, G.W. and Somerville, C.R. (1988) Genetic control of morphogenesis in Arabidopsis. Develop. Genet. 9, 73–89.

    Google Scholar 

  • Hernandez-Hernandez, T., Martinez-Castilla, L.P. and Alvarez-Buylla, E.R. (2006) Functional diversification of B MADS-box homeotic regulators of flower development: Adaptive evolution in protein-protein interaction domains after major gene duplication events. Mol. Biol. Evol. 24, 465–481.

    Article  PubMed  CAS  Google Scholar 

  • Hileman, L.C., Sundstrom, J.F., Litt, A., Chen, M., Shumba, T. and Irish, V.F. (2006) Molecular and phylogenetic analyses of the MADS-box gene family in tomato. Mol. Biol. Evol. 23, 2245–2258.

    Article  CAS  PubMed  Google Scholar 

  • Honma, T. and Goto, K. (2000) The Arabidopsis floral homeotic gene PISTILLATA is regulated by discrete cis-elements responsive to induction and maintenance signals. Development 127, 2021–2030.

    CAS  PubMed  Google Scholar 

  • Honma, T. and Goto, K. (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409, 525–529.

    Article  CAS  PubMed  Google Scholar 

  • Immink, R., Hannapel, D., Ferrario, S., Busscher, M., Franken, J., Lookeren Campagne, M. and Angenent, G. (1999) A petunia MADS box gene involved in the transition from vegetative to reproductive development. Development 126, 5117–5126.

    CAS  PubMed  Google Scholar 

  • Immink, R.G.H., Gadella, T.W.J., Jr., Ferrario, S., Busscher, M. and Angenent, G.C. (2002) Analysis of MADS box protein-protein interactions in living plant cells. Proc. Natl. Acad. Sci., USA 99, 2416–2421.

    Article  CAS  PubMed  Google Scholar 

  • Immink, R.G.H., Ferrario, S., Busscher-Lange, J., Kooiker, M., Busscher, M. and Angenent, G.C. (2003) Analysis of the petunia MADS-box transcription factor family. Molec. Genet. Genom. 268, 598–606.

    CAS  Google Scholar 

  • Irish, V.F. and Sussex, I.M. (1990) Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell 2, 741–753.

    Article  CAS  PubMed  Google Scholar 

  • Jack, T., Brockman, L. and Meyerowitz, E. (1992) The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68, 683–697.

    Article  CAS  PubMed  Google Scholar 

  • Jack, T., Fox, G.L. and Meyerowitz, E.M. (1994) Arabidopsis homeotic gene APETALA3 ectopic expression: Transcriptional and posttranscriptional regulation determine floral organ identity. Cell 76, 703–716.

    Article  CAS  PubMed  Google Scholar 

  • Jofuku, K.D., Boer, B.G.W.d., Montagu, M.V. and Okamuro, J.K. (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6, 1211–1225.

    Article  CAS  PubMed  Google Scholar 

  • Jofuku, K.D., Omidyar, P.K., Gee, Z. and Okamuro, J.K. (2005) Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proc. Natl. Acad. Sci., USA 102, 3117–3122.

    Article  CAS  PubMed  Google Scholar 

  • Kapoor, M., Tsuda, S., Tanaka, Y., Mayama, T., Okuyama, Y., Tsuchimoto, S. and Takatsuji, H. (2002) Role of petunia pMADS3 in determination of floral organ and meristem identity, as revealed by its loss of function. Plant J. 32, 115–127.

    Article  CAS  PubMed  Google Scholar 

  • Kapoor, M., Baba, A., Kubo, K.-I., Shibuya, K., Matsui, K., Tanaka, Y. and Takatsuji, H. (2005) Transgene-triggered, epigenetically regulated ectopic expression of a flower homeotic gene pMADS3 in Petunia. Plant J. 43, 649–661.

    Article  CAS  PubMed  Google Scholar 

  • Kater, M.M., Colombo, L., Franken, J., Busscher, M., Masiero, S., Van Lookeren Campagne, M.M. and Angenent, G.C. (1998) Multiple AGAMOUS homologs from cucumber and Petunia differ in their ability to induce reproductive organ fate. Plant Cell 10, 171–182.

    Article  CAS  PubMed  Google Scholar 

  • Kater, M.M., Dreni, L. and Colombo, L. (2006) Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis. J. Exp. Bot. 57, 3433–3444.

    Article  CAS  PubMed  Google Scholar 

  • Keck, E., McSteen, P., Carpenter, R. and Coen, E. (2003) Separation of genetic functions controlling organ identity in flowers. EMBO J. 22, 1058–1066.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S., Yoo, M.-J., Albert, V.A., Farris, J.S., Soltis, P.S. and Soltis, D.E. (2004) Phylogeny and diversification of B-function MADS-box genes in angiosperms: Evolutionary and functional implications of a 260-million-year-old duplication. Amer. J. Bot. 91, 2102–2118.

    Article  CAS  Google Scholar 

  • Kim, S., Soltis, P.S., Wall, K. and Soltis, D.E. (2006) Phylogeny and domain evolution in the APETALA2-like gene family. Mol. Biol. Evol. 23, 107–120.

    Article  CAS  PubMed  Google Scholar 

  • Knapp, S. (2002) Floral diversity and evolution in the Solanaceae. In: Q.C.B. Cronk, R.M. Bateman and J.A. Hawkins (Eds.), Developmental Genetics and Plant Evolution. Taylor and Francis, London, UK, pp. 267–297.

    Chapter  Google Scholar 

  • Komaki, M.K., Okada, K., Nishino, E. and Shimura, Y. (1988) Isolation and characterization of novel mutants of Arabidopsis thaliana defective in flower development. Development 104, 195–203.

    Google Scholar 

  • Kotilainen, M., Elomaa, P., Uimari, A., Albert, V.A., Yu, D. and Teeri, T.H. (2000) GRCD1, an AGL2-like MADS box gene, participates in the C function during stamen development in Gerbera hybrida. Plant Cell 12, 1893–1902.

    Article  CAS  PubMed  Google Scholar 

  • Kramer, E.M., Dorit, R.L. and Irish, V.F. (1998) Molecular evolution of genes controlling petal and stamen development: Duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149, 765–783.

    CAS  PubMed  Google Scholar 

  • Kramer, E.M. and Irish, V.F. (2000) Evolution of petal and stamen developmental programs: Evidence from comparative studies of the lower eudicots and basal angiosperms. Inter. J. Plant Sci. 161, S29–40.

    Article  Google Scholar 

  • Kramer, E., Su, H., Wu, C. and Hu, J. (2006) A simplified explanation for the frameshift mutation that created a novel C-terminal motif in the APETALA3 gene lineage. BMC Evol. Biol. 6, 30

    Article  PubMed  CAS  Google Scholar 

  • Krizek, B. and Meyerowitz, E. (1996a) The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development 122, 11–22.

    Google Scholar 

  • Krizek, B.A. and Meyerowitz, E.M. (1996b) Mapping the protein regions responsible for the functional specificities of the Arabidopsis MADS domain organ-identity proteins. Proc. Natl. Acad. Sci., USA 93, 4063–4070.

    Google Scholar 

  • Kunst, L., Klenz, J.E., Martinez-Zapater, J. and Haughn, G.W. (1989) AP2 gene determines the identity of perianth organs in flowers of Arabidopsis thaliana. Plant Cell 1, 1195–1208.

    Article  PubMed  Google Scholar 

  • Kush, A., Brunelle, A., Shevell, D. and Chua, N.H. (1993) The cDNA sequence of two MADS box proteins in Petunia. Plant Physiol. 102, 1051–1052.

    Article  CAS  PubMed  Google Scholar 

  • Lamb, R.S., Hill, T.A., Tan, Q.K.-G. and Irish, V.F. (2002) Regulation of APETALA3 floral homeotic gene expression by meristem identity genes. Dev. 129, 2079–2086.

    CAS  Google Scholar 

  • Lamb, R.S. and Irish, V.F. (2003) Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages. Proc. Natl. Acad. Sci., USA 100, 6558–6563.

    Article  CAS  PubMed  Google Scholar 

  • Lenhard, M., Bohnert, A., Jurgens, G. and Laux, T. (2001) Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell 105, 805–814.

    Article  CAS  PubMed  Google Scholar 

  • Litt, A. and Irish, V.F. (2003) Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: Implications for the evolution of floral development. Genetics 165, 821–833.

    CAS  PubMed  Google Scholar 

  • Litt, A. (2007) An evaluation of A-Function: Evidence from the APETALA1 and APETALA2 gene lineages. Inter. J. Plant Sci. 168, 73–91.

    Article  CAS  Google Scholar 

  • Lohmann, J.U., Hong, R.L., Hobe, M., Busch, M.A., Parcy, F., Simon, R. and Weigel, D. (2001) A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 105, 793–803.

    Article  CAS  PubMed  Google Scholar 

  • Ma, H., Yanofsky, M. and Meyerowitz, E. (1991) AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev. 5, 484–495.

    Article  CAS  PubMed  Google Scholar 

  • Ma, H. (1994) The unfolding drama of flower development: Recent results from genetic and molecular analyses. Genes Dev. 8, 745–756.

    Article  CAS  PubMed  Google Scholar 

  • Maes, T., Van de Steene, N., Zethof, J., Karimi, M., D'Hauw, M., Mares, G., Van Montagu, M. and Gerats, T. (2001) Petunia Ap2-like genes and their role in flower and seed development. Plant Cell 13, 229–244.

    Article  CAS  PubMed  Google Scholar 

  • Malcomber, S.T., Preston, J.C., Reinheimer, R., Kossuth, J. and Kellogg, E.A. (2006) Developmental gene evolution and the origin of grass inflorescence diversity. Adv. Bot. Res. Incorp. Adv. Plant Path. 44, 425–481.

    Article  CAS  Google Scholar 

  • Mayama, T., Ohtstubo, E. and Tsuchimoto, S. (2003) Isolation and expression analysis of Petunia CURLY LEAF-like genes. Plant Cell Physiol. 44, 811–819.

    Article  CAS  PubMed  Google Scholar 

  • McGonigle, B., Bouhidel, K. and Irish, V.F. (1996) Nuclear localization of the Arabidopsis APETALA3 and PISTILLATA homeotic gene products depends on their simultaneous expression. Genes Dev. 10, 1812–1821.

    Article  CAS  PubMed  Google Scholar 

  • McSteen, P.C., Vincent, C.A., Doyle, S., Carpenter, R. and Coen, E.S. (1998) Control of floral homeotic gene expression and organ morphogenesis in Antirrhinum. Development 125, 2359–2369.

    CAS  PubMed  Google Scholar 

  • Mizukami, Y. and Ma, H. (1992) Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell 71, 119–131.

    Article  CAS  PubMed  Google Scholar 

  • Motte, P., Saedler, H. and Schwarz-Sommer, Z. (1998) STYLOSA and FISTULATA: Regulatory components of the homeotic control of Antirrhinum floral organogenesis. Development 125, 71–84.

    CAS  PubMed  Google Scholar 

  • Nougalli Tonaco, I.A., Borst, J.W., de Vries, S.C., Angenent, G.C. and Immink, R.G.H. (2006) In vivo imaging of MADS-box transcription factor interactions. J. Exp. Bot. 57, 33–42.

    Article  Google Scholar 

  • Ohto, M.-a., Fischer, R.L., Goldberg, R.B., Nakamura, K. and Harada, J.J. (2005) Control of seed mass by APETALA2. Proc. Natl. Acad. Sci., USA 102, 3123–3128.

    Article  CAS  PubMed  Google Scholar 

  • Okamuro, J.K., Szeto, W., Lotys-Prass, C. and Jofuku, K.D. (1997) Photo and hormonal control of meristem identity in the Arabidopsis flower mutants apetala2 and apetala1. Plant Cell 9, 37–47.

    Article  CAS  PubMed  Google Scholar 

  • Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E. and Yanofsky, M.F. (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405, 200–203.

    Article  CAS  PubMed  Google Scholar 

  • Pinyopich, A., Ditta, G.S., Savidge, B., Liljegren, S.J., Baumann, E., Wisman, E. and Yanofsky, M.F. (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424, 85–88.

    Article  CAS  PubMed  Google Scholar 

  • Piwarzyk, E., Yang, Y. and Jack, T. (2007) Conserved C-terminal motifs of the Arabidopsis proteins APETALA3 and PISTILLATA are dispensable for floral organ identity function. Plant Physiol. 145, 1495–1505.

    Article  CAS  PubMed  Google Scholar 

  • Pnueli, L., Hareven, D., Broday, L., Hurwitz, C. and Lifschitz, E. (1994) The TM5 MADS box gene mediates organ differentiation in the three inner whorls of tomato flowers. Plant Cell 6, 175–186.

    Article  CAS  PubMed  Google Scholar 

  • Prakash, A.P., Kush, A., Lakshmanan, P. and Kumar, P.P. (2003) Cytosine methylation occurs in a CDC48 homologue and a MADS-box gene during adventitious shoot induction in Petunia leaf explants. J. Exp. Bot. 54, 1361–1371.

    Article  CAS  PubMed  Google Scholar 

  • Riechmann, J., Wang, M. and Meyerowitz, E. (1996a) DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucl. Acids Res. 24, 3134–3141.

    Google Scholar 

  • Riechmann, J.L., Krizek, B.A. and Meyerowitz, E.M. (1996b) Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Natl. Acad. Sci., USA 93, 4793–4798.

    Google Scholar 

  • Rijpkema, A.S., Royaert, S., Zethof, J., van der Weerden, G., Gerats, T. and Vandenbussche, M. (2006) Analysis of the Petunia TM6 MADS box gene reveals functional divergence within the DEF/AP3 lineage. Plant Cell 18, 1819–1832.

    Article  CAS  PubMed  Google Scholar 

  • Rijpkema, A.S., Gerats, T. and Vandenbussche, M. (2007) Evolutionary complexity of MADS complexes. Curr. Opin. Plant Biol. 10, 32–38.

    CAS  Google Scholar 

  • Ronse de Craene, L.P. (2007) Are petals sterile stamens or bracts? The origin and evolution of petals in the core eudicots. Ann. Bot. 100, 621–630.

    Article  Google Scholar 

  • Sakai, H., Medrano, L.J. and Meyerowitz, E.M. (1995) Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries. Nature 378, 199–203.

    Article  CAS  PubMed  Google Scholar 

  • Schwarz-Sommer, Z., Huijser, P., Nacken, W., Saedler, H. and Sommer, H. (1990) Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250, 931–936.

    Article  CAS  PubMed  Google Scholar 

  • Schwarz-Sommer, Z., Hue, I., Huijser, P., Flor, P., Hansen, R., Tetens, F., Lonnig, W., Saedler, H. and Sommer, H. (1992) Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: Evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J. 11, 251–263.

    CAS  PubMed  Google Scholar 

  • Scutt, C.P., Theissen, G. and Ferrandiz, C. (2007) The evolution of plant development: Past, present and future: Preface. Ann. Bot. 100, 599–601.

    Article  Google Scholar 

  • Sink, K.C. and Power, J.B. (1978) Incongruity of interspecific and intergeneric crosses involving Nicotiana and Petunia species that exhibit potential for somatic hybridization. Euphyt. 27, 725–730.

    Article  Google Scholar 

  • Souer, E., van der Krol, A., Kloos, D., Spelt, C., Bliek, M., Mol, J. and Koes, R. (1998) Genetic control of branching pattern and floral identity during Petunia inflorescence development. Development 125, 733–742.

    CAS  PubMed  Google Scholar 

  • Tandre, K., Albert, V., Sundås, A. and Engström, P. (1995) Conifer homologues to genes that control floral development in angiosperms. Plant Molec. Biol. 27, 69–78.

    Article  CAS  Google Scholar 

  • Teeri, T.H., Elomaa, P., Kotilainen, M. and Albert, V.A. (2006a) Mining plant diversity: Gerbera as a model system for plant developmental and biosynthetic research. BioEssays 28, 756–767.

    Google Scholar 

  • Teeri, T.H., Uimari, A., Kotilainen, M., Laitinen, R., Help, H., Elomaa, P. and Albert, V.A. (2006b) Reproductive meristem fates in Gerbera. J. Exp. Bot. 57, 3445–3455.

    Google Scholar 

  • Tilly, J., Allen, D. and Jack, T. (1998) The CArG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects. Development 125, 1647–1657.

    CAS  PubMed  Google Scholar 

  • Trobner, W., Ramirez, L., Motte, P., Hue, I., Huijser, P., Lonnig, W., Saedler, H., Sommer, H. and Schwarz-Sommer, Z. (1992) GLOBOSA: A homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J. 11, 4693–4704.

    CAS  PubMed  Google Scholar 

  • Tsuchimoto, S., van der Krol, A.R. and Chua, N.H. (1993) Ectopic expression of pMADS3 in transgenic Petunia phenocopies the Petunia blind mutant. Plant Cell 5, 843–853.

    Article  CAS  PubMed  Google Scholar 

  • Tsuchimoto, S., Mayama, T., van der Krol, A. and Ohtsubo, E. (2000) The whorl-specific action of a petunia class B floral homeotic gene. Genes Cells 5, 89–99.

    Article  CAS  PubMed  Google Scholar 

  • Tzeng, T.-Y., Liu, H.-C. and Yang, C.-H. (2004) The C-terminal sequence of LMADS1 is essential for the formation of homodimers for B function proteins. J. Biol. Chem. 279, 10747–10755.

    Google Scholar 

  • Uimari, A., Kotilainen, M., Elomaa, P., Yu, D., Albert, V.A. and Teeri, T.H. (2004) Integration of reproductive meristem fates by a SEPALLATA-like MADS-box gene. Proc. Natl. Acad. Sci., USA 101, 15817–15822.

    Google Scholar 

  • Vallade, J., Maizonnier, D. and Cornu, A. (1987) La morphogenese florale chez le petunia. Analyze d'un mutant à corolle staminée. Can. J. Bot. 65, 761–764.

    Article  Google Scholar 

  • van der Krol, A., Brunelle, A., Tsuchimoto, S. and Chua, N.-H. (1993) Functional analysis of Petunia floral homeotic MADS box gene pMADS1. Genes Dev. 7, 1214–1228.

    Article  PubMed  Google Scholar 

  • Vandenbussche, M., Theissen, G., Van de Peer, Y. and Gerats, T. (2003a) Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations. Nucl. Acids Res. 31, 4401–4409.

    Google Scholar 

  • Vandenbussche, M., Zethof, J., Souer, E., Koes, R., Tornielli, G.B., Pezzotti, M., Ferrario, S., Angenent, G.C. and Gerats, T. (2003b) Toward the analysis of the Petunia MADS box gene family by reverse and forward transposon insertion mutagenesis approaches: B, C, and D floral organ identity functions require SEPALLATA-like MADS box genes in Petunia. Plant Cell 15, 2680–2693.

    Google Scholar 

  • Vandenbussche, M., Zethof, J., Royaert, S., Weterings, K. and Gerats, T. (2004) The duplicated B-class heterodimer model: Whorl-specific effects and complex genetic interactions in Petunia hybrida flower development. Plant Cell 16, 741–754.

    Article  CAS  PubMed  Google Scholar 

  • Vazquez-Lobo, A., Carlsbecker, A., Vergara-Silva, F., Alvarez-Buylla, E.R., Pinero, D. and Engstrom, P. (2007) Characterization of the expression patterns of LEAFY/FLORICAULA and NEEDLY orthologs in female and male cones of the conifer genera Picea, Podocarpus, and Taxus: Implications for current evo-devo hypotheses for gymnosperms. Evol. Dev. 9, 446–459.

    Article  CAS  PubMed  Google Scholar 

  • Weigel, D. and Meyerowitz, Ε.Μ. (1994) The ABCs of floral homeotic genes. Cell 78, 203–209.

    Article  CAS  PubMed  Google Scholar 

  • Whipple, C.J. and Schmidt, R.J. (2006) Genetics of grass flower development. Adv. Bot. Res. Incorp. Adv. Plant Path. 44, 385–424.

    Article  CAS  Google Scholar 

  • Winter, K.-U., Becker, A., Munster, T., Kim, J.T., Saedler, H. and Theissen, G. (1999) MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. Proc. Natl. Acad. Sci., USA 96, 7342–7347.

    Article  CAS  PubMed  Google Scholar 

  • Winter, K.-U., Weiser, C., Kaufmann, K., Bohne, A., Kirchner, C., Kanno, A., Saedler, H. and Theissen, G. (2002) Evolution of class B floral homeotic proteins: Obligate heterodimerization originated from homodimerization. Mol. Biol. Evol. 19, 587–596.

    CAS  PubMed  Google Scholar 

  • Wurschum, T., Gross-Hardt, R. and Laux, T. (2006) APETALA2 regulates the stem cell niche in the Arabidopsis shoot meristem. Plant Cell 18, 295–307.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y., Xiang, H. and Jack, T. (2003a) pistillata-5, an Arabidopsis B class mutant with strong defects in petal but not in stamen development. Plant J. 33, 177–188.

    Google Scholar 

  • Yang, Y., Fanning, L. and Jack, T. (2003b) The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. Plant J. 33, 47–59.

    Google Scholar 

  • Yu, D., Kotilainen, M., Pollanen, E., Mehto, M., Elomaa, P., Helariutta, Y., Albert, V.A. and Teeri, T.H. (1999) Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae). Plant J. 17, 51–62.

    Article  CAS  PubMed  Google Scholar 

  • Yu, H., Xu, Y., Tan, E.L. and Kumar, P.P. (2002) AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals. Proc. Natl. Acad. Sci., USA 99, 16336–16341.

    Article  Google Scholar 

  • Yu, H., Ito, T., Wellmer, F. and Meyerowitz, E.M. (2004) Repression of AGAMOUS-LIKE 24 is a crucial step in promoting flower development. Nature Genet. 36, 157–161.

    Article  CAS  PubMed  Google Scholar 

  • Zachgo, S., Silva, E., Motte, P., Trobner, W., Saedler, H. and Schwarz-Sommer, Z. (1995) Functional analysis of the Antirrhinum floral homeotic DEFICIENS gene in vivo and in vitro by using a temperature-sensitive mutant. Dev. 121, 2861–2875.

    CAS  Google Scholar 

  • Zahn, L.M., Kong, H., Leebens-Mack, J.H., Kim, S., Soltis, P.S., Landherr, L.L., Soltis, D.E., dePamphilis, C.W. and Ma, H. (2005) The evolution of the SEPALLATA subfamily of MADS-box genes: A preangiosperm origin with multiple duplications throughout angiosperm history. Genetics 169, 2209–2223.

    Article  CAS  PubMed  Google Scholar 

  • Zahn, L.M., Feng, B. and Ma, H. (2006) Beyond the ABC-model: Regulation of floral homeotic genes. Adv. Bot. Res. Incorp. Adv. Plant Path. 44, 163–207.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anneke S. Rijpkema .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rijpkema, A.S., Zethof, J., Gerats, T., Vandenbussche, M. (2009). Evolution and Development of the Flower. In: Gerats, T., Strommer, J. (eds) Petunia. Springer, New York, NY. https://doi.org/10.1007/978-0-387-84796-2_10

Download citation

Publish with us

Policies and ethics