Skip to main content

Antibody-Mediated Neutralization of West Nile Virus: Factors that Govern Neutralization Potency

  • Chapter
West Nile Encephalitis Virus Infection

Part of the book series: Emerging Infectious Diseases of the 21 Century ((EIDC))

  • 1020 Accesses

Abstract

Flaviviruses are complex immunogens that elicit antibodies of varying specificity and with a spectrum of functional properties. Flavivirus virions are covered by a dense array of envelope (E) proteins that mediate steps of the virus entry pathway and are a primary target of neutralizing antibodies. The development of virus-specific antibodies is a critical aspect of protection against flavivirus infection and a major goal of ongoing efforts to produce vaccines against flaviviruses of clinical importance, such as the West Nile virus. In this chapter, we will review current models that describe how antibodies engage flaviviruses and block infection. Recent insight into the relationships that govern where antibodies bind virions and how this impacts the potency and mechanisms of neutralization of antibodies have been driven in part by insights from the structural biology of flaviviruses. The factors that define antibody potency will be discussed with a focus on the stoichiometric requirements for neutralization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aasa-Chapman, M.M., Holuigue, S., Aubin, K., Wong, M., Jones, N.A., Cornforth, D., Pellegrino, P., Newton, P., Williams, I., Borrow, P., et al. (2005). Detection of antibody-dependent complement-mediated inactivation of both autologous and heterologous virus in primary human immunodeficiency virus type 1 infection . J Virol 79, 2823–2830.

    PubMed  CAS  Google Scholar 

  • AbuBakar S., Azmi, A., Mohamed-Saad, N., Shafee, N., and Chee, H.Y. (1997). Antibody responses of dengue fever patients to dengue 2 (New Guinea C strain) viral proteins .Malaysian J Pathol 19, 41–51.

    CAS  Google Scholar 

  • Agrawal, A.G., and Petersen, L.R. (2003). Human immunoglobulin as a treatment for West Nile virus infection. J Infect Dis 188, 1–4.

    PubMed  Google Scholar 

  • Alcon-LePoder, S., Sivard, P., Drouet, M.T., Talarmin, A., Rice, C., and Flamand, M. (2006). Secretion of flaviviral non-structural protein NS1: from diagnosis to pathogenesis .Novartis Foundation Symposium 277, 233–247; discussion 247–253.

    PubMed  CAS  Google Scholar 

  • Allison, S.L., Stiasny, K., Stadler, K., Mandl, C.W., and Heinz, F.X. (1999) . Mapping of functional elements in the stem-anchor region of tick-borne encephalitis virus envelope protein E. J Virol 73, 5605–5612.

    PubMed  CAS  Google Scholar 

  • Allison, S.L., Schalich, J., Stiasny, K., Mandl, C.W., and Heinz, F.X. (2001). Mutational evidence for an internal fusion peptide in flavivirus envelope protein E . J Virol 75, 4268–4275.

    PubMed  CAS  Google Scholar 

  • Alvarez, M., RodriguezRoche, R., Bernardo, L., Vazquez, S., Morier, L., Gonzalez, D., Castro, O., Kouri, G., Halstead, S.B., and Guzman, M.G. (2006). Dengue hemorrhagic fever caused by sequential dengue 1–3 virus infections over a long time interval: Havana epidemic, 2001–2002. Am J Trop Med Hyg 75, 1113–1117.

    PubMed  Google Scholar 

  • Anderson, R. (2003). Manipulation of cell surface macromolecules by flaviviruses. Adv Virus Res 59, 229–274.

    PubMed  CAS  Google Scholar 

  • Beasley, D.W., and Barrett, A.D. (2002). Identification of neutralizing epitopes within structural domain III of the West Nile virus envelope protein . J Virol 76, 13097–13100.

    PubMed  CAS  Google Scholar 

  • Beebe, D.P., Schreiber, R.D., and Cooper, N.R. (1983). Neutralization of influenza virus by normal human sera: mechanisms involving antibody and complement . J Immunol 130, 1317–1322.

    PubMed  CAS  Google Scholar 

  • Ben-Nathan, D., Lustig, S., Tam, G., Robinzon, S., Segal, S., and Rager-Zisman, B. (2003). Prophylactic and therapeutic efficacy of human intravenous immunoglobulin in treating West Nile virus infection in mice . J Infect Dis 188, 5–12.

    PubMed  CAS  Google Scholar 

  • Berglund, P., Sjoberg, M., Garoff, H., Atkins, G.J., Sheahan, B.J., and Liljestrom, P. (1993). Semliki Forest virus expression system: production of conditionally infectious recom-binant particles. Bio/Technology 11, 916–920.

    PubMed  CAS  Google Scholar 

  • Boonnak, K., Slike, B.M., Burgess, T.H., Mason, R.M., Wu, S.J., Sun, P., Porter, K., Rudiman, I.F., Yuwono, D., Puthavathana, P., et al. (2008). Role of dendritic cells in antibody dependent enhancement of dengue infection . J Virol 82, 3939–3951.

    PubMed  CAS  Google Scholar 

  • Booy, F.P., Roden, R.B., Greenstone, H.L., Schiller, J.T., and Trus, B.L. (1998). Two antibodies that neutralize papillomavirus by different mechanisms show distinct binding patterns at 13 A resolution. J Mol Biol 281, 95–106.

    PubMed  CAS  Google Scholar 

  • Bressanelli, S., Stiasny, K., Allison, S.L., Stura, E.A., Duquerroy, S., Lescar, J., Heinz, F.X., and Rey, F.A. (2004). Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J 23, 728–738.

    PubMed  CAS  Google Scholar 

  • Brinton , M.A. (2002) . The molecular biology of West Nile virus: a new invader of the western hemisphere. Annu Rev Microbiol 56, 371–402.

    PubMed  CAS  Google Scholar 

  • Burnet, F.M., Keogh, E.V., and Lush, D. (1937). The immunological reactions of the filterable viruses. Aust J Exp Biol Med Sci 15, 227–368.

    Google Scholar 

  • Burrage, T., Kramer, E., and Brown, F. (2000). Structural differences between foot-and-mouth disease and poliomyelitis viruses influence their inactivation by aziridines . Vaccine 18, 2454–2461.

    PubMed  CAS  Google Scholar 

  • Burton, D.R., Saphire, E.O., and Parren, P.W. (2001). A model for neutralization of viruses based on antibody coating of the virion surface . Curr Top Microbiol Immunol 260, 109–143.

    PubMed  CAS  Google Scholar 

  • Calisher, C.H., Karabatsos, N., Dalrymple, J.M., Shope, R.E., Porterfield, J.S., Westaway, E.G., and Brandt, W.E. (1989). Antigenic relationships between flaviviruses as determined by cross-neutralization tests with polyclonal antisera . J Gen Virol 70(Pt 1), 37–43.

    PubMed  Google Scholar 

  • Camenga, D.L., Nathanson, N., and Cole, G.A. (1974). Cyclophosphamide-potentiated West Nile viral encephalitis: relative influence of cellular and humoral factors . J Infect Dis 130, 634–641.

    PubMed  CAS  Google Scholar 

  • Cardosa, M.J., Porterfield, J.S., and Gordon, S. (1983). Complement receptor mediates enhanced flavivirus replication in macrophages . J Exp Med 158, 258–263.

    PubMed  CAS  Google Scholar 

  • Cardosa, M.J., Gordon, S., Hirsch, S., Springer, T.A., and Porterfield, J.S. (1986). Interaction of West Nile virus with primary murine macrophages: role of cell activation and receptors for antibody and complement. J Virol 57, 952–959.

    PubMed  CAS  Google Scholar 

  • Cecilia, D., and Gould, E.A. (1991). Nucleotide changes responsible for loss of neuroinvasive-ness in Japanese encephalitis virus neutralization-resistant mutants . Virology 181, 70–77.

    PubMed  CAS  Google Scholar 

  • Cecilia, D., Gadkari, D.A., Kedarnath, N., and Ghosh, S.N. (1988). Epitope mapping of Japanese encephalitis virus envelope protein using monoclonal antibodies against an Indian strain. J Gen Virol 69(Pt 11), 2741–2747.

    PubMed  CAS  Google Scholar 

  • Chambers, T.J., Hahn, C.S., Galler, R., and Rice, C.M. (1990). Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44, 649–688.

    PubMed  CAS  Google Scholar 

  • Chareonsirisuthigul, T., Kalayanarooj, S., and Ubol, S. (2007). Dengue virus (DENV) antibody-dependent enhancement of infection upregulates the production of anti-inflammatory cytokines, but suppresses anti-DENV free radical and pro-inflammatory cytokine production, in THP-1 cells. J Gen Virol 88, 365–375.

    PubMed  CAS  Google Scholar 

  • Che, Z., Olson, N.H., Leippe, D., Lee, W.M., Mosser, A.G., Rueckert, R.R., Baker, T.S., and Smith, T.J. (1998). Antibody-mediated neutralization of human rhinovirus 14 explored by means of cryoelectron microscopy and X-ray crystallography of virus-Fab complexes . J Virol 72, 4610–4622.

    PubMed  CAS  Google Scholar 

  • Chu, J.J., and Ng, M.L. (2004). Infectious entry of West Nile virus occurs through a clathrin-mediated endocytic pathway. J Virol 78, 10543–10555.

    PubMed  CAS  Google Scholar 

  • Chu, J.J., Rajamanonmani, R., Li, J., Bhuvanakantham, R., Lescar, J., and Ng, M.L. (2005). Inhibition of West Nile virus entry by using a recombinant domain III from the envelope glycoprotein. J Gen Virol 86, 405–412.

    PubMed  CAS  Google Scholar 

  • Chung, K.M., Nybakken, G.E., Thompson, B.S., Engle, M.J., Marri, A., Fremont, D.H., and Diamond, M.S. (2006). Antibodies against West Nile virus nonstructural protein NS1 prevent lethal infection through Fc gamma receptor-dependent and -independent mechanisms. J Virol 80, 1340–1351.

    PubMed  CAS  Google Scholar 

  • Chung, K.M., Thompson, B.S., Fremont, D.H., and Diamond, M.S. (2007). Antibody recognition of cell surface-associated NS1 triggers Fc-gamma receptor-mediated phagocytosis and clearance of West Nile virus-infected cells . J Virol 81, 9551–9555.

    PubMed  CAS  Google Scholar 

  • Colman, P.M., and Lawrence, M.C. (2003). The structural biology of type I viral membrane fusion. Nat Rev Mol Cell Biol 4, 309–319.

    PubMed  CAS  Google Scholar 

  • Colombage, G., Hall, R., Pavy, M., and Lobigs, M. (1998). DNA-based and alphavirus-vec-tored immunisation with prM and E proteins elicits long-lived and protective immunity against the flavivirus, Murray Valley encephalitis virus . Virology 250, 151–163.

    PubMed  CAS  Google Scholar 

  • Colonno, R.J., Callahan, P.L., Leippe, D.M., Rueckert, R.R., and Tomassini, J.E. (1989). Inhibition of rhinovirus attachment by neutralizing monoclonal antibodies and their Fab fragments. J Virol 63, 36–42.

    PubMed  CAS  Google Scholar 

  • Crill, W.D., and Chang, G.J. (2004). Localization and characterization of flavivirus envelope glycoprotein cross-reactive epitopes. J Virol 78, 13975–13986.

    PubMed  CAS  Google Scholar 

  • Crill, W.D., and Roehrig, J.T. (2001). Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells . J Virol 75, 7769–7773.

    PubMed  CAS  Google Scholar 

  • Crill, W.D., Trainor, N.B., and Chang, G.J. (2007). A detailed mutagenesis study of flavivi-rus cross-reactive epitopes using West Nile virus-like particles . J Gen Virol 88, 1169–1174.

    PubMed  CAS  Google Scholar 

  • Davis, C.W., Nguyen, H.Y., Hanna, S.L., Sanchez, M.D., Doms, R.W., and Pierson, T.C. (2006) . West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection. J Virol 80, 1290–1301.

    PubMed  CAS  Google Scholar 

  • Della-Porta, A.J., and Westaway, E.G. (1978). A multi-hit model for the neutralization of animal viruses. J Gen Virol 38, 1–19.

    PubMed  CAS  Google Scholar 

  • Diamond, M.S., Shrestha, B., Marri, A., Mahan, D., and Engle, M. (2003a) . B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. J Virol 77, 2578–2586.

    CAS  Google Scholar 

  • Diamond, M.S., Sitati, E.M., Friend, L.D., Higgs, S., Shrestha, B., and Engle, M. (2003b). A critical role for induced IgM in the protection against West Nile virus infection . J Exp Med 198, 1853–1862.

    CAS  Google Scholar 

  • Dulbecco, R., Vogt, M., and Strickland, A.G. (1956). A study of the basic aspects of neutralization of two animal viruses, western equine encephalitis virus and poliomyelitis virus . Virology 2, 162–205.

    PubMed  CAS  Google Scholar 

  • Endy, T.P., Nisalak, A., Chunsuttitwat, S., Vaughn, D.W., Green, S., Ennis, F.A., Rothman, A.L., and Libraty, D.H. (2004). Relationship of preexisting dengue virus (DV) neutralizing antibody levels to viremia and severity of disease in a prospective cohort study of DV infection in Thailand. J Infect Dis 189, 990–1000.

    PubMed  Google Scholar 

  • Engle, M.J., and Diamond, M.S. (2003). Antibody prophylaxis and therapy against West Nile virus infection in wild-type and immunodeficient mice . J Virol 77, 12941–12949.

    PubMed  CAS  Google Scholar 

  • Falconar, A.K. (1999). Identification of an epitope on the dengue virus membrane (M) protein defined by cross-protective monoclonal antibodies: design of an improved epitope sequence based on common determinants present in both envelope (E and M) proteins . Arch Virol 144, 2313–2330.

    PubMed  CAS  Google Scholar 

  • Feng, J.Q., Mozdzanowska, K., and Gerhard, W. (2002). Complement component C1q enhances the biological activity of influenza virus hemagglutinin-specific antibodies depending on their fine antigen specificity and heavy-chain isotype . J Virol 76, 1369–1378.

    PubMed  CAS  Google Scholar 

  • Flamand, A., Raux, H., Gaudin, Y., and Ruigrok, R.W. (1993). Mechanisms of rabies virus neutralization. Virology 194, 302–313.

    PubMed  CAS  Google Scholar 

  • Goldwasser, R.A., and Davies, A.M. (1953). Transmission of a West Nile-like virus by Aedes aegypti. Trans R Soc Trop Med Hyg 47, 336–337.

    PubMed  CAS  Google Scholar 

  • Gollins, S.W., and Porterfield, J.S. (1984). Flavivirus infection enhancement in macrophages: radioactive and biological studies on the effect of antibody on viral fate . J Gen Virol 65(Pt 8), 1261–1272.

    PubMed  Google Scholar 

  • Gollins, S.W., and Porterfield, J.S. (1985). Flavivirus infection enhancement in macrophages: an electron microscopic study of viral cellular entry . J Gen Virol 66(Pt 9), 1969–1982.

    PubMed  Google Scholar 

  • Gollins, S.W., and Porterfield, J.S. (1986). A new mechanism for the neutralization of enveloped viruses by antiviral antibody. Nature 321, 244–246.

    PubMed  CAS  Google Scholar 

  • Goncalvez, A.P., Men, R., Wernly, C., Purcell, R.H., and Lai, C.J. (2004). Chimpanzee Fab fragments and a derived humanized immunoglobulin G1 antibody that efficiently cross-neutralize dengue type 1 and type 2 viruses . J Virol 78, 12910–12918.

    PubMed  CAS  Google Scholar 

  • Goncalvez, A.P., Engle, R.E., St Claire, M., Purcell, R.H., and Lai, C.J. (2007). Monoclonal antibody-mediated enhancement of dengue virus infection in vitro and in vivo and strategies for prevention . Proc Natl Acad Sci USA 104, 9422–9427.

    PubMed  CAS  Google Scholar 

  • Gromowski, G.D., and Barrett, A.D. (2007). Characterization of an antigenic site that contains a dominant, type-specific neutralization determinant on the envelope protein domain III (ED3) of dengue 2 virus . Virology 366, 349–360.

    PubMed  CAS  Google Scholar 

  • Guirakhoo, F., Heinz, F.X., Mandl, C.W., Holzmann, H., and Kunz, C. (1991). Fusion activity of flaviviruses: comparison of mature and immature (prM-containing) tick-borne encephalitis virions. J Gen Virol 72(Pt 6), 1323–1329.

    PubMed  CAS  Google Scholar 

  • Guirakhoo, F., Bolin, R.A., and Roehrig, J.T. (1992). The Murray Valley encephalitis virus prM protein confers acid resistance to virus particles and alters the expression of epitopes within the R2 domain of E glycoprotein . Virology 191, 921–931.

    PubMed  CAS  Google Scholar 

  • Halevy, M., Akov, Y., Ben-Nathan, D., Kobiler, D., Lachmi, B., and Lustig, S. (1994). Loss of active neuroinvasiveness in attenuated strains of West Nile virus: pathogenicity in immu-nocompetent and SCID mice. Arch Virol 137, 355–370.

    PubMed  CAS  Google Scholar 

  • Haley, M., Retter, A.S., Fowler, D., Gea-Banacloche, J., and O'Grady, N.P. (2003). The role for intravenous immunoglobulin in the treatment of West Nile virus encephalitis . Clin Infect Dis 37, e88–e90.

    PubMed  Google Scholar 

  • Hall, R.A., Kay, B.H., Burgess, G.W., Clancy, P., and Fanning, I.D. (1990). Epitope analysis of the envelope and non-structural glycoproteins of Murray Valley encephalitis virus . J Gen Virol 71(Pt 12), 2923–2930.

    PubMed  CAS  Google Scholar 

  • Halstead, S.B. (1979). In vivo enhancement of dengue virus infection in rhesus monkeys by passively transferred antibody. J Infect Dis 140, 527–533.

    PubMed  CAS  Google Scholar 

  • Halstead, S.B. (2003). Neutralization and antibody-dependent enhancement of dengue viruses. Adv Virus Res 60, 421–467.

    PubMed  CAS  Google Scholar 

  • Halstead, S.B., and O'Rourke, E.J. (1977). Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody . J Exp Med 146, 201–217.

    PubMed  CAS  Google Scholar 

  • Hamdan, A., Green, P., Mendelson, E., Kramer, M.R., Pitlik, S., and Weinberger, M. (2002). Possible benefit of intravenous immunoglobulin therapy in a lung transplant recipient with West Nile virus encephalitis . Transpl Infect Dis 4, 160–162.

    PubMed  CAS  Google Scholar 

  • Hayes, E.B., Sejvar, J.J., Zaki, S.R., Lanciotti, R.S., Bode, A.V., and Campbell, G.L. (2005). Virology, pathology, and clinical manifestations of West Nile virus disease . Emerg Infect Dis 11, 1174–1179.

    PubMed  Google Scholar 

  • Heinz, F.X., and Allison, S.L. (2000). Structures and mechanisms in flavivirus fusion. Adv Virus Res 55, 231–269.

    PubMed  CAS  Google Scholar 

  • Heinz, F.X., Berger, R., Tuma, W., and Kunz, C. (1983). A topological and functional model of epitopes on the structural glycoprotein of tick-borne encephalitis virus defined by monoclonal antibodies. Virology 126, 525–537.

    PubMed  CAS  Google Scholar 

  • Heinz, F.X., Stiasny, K., Puschner-Auer, G., Holzmann, H., Allison, S.L., Mandl, C.W., and Kunz, C. (1994). Structural changes and functional control of the tick-borne encephalitis virus glycoprotein E by the heterodimeric association with protein prM . Virology 198, 109–117.

    PubMed  CAS  Google Scholar 

  • Henchal, E.A., Henchal, L.S., and Schlesinger, J.J. (1988). Synergistic interactions of anti-NS1 monoclonal antibodies protect passively immunized mice from lethal challenge with dengue 2 virus. J Gen Virol 69(Pt 8), 2101–2107.

    PubMed  Google Scholar 

  • He, R.T., Innis, B.L., Nisalak, A., Usawattanakul, W., Wang, S., Kalayanarooj, S., and Anderson, R. (1995). Antibodies that block virus attachment to Vero cells are a major component of the human neutralizing antibody response against dengue virus type 2 . J Med Virol 45, 451–461.

    PubMed  CAS  Google Scholar 

  • Hiramatsu, K., Tadano, M., Men, R., and Lai, C.J. (1996). Mutational analysis of a neutralization epitope on the dengue type 2 virus (DEN2) envelope protein: monoclonal antibody resistant DEN2/DEN4 chimeras exhibit reduced mouse neurovirulence . Virology 224, 437–445.

    PubMed  CAS  Google Scholar 

  • Holzmann, H., Heinz, F.X., Mandl, C.W., Guirakhoo, F., and Kunz, C. (1990). A single amino acid substitution in envelope protein E of tick-borne encephalitis virus leads to attenuation in the mouse model. J Virol 64, 5156–5159.

    PubMed  CAS  Google Scholar 

  • Iankov, I.D., Pandey, M., Harvey, M., Griesmann, G.E., Federspiel, M.J., and Russell, S.J. (2006) . Immunoglobulin g antibody-mediated enhancement of measles virus infection can bypass the protective antiviral immune response . J Virol 80, 8530–8540.

    PubMed  CAS  Google Scholar 

  • Icenogle, J., Shiwen, H., Duke, G., Gilbert, S., Rueckert, R., and Anderegg, J. (1983). Neutralization of poliovirus by a monoclonal antibody: kinetics and stoichiometry .Virology 127, 412–425.

    PubMed  CAS  Google Scholar 

  • Jennings, A.D., Gibson, C.A., Miller, B.R., Mathews, J.H., Mitchell, C.J., Roehrig, J.T., Wood, D.J., Taffs, F., Sil, B.K., Whitby, S.N., et-al. (1994). Analysis of a yellow fever virus isolated from a fatal case of vaccine-associated human encephalitis . J Infect Dis 169, 512–518.

    PubMed  CAS  Google Scholar 

  • Jiang, W.R., Lowe, A., Higgs, S., Reid, H., and Gould, E.A. (1993). Single amino acid codon changes detected in louping ill virus antibody-resistant mutants with reduced neuroviru-lence. J Gen Virol 74(Pt 5), 931–935.

    PubMed  CAS  Google Scholar 

  • Kanai, R., Kar, K., Anthony, K., Gould, L.H., Ledizet, M., Fikrig, E., Marasco, W.A., Koski, R.A., and Modis, Y. (2006). Crystal structure of west nile virus envelope glycoprotein reveals viral surface epitopes. J Virol 80, 11000–11008.

    PubMed  CAS  Google Scholar 

  • Kaufmann, B., Nybakken, G.E., Chipman, P.R., Zhang, W., Diamond, M.S., Fremont, D.H., Kuhn, R.J., and Rossmann, M.G. (2006). West Nile virus in complex with the Fab fragment of a neutralizing monoclonal antibody . Proc Natl Acad Sci USA 103, 12400–12404.

    PubMed  CAS  Google Scholar 

  • Klasse, P.J., and Burton, D.R. (2007). Antibodies to West Nile virus: a double-edged sword. Cell Host Microbe 1, 87–89.

    PubMed  CAS  Google Scholar 

  • Klasse, P.J., and Moore, J.P. (1996). Quantitative model of antibody- and soluble CD4-mediated neutralization of primary isolates and T-cell line-adapted strains of human immunodeficiency virus type 1. J Virol 70, 3668–3677.

    PubMed  CAS  Google Scholar 

  • Klasse, P.J., and Sattentau, Q.J. (2002). Occupancy and mechanism in antibody-mediated neutralization of animal viruses. J Gen Virol 83, 2091–2108.

    PubMed  CAS  Google Scholar 

  • Kliks, S.C., Nimmanitya, S., Nisalak, A., and Burke, D.S. (1988). Evidence that maternal dengue antibodies are important in the development of dengue hemorrhagic fever in infants .Am J Trop Med Hyg 38, 411–419.

    PubMed  CAS  Google Scholar 

  • Krishnan, M.N., Sukumaran, B., Pal, U., Agaisse, H., Murray, J.L., Hodge, T.W., and Fikrig, E. (2007) . Rab 5 is required for the cellular entry of dengue and West Nile viruses . J Virol 81, 4881–4885.

    PubMed  CAS  Google Scholar 

  • Kuhn, R.J., Zhang, W., Rossmann, M.G., Pletnev, S.V., Corver, J., Lenches, E., Jones, C.T., Mukhopadhyay, S., Chipman, P.R., Strauss, E.G., et-al. (2002). Structure of dengue virus: implications for flavivirus organization, maturation, and fusion . Cell 108, 717–725.

    PubMed  CAS  Google Scholar 

  • Lai, C.J., Goncalvez, A.P., Men, R., Wernly, C., Donau, O., Engle, R.E., and Purcell, R.H. (2007) . Epitope determinants of a chimpanzee dengue virus type 4 (DENV-4)-neutralizing antibody and protection against DENV-4 challenge in mice and rhesus monkeys by passively transferred humanized antibody. J Virol 81, 12766–12774.

    PubMed  CAS  Google Scholar 

  • Lewis, J.K., Bothner, B., Smith, T.J., and Siuzdak, G. (1998). Antiviral agent blocks breathing of the common cold virus . Proc Natl Acad Sci USA 95, 6774–6778.

    PubMed  CAS  Google Scholar 

  • Li, Q., Yafal, A.G., Lee, Y.M., Hogle, J., and Chow, M. (1994). Poliovirus neutralization by antibodies to internal epitopes of VP4 and VP1 results from reversible exposure of these sequences at physiological temperature. J Virol 68, 3965–3970.

    PubMed  CAS  Google Scholar 

  • Lobigs M., Pavy, M., and Hall, R. (2003). Cross-protective and infection-enhancing immunity in mice vaccinated against flaviviruses belonging to the Japanese encephalitis virus sero-complex. Vaccine 21, 1572–1579.

    PubMed  CAS  Google Scholar 

  • Lok, S.M., Kostyuchenko, V., Nybakken, G.E., Holdaway, H.A., Battisti, A.J., Sukupolvi-Petty, S., Sedlak, D., Fremont, D.H., Chipman, P.R., Roehrig, J.T., et-al. (2008). Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycopro-teins. Nat Struct Mol Biol 15, 312–317.

    PubMed  CAS  Google Scholar 

  • Mackenzie, J.M., and Westaway, E.G. (2001). Assembly and maturation of the flavivirus Kunjin virus appear to occur in the rough endoplasmic reticulum and along the secretory pathway, respectively. J Virol 75, 10787–10799.

    PubMed  CAS  Google Scholar 

  • Mackenzie , J.S. , Gubler , D.J. , and Petersen , L.R. (2004) . Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses . Nat Med 10, S98–S109.

    PubMed  CAS  Google Scholar 

  • Mahalingam, S., and Lidbury, B.A. (2002). Suppression of lipopolysaccharide-induced antiviral transcription factor (STAT-1 and NF-kappa B) complexes by antibody-dependent enhancement of macrophage infection by Ross River virus . Proc Natl Acad Sci USA 99, 13819–13824.

    PubMed  CAS  Google Scholar 

  • Mandl, C.W., Guirakhoo, F., Holzmann, H., Heinz, F.X., and Kunz, C. (1989). Antigenic structure of the flavivirus envelope protein E at the molecular level, using tick-borne encephalitis virus as a model. J Virol 63, 564–571.

    PubMed  CAS  Google Scholar 

  • Mandl, C.W., Allison, S.L., Holzmann, H., Meixner, T., and Heinz, F.X. (2000). Attenuation of tick-borne encephalitis virus by structure-based site-specific mutagenesis of a putative flavivirus receptor binding site. J Virol 74, 9601–9609.

    PubMed  CAS  Google Scholar 

  • Mehlhop, E., and Diamond, M.S. (2006). Protective immune responses against West Nile virus are primed by distinct complement activation pathways . J Exp Med 203, 1371–1381.

    PubMed  CAS  Google Scholar 

  • Mehlhop, E., Whitby, K., Oliphant, T., Marri, A., Engle, M., and Diamond, M.S. (2005). Complement activation is required for induction of a protective antibody response against West Nile virus infection. J Virol 79, 7466–7477.

    PubMed  CAS  Google Scholar 

  • Mehlhop, E., Ansarah-Sobrinho, C., Johnson, S., Engle, M., Fremont, D.H., Pierson, T.C., and Diamond, M.S. (2007). Complement protein C1q inhibits antibody-dependent enhancement of flavivirus infection in an IgG subclass-specific manner . Cell Host Microbe 2, 417–426.

    PubMed  CAS  Google Scholar 

  • Meyer, K., Basu, A., Przysiecki, C.T., Lagging, L.M., Di Bisceglie, A.M., Conley, A.J., and Ray, R. (2002) . Complement-mediated enhancement of antibody function for neutralization of pseu-dotype virus containing hepatitis C virus E2 chimeric glycoprotein . J Virol 76, 2150–2158.

    PubMed  CAS  Google Scholar 

  • Modis, Y., Ogata, S., Clements, D., and Harrison, S.C. (2003). A ligand-binding pocket in the dengue virus envelope glycoprotein . Proc Natl Acad Sci USA 100, 6986–6991.

    PubMed  CAS  Google Scholar 

  • Modis, Y., Ogata, S., Clements, D., and Harrison, S.C. (2004). Structure of the dengue virus envelope protein after membrane fusion. Nature 427, 313–319.

    PubMed  CAS  Google Scholar 

  • Morrey, J.D., Siddharthan, V., Olsen, A.L., Roper, G.Y., Wang, H., Baldwin, T.J., Koenig, S.,Johnson, S., Nordstrom, J.L., and Diamond, M.S. (2006). Humanized monoclonal antibody against West Nile virus envelope protein administered after neuronal infection protects against lethal encephalitis in hamsters . J Infect Dis 194, 1300–1308.

    PubMed  CAS  Google Scholar 

  • Morrey, J.D., Siddharthan, V., Olsen, A.L., Wang, H., Julander, J.G., Hall, J.O., Li, H., Nordstrom, J.L., Koenig, S., Johnson, S., et-al. (2007). Defining limits of treatment with humanized neutralizing monoclonal antibody for West Nile virus neurological infection in a hamster model. Antimicrob Agents Chemother 51, 2396–2402.

    PubMed  CAS  Google Scholar 

  • Mozdzanowska, K., Feng, J., Eid, M., Zharikova, D., and Gerhard, W. (2006). Enhancement of neutralizing activity of influenza virus-specific antibodies by serum components .Virology 352, 418–426.

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay, S., Kim, B.S., Chipman, P.R., Rossmann, M.G., and Kuhn, R.J. (2003). Structure of West Nile virus. Science 302, 248.

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay, S., Kuhn, R.J., and Rossmann, M.G. (2005). A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3, 13–22.

    PubMed  CAS  Google Scholar 

  • Nguyen, T.H., Lei, H.Y., Nguyen, T.L., Lin, Y.S., Huang, K.J., Le, B.L., Lin, C.F., Yeh, T.M., Do , Q.H. , Vu , T.Q. , et-al. (2004) . Dengue hemorrhagic fever in infants: a study of clinical and cytokine profiles. J Infect Dis 189, 221–232.

    PubMed  Google Scholar 

  • Nimmerjahn, F., and Ravetch, J.V. (2008). Fcgamma receptors as regulators of immune responses. Nat Rev 8, 34–47.

    CAS  Google Scholar 

  • Nybakken, G.E., Oliphant, T., Johnson, S., Burke, S., Diamond, M.S., and Fremont, D.H. (2005) . Structural basis of West Nile virus neutralization by a therapeutic antibody .Nature 437, 764–769.

    PubMed  CAS  Google Scholar 

  • Nybakken, G.E., Nelson, C.A., Chen, B.R., Diamond, M.S., and Fremont, D.H. (2006). Crystal structure of the West Nile virus envelope glycoprotein . J Virol 80, 11467–11474.

    PubMed  CAS  Google Scholar 

  • Oliphant, T., and Diamond, M.S. (2007). The molecular basis of antibody-mediated neutralization of West Nile virus . Expert Opin Biol Ther 7, 885–892.

    PubMed  CAS  Google Scholar 

  • Oliphant, T., Engle, M., Nybakken, G.E., Doane, C., Johnson, S., Huang, L., Gorlatov, S., Mehlhop, E., Marri, A., Chung, K.M., et-al. (2005). Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus . Nat Med 11, 522–530.

    PubMed  CAS  Google Scholar 

  • Oliphant, T., Nybakken, G.E., Engle, M., Xu, Q., Nelson, C.A., Sukupolvi-Petty, S., Marri, A., Lachmi, B.E., Olshevsky, U., Fremont, D.H., et-al. (2006). Antibody recognition and neutralization determinants on domains I and II of West Nile virus envelope protein .J V i r o l 80, 12149–12159.

    PubMed  CAS  Google Scholar 

  • Oliphant, T., Nybakken, G.E., Austin, S.K., Xu, Q., Bramson, J., Loeb, M., Throsby, M., Fremont, D.H., Pierson, T.C., and Diamond, M.S. (2007). Induction of epitope-specific neutralizing antibodies against West Nile virus . J Virol 81, 11828–11839.

    PubMed  CAS  Google Scholar 

  • Pantophlet, R., and Burton, D.R. (2006). GP120: target for neutralizing HIV-1 antibodies. Annu Rev Immunol 24, 739–769.

    PubMed  CAS  Google Scholar 

  • Peiris, J.S., and Porterfield, J.S. (1979). Antibody-mediated enhancement of Flavivirus replication in macrophage-like cell lines. Nature 282, 509–511.

    PubMed  CAS  Google Scholar 

  • Peiris, J.S., Gordon, S., Unkeless, J.C., and Porterfield, J.S. (1981). Monoclonal anti-Fc receptor IgG blocks antibody enhancement of viral replication in macrophages . Nature 289, 189–191.

    PubMed  CAS  Google Scholar 

  • Pierson, T.C., Xu, Q., Nelson, S., Oliphant, T., Nybakken, G.E., Fremont, D.H., and Diamond, M.S. (2007). The stoichiometry of antibody-mediated neutralization and enhancement of West Nile virus infection. Cell Host Microbe 1, 135–145.

    PubMed  CAS  Google Scholar 

  • Pincus, S., Mason, P.W., Konishi, E., Fonseca, B.A., Shope, R.E., Rice, C.M., and Paoletti, E. (1992) . Recombinant vaccinia virus producing the prM and E proteins of yellow fever virus protects mice from lethal yellow fever encephalitis . Virology 187, 290–297.

    PubMed  CAS  Google Scholar 

  • Randolph, V.B., and Stollar, V. (1990). Low pH-induced cell fusion in flavivirus-infected Aedes albopictuscell cultures. J Gen Virol 71(Pt 8), 1845–1850.

    PubMed  Google Scholar 

  • Randolph, V.B., Winkler, G., and Stollar, V. (1990). Acidotropic amines inhibit proteolytic processing of flavivirus prM protein. Virology 174, 450–458.

    PubMed  CAS  Google Scholar 

  • Reisdorph, N., Thomas, J.J., Katpally, U., Chase, E., Harris, K., Siuzdak, G., and Smith, T.J. (2003). Human rhinovirus capsid dynamics is controlled by canyon flexibility. Virology 314, 34–44.

    PubMed  CAS  Google Scholar 

  • Rey, F.A., Heinz, F.X., Mandl, C., Kunz, C., and Harrison, S.C. (1995). The envelope glyco-protein from tick-borne encephalitis virus at 2 A resolution . Nature 375, 291–298.

    PubMed  CAS  Google Scholar 

  • Rice, C.M. (1996). Flaviviridae: the viruses and their replication. In Fields Virology, B.N. Fields, P.M. Knipe, and P.M. Howley, eds. (Philadelphia, Lippincott-Raven), pp.931–959.

    Google Scholar 

  • Roden, R.B., Weissinger, E.M., Henderson, D.W., Booy, F., Kirnbauer, R., Mushinski, J.F., Lowy, D.R., and Schiller, J.T. (1994). Neutralization of bovine papillomavirus by antibodies to L1 and L2 capsid proteins . J Virol 68, 7570–7574.

    PubMed  CAS  Google Scholar 

  • Rodrigo, W.W., Jin, X., Blackley, S.D., Rose, R.C., and Schlesinger, J.J. (2006). Differential enhancement of dengue virus immune complex infectivity mediated by signaling-competent and signaling-incompetent human Fcgamma RIA (CD64) or FcgammaRIIA (CD32) . J Virol 80, 10128–10138.

    PubMed  CAS  Google Scholar 

  • Roehrig, J.T. (2003). Antigenic structure of flavivirus proteins. Adv Virus Res 59, 141–175.

    PubMed  CAS  Google Scholar 

  • Roehrig, J.T., Mathews, J.H., and Trent, D.W. (1983). Identification of epitopes on the E glyco-protein of Saint Louis encephalitis virus using monoclonal antibodies . Virology 128, 118–126.

    PubMed  CAS  Google Scholar 

  • Roehrig, J.T., Bolin, R.A., and Kelly, R.G. (1998). Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica . Virology 246, 317–328.

    PubMed  CAS  Google Scholar 

  • Roehrig, J.T., Staudinger, L.A., Hunt, A.R., Mathews, J.H., and Blair, C.D. (2001). Antibody prophylaxis and therapy for flavivirus encephalitis infections . Ann N Y Acad Sci 951, 286–297.

    PubMed  CAS  Google Scholar 

  • Ryman, K.D., Ledger, T.N., Campbell, G.A., Watowich, S.J., and Barrett, A.D. (1998). Mutation in a 17D-204 vaccine substrain-specific envelope protein epitope alters the pathogenesis of yellow fever virus in mice . Virology 244, 59–65.

    PubMed  CAS  Google Scholar 

  • Salminen, A., Wahlberg, J.M., Lobigs, M., Liljestrom, P., and Garoff, H. (1992). Membrane fusion process of Semliki Forest virus . II: Cleavage-dependent reorganization of the spike protein complex controls virus entry. J Cell Biol 116, 349–357.

    PubMed  CAS  Google Scholar 

  • Samuel, M.A., and Diamond, M.S. (2006). Pathogenesis of West Nile virus infection: a balance between virulence, innate and adaptive immunity, and viral evasion . J Virol 80, 9349–9360.

    PubMed  CAS  Google Scholar 

  • Sanchez, M.D., Pierson, T.C., McAllister, D., Hanna, S.L., Puffer, B.A., Valentine, L.E., Murtadha, M.M., Hoxie, J.A., and Doms, R.W. (2005). Characterization of neutralizing antibodies to West Nile virus. Virology 336, 70–82.

    PubMed  CAS  Google Scholar 

  • Schonning, K., Lund, O., Lund, O.S., and Hansen, J.E. (1999). Stoichiometry of monoclonal antibody neutralization of T-cell line-adapted human immunodeficiency virus type 1 .J Virol 73, 8364–8370.

    PubMed  CAS  Google Scholar 

  • Sejvar, J.J. (2007). The long-term outcomes of human West Nile virus infection. Clin Infect Dis 44, 1617–1624.

    PubMed  Google Scholar 

  • Serafin, I.L., and Aaskov, J.G. (2001). Identification of epitopes on the envelope (E) protein of dengue 2 and dengue 3 viruses using monoclonal antibodies . Arch Virol 146, 2469–2479.

    PubMed  CAS  Google Scholar 

  • Shepherd, C.M., Borelli, I.A., Lander, G., Natarajan, P., Siddavanahalli, V., Bajaj, C., Johnson, J.E., BrooksIII, C.L., , and Reddy, V.S. (2006). VIPERdb: a relational database for structural virology. Nucleic Acids Res 34, D386–D389.

    PubMed  CAS  Google Scholar 

  • Shimoni, Z., Niven, M.J., Pitlick, S., and Bulvik, S. (2001). Treatment of West Nile virus encephalitis with intravenous immunoglobulin. Emerg Infect Dis 7, 759.

    PubMed  CAS  Google Scholar 

  • Shu, P.Y., Chen, L.K., Chang, S.F., Yueh, Y.Y., Chow, L., Chien, L.J., Chin, C., Lin, T.H., and Huang, J.H. (2000). Dengue NS1-specific antibody responses: isotype distribution and serotyping in patients with dengue fever and dengue hemorrhagic fever . J Med Virol 62, 224–232.

    PubMed  CAS  Google Scholar 

  • Simmons, C.P., Chau, T.N., Thuy, T.T., Tuan, N.M., Hoang, D.M., Thien, N.T., Lien le, B., Quy, N.T., Hieu, N.T., Hien, T.T., et-al. (2007). Maternal antibody and viral factors in the pathogenesis of dengue virus in infants . J Infect Dis 196, 416–424.

    PubMed  Google Scholar 

  • Spector, S.L., and Tauraso, N.M. (1969). Yellow fever virus. II. Factors affecting the plaque neutralization test. Appl Microbiol 18, 736–743.

    PubMed  CAS  Google Scholar 

  • Stadler, K., Allison, S.L., Schalich, J., and Heinz, F.X. (1997). Proteolytic activation of tick-borne encephalitis virus by furin. J Virol 71, 8475–8481.

    PubMed  CAS  Google Scholar 

  • Stephens, H.A., Klaythong, R., Sirikong, M., Vaughn, D.W., Green, S., Kalayanarooj, S., Endy, T.P., Libraty, D.H., Nisalak, A., Innis, B.L., et-al. (2002). HLA-A and -B allele associations with secondary dengue virus infections correlate with disease severity and the infecting viral serotype in ethnic Thais . Tissue Antigens 60, 309–318.

    PubMed  CAS  Google Scholar 

  • Stiasny, K., and Heinz, F.X. (2006). Flavivirus membrane fusion. J Gen Virol 87, 2755–2766.

    PubMed  CAS  Google Scholar 

  • Stiasny, K., Kiermayr, S., Holzmann, H., and Heinz, F.X. (2006). Cryptic properties of a cluster of dominant flavivirus cross-reactive antigenic sites . J Virol 80, 9557–9568.

    PubMed  CAS  Google Scholar 

  • Stiasny, K., Brandler, S., Kossl, C., and Heinz, F.X. (2007a). Probing the flavivirus membrane fusion mechanism by using monoclonal antibodies . J Virol 81, 11526–11531.

    CAS  Google Scholar 

  • Stiasny, K., Kossl, C., Lepault, J., Rey, F.A., and Heinz, F.X. (2007b). Characterization of a structural intermediate of flavivirus membrane fusion . PLoS Pathog 3, e20.

    Google Scholar 

  • Sukupolvi-Petty , S., Austin, S.K., Purtha, W.E., Oliphant, T., Nybakken, G.E., Schlesinger, J.J., Roehrig, J.T., .). Type- and sub-complex-specific neutralizing antibodies against domain III of dengue virus type-2 envelope protein recognize adjacent epitopes. J Virol.

    Google Scholar 

  • Takada, A., and Kawaoka, Y. (2003). Antibody-dependent enhancement of viral infection: molecular mechanisms and in vivo implications . Rev Med Virol 13, 387–398.

    PubMed  CAS  Google Scholar 

  • Tassaneetrithep, B., Burgess, T.H., Granelli-Piperno, A., Trumpfheller, C., Finke, J., Sun, W., Eller, M.A., Pattanapanyasat, K., Sarasombath, S., Birx, D.L., et-al. (2003). DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells . J Exp Med 197, 823–829.

    PubMed  CAS  Google Scholar 

  • Taylor, H.P., Armstrong, S.J., and Dimmock, N.J. (1987). Quantitative relationships between an influenza virus and neutralizing antibody. Virology 159, 288–298.

    PubMed  CAS  Google Scholar 

  • Tesh, R.B., Arroyo, J., Travassos Da Rosa, A.P., Guzman, H., Xiao, S.Y., and Monath, T.P. (2002) . Efficacy of killed virus vaccine, live attenuated chimeric virus vaccine, and passive immunization for prevention of West Nile virus encephalitis in hamster model . Emerg Infect Dis 8, 1392–1397.

    PubMed  Google Scholar 

  • Throsby, M., Geuijen, C., Goudsmit, J., Bakker, A.Q., Korimbocus, J., Kramer, R.A., Clijsters-van der Horst, M., de Jong, M., Jongeneelen, M., Thijsse, S., et-al. (2006). Isolation and characterization of human monoclonal antibodies from individuals infected with West Nile Virus. J Virol 80, 6982–6992.

    PubMed  CAS  Google Scholar 

  • Thullier, P., Demangel, C., Bedouelle, H., Megret, F., Jouan, A., Deubel, V., Mazie, J.C., and Lafaye, P. (2001). Mapping of a dengue virus neutralizing epitope critical for the infectiv-ity of all serotypes: insight into the neutralization mechanism . J Gen Virol 82, 1885–1892.

    PubMed  CAS  Google Scholar 

  • van der Schaar, H.M., Rust, M.J., Waarts, B.L., van der Ende-Metselaar, H., Kuhn, R.J., Wilschut, J., Zhuang, X., and Smit, J.M. (2007). Characterization of the early events in dengue virus cell entry by biochemical assays and single-virus tracking . J Virol 81, 12019–12028.

    PubMed  Google Scholar 

  • Vaughn, D.W., Green, S., Kalayanarooj, S., Innis, B.L., Nimmannitya, S., Suntayakorn, S., Endy, T.P., Raengsakulrach, B., Rothman, A.L., Ennis, F.A., et-al. (2000). Dengue viremiatiter, antibody response pattern, and virus serotype correlate with disease severity . J Infect Dis 181, 2–9.

    PubMed  CAS  Google Scholar 

  • Volanakis, J.E. (2002). The role of complement in innate and adaptive immunity. Curr Top Microbiol Immunol 266, 41–56.

    PubMed  CAS  Google Scholar 

  • Volk, D.E., Beasley, D.W., Kallick, D.A., Holbrook, M.R., Barrett, A.D., and Gorenstein, D.G. (2004). Solution structure and antibody binding studies of the envelope protein domain III from the New York strain of West Nile virus . J Biol Chem 279, 38755–38761.

    PubMed  CAS  Google Scholar 

  • Wang, T., Anderson, J.F., Magnarelli, L.A., Wong, S.J., Koski, R.A., and Fikrig, E. (2001). Immunization of mice against West Nile virus with recombinant envelope protein . J Immunol 167, 5273–5277.

    PubMed  CAS  Google Scholar 

  • Yamanaka, A., Kosugi, S., and Konishi, E. (2008). Infection-enhancing and -neutralizing activities of mouse monoclonal antibodies against dengue type 2 and 4 viruses are controlled by complement levels. J Virol 82, 927–937.

    PubMed  CAS  Google Scholar 

  • Yang, K.D., Yeh, W.T., Yang, M.Y., Chen, R.F., and Shaio, M.F. (2001). Antibody-dependent enhancement of heterotypic dengue infections involved in suppression of IFNgamma production. J Med Virol 63, 150–157.

    PubMed  CAS  Google Scholar 

  • Yang, X., Kurteva, S., Lee, S., and Sodroski, J. (2005). Stoichiometry of antibody neutralization of human immunodeficiency virus type 1 . J Virol 79, 3500–3508.

    PubMed  CAS  Google Scholar 

  • Zhang, Y., Corver, J., Chipman, P.R., Zhang, W., Pletnev, S.V., Sedlak, D., Baker, T.S., Strauss, J.H., Kuhn, R.J., and Rossmann, M.G. (2003). Structures of immature flavivirus particles. EMBO J 22, 2604–2613.

    PubMed  CAS  Google Scholar 

  • Zhang, Y., Zhang, W., Ogata, S., Clements, D., Strauss, J.H., Baker, T.S., Kuhn, R.J., and Rossmann, M.G. (2004). Conformational changes of the flavivirus E glycoprotein. Structure 12, 1607–1618.

    PubMed  CAS  Google Scholar 

  • Zhang, Y., Kaufmann, B., Chipman, P.R., Kuhn, R.J., and Rossmann, M.G. (2007). Structure of immature West Nile virus. J Virol 81, 6141–6145.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jost, C.A., Pierson, T.C. (2009). Antibody-Mediated Neutralization of West Nile Virus: Factors that Govern Neutralization Potency. In: West Nile Encephalitis Virus Infection. Emerging Infectious Diseases of the 21st Century. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79840-0_10

Download citation

Publish with us

Policies and ethics