Skip to main content

The Maize Root System: Morphology, Anatomy, and Genetics

  • Chapter
Handbook of Maize: Its Biology

Abstract

Maize root system architecture is determined by distinct embryonic and postembryonic root types that are formed during different phases of development. While embryonically preformed roots dominate the early seedling root system, the adult root stock is determined by an extensive shoot borne root stock. Although the cellular organization of all root types is similar specific mutants imply complex genetic programs that regulate maize root system formation. Recently, the first genes that are involved in shoot borne root formation and root hair formation have been cloned. Moreover, proteome and cell type specific transcriptome analyses gave initial cues on the complex molecular networks involved in maize root system development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbe, E.C. and Stein, O.L. (1954) The origin of the shoot apex in maize: embryogeny. Am. J. Bot 41: 285–293.

    Article  Google Scholar 

  • Aiken, R.M. and Smucker, A.J.M. (1996) Root system regulation of whole plant growth. Annu. Rev. Phytopathol. 34: 325–346.

    Article  CAS  PubMed  Google Scholar 

  • Bais, H.P., Weir, T.L., Perry, L.G., Gilroy, S. and Vivanco, J.M. (2006) The role of root exudates in rhizosphere interactions with plants and other organsims. Annu. Rev. Plant Biol. 57: 233–266.

    Article  CAS  PubMed  Google Scholar 

  • Bell, J.K. and McCully, M.E. (1970) A histological study of lateral root initiation and development in Zea mays Protoplasma 70: 179–205.

    Article  Google Scholar 

  • Brady, S.M., Song, S., Dhugga, K.S., Rafalski, J.A. and Benfey, P.N. (2007) Combining expression and comparative evolutionary analysis. The COBRA gene family. Plant Physiol. 143: 172–187.

    Article  CAS  PubMed  Google Scholar 

  • Charlton, W.A. (1991) Lateral root initiation in plant roots. In: Plant Roots: The Hidden half (Y. Waisel, A. Eshel, U. Kafkafi, eds. Marcel Dekker, New York, pp. 107–128.

    Google Scholar 

  • Chen, J.-G. (2001) Dual auxin signaling pathways control cell elongation and division. J. Plant Growth Regul. 20: 255–264.

    Article  CAS  Google Scholar 

  • Colasanti, J., Tyers, M. and Sundaresan, V. (1991) Isolation and characterization of cDNA clones encoding a functional p34cdc2 homologue from Zea mays. Proc. Natl. Acad. Sci. USA 88: 3377–3381.

    Article  CAS  PubMed  Google Scholar 

  • Colasanti, J., Cho, S.O., Wick, S. and Sundaresan, V. (1993) Localization of the functional p34cdc2 homolog of maize in root tip and stomatal complex cells: association with predicted division sites. Plant Cell 5: 1101–1111

    Article  CAS  PubMed  Google Scholar 

  • Dembinsky, D., Woll, K., Saleem, M., Liu, Y., Fu, Y., Borsuk, L.A., Lamkemeyer, T., Fladerer, C., Madlung, J., Barbazuk, B., Nordheim, A., Nettleton, D., Schnable, P.S., and Hochholdinger, F. (2007) Transcriptomic and proteomic analyses of pericycle cells of the maize ( Zea mays L.) primary root. Plant Physiol. 145: 575–588.

    Article  CAS  PubMed  Google Scholar 

  • Drew, M.C. and Saker, L.R. (1975) Nutrient supply and the growth of the seminal root system in barley. II. Localized, compensatory increases in lateral root growth and rates of nitrate uptake when nitrate supply is restricted to only part of the root system. J. Exp. Bot. 26: 79–90.

    Article  CAS  Google Scholar 

  • Drew, M.C. and Saker, L.R. (1978) Nutrient supply and the growth of the seminal root system in barley. III Compensatory increases in growth of lateral roots, and in rates of phosphate uptake, in response to a localized supply of phosphate. J. Exp. Bot. 109: 435–451.

    Article  Google Scholar 

  • Emerson, R.A., Beadle, G.W. and Fraser, A.C. (1935) A summary of linkage studies in maize. Cornell Univ. Agr. Exp. Stat. Mem. 180: 40–42.

    Google Scholar 

  • Elias, M., Drdova, E., Ziak, D., Bavlnka, B., Hala, M., Cvrckova, F., Soukupova, H. and Zarsky, V. (2003) The exocyst complex in plants. Cell Biol. Int. 27: 199–201.

    Article  CAS  PubMed  Google Scholar 

  • Erdelska, O. and Vidovencova, Z. (1993) Development of adventitious seminal root primordia during embryogenesis. Biologia 48: 85–88.

    Google Scholar 

  • Esau, K. (1965) Plant Anatomy, 2nd edn. John Wiley and Sons, New York.

    Google Scholar 

  • Fahn, A. (1990) Plant Anatomy, 4th edn. Pergamon Press, New York.

    Google Scholar 

  • Feix, G., Hochholdinger, F. and Park, W.J. (2002) Maize root system and genetic analysis of its formation. In: Plant Roots the Hidden half (Y. Waisel, A. Eshel and U. Kafkafi eds.) Marcel Dekker, New York.

    Google Scholar 

  • Feldman, L. (1994) The maize root. In: The Maize Handbook (M. Freeling and V. Walbot eds.) Springer, New York pp. 29–37.

    Google Scholar 

  • Hawes, M.C., Brigham, L.A., Wen, F., Woo, H.H. and Zhu, Y. (1998) Function of root border cells in plant health: pioneers in the rhizosphere. Annu. Rev. Phytopathol. 36: 311–327.

    Article  CAS  PubMed  Google Scholar 

  • Hetz, W., Hochholdinger, F., Schwall, M. and Feix, G. (1996) Isolation and characterisation of rtcs a mutant deficient in the formation of nodal roots. Plant J. 10: 845–857.

    Article  CAS  Google Scholar 

  • Hochholdinger, F. and Feix, G. (1998a) Early post-embryonic root formation is specifically affected in the maize mutant lrt1 Plant J. 16: 247–255.

    Article  Google Scholar 

  • Hochholdinger, F. and Feix, G. (1998b) Cyclin expression is completely suppressed at the site of crown root formation in the nodal region of the maize root mutant rtcs. J. Plant Physiol. 153: 425–429.

    CAS  Google Scholar 

  • Hochholdinger, F. and Feix, G. (1998c) Tiller formation in Gaspe Flint is not affected by the rtcs mutation. Maize Genet. Coop. Newsl. 72: 31–32.

    Google Scholar 

  • Hochholdinger, F., Park, W.J. and Feix, G. (2001) Cooperative action of SLR1 and SLR2 is required for lateral root specific cell-elongation in maize. Plant Physiol. 125: 1529–1539.

    Article  CAS  PubMed  Google Scholar 

  • Hochholdinger, F., Park, W.J., Sauer, M. and Woll, K. (2004a) From weeds to crops: genetic analysis of root development in cereals. Trends Plant Sci. 9: 42–48.

    Article  CAS  Google Scholar 

  • Hochholdinger, F., Woll, K., Sauer, M. and Dembinsky, D. (2004b) Genetic dissection of root formation in maize ( Zea mays) reveals root type specific developmental programs. Ann. Bot 93: 359–368.

    Article  CAS  Google Scholar 

  • Hochholdinger, F., Guo, L. and Schnable, P.S. (2004c) Lateral roots affect the proteome of the primary root of maize ( Zea mays L.). Plant Mol. Biol. 56: 397–412.

    Article  CAS  Google Scholar 

  • Hochholdinger, F., Woll, K., Sauer, M. and Feix, G. (2005a) Functional genomic tools in support of the genetic analysis of root development in maize ( Zea mays L.). Maydica (50th anniversary edition) 50: 437–442.

    Google Scholar 

  • Hochholdinger, F., Woll, K., Guo, L. and Schnable, P.S. (2005b) Analysis of the soluble proteome of maize ( Zea mays L.) primary roots reveals drastic changes in protein composition during early development. Proteomics 18: 4885–4893.

    Article  Google Scholar 

  • Hochholdinger, F., Sauer, M., Dembinsky, D., Hoecker, N., Muthreich, N., Saleem, M. and Liu, Y. (2006) Proteomic dissection of plant development. Proteomics 6: 4076–4083.

    Article  CAS  PubMed  Google Scholar 

  • Hochholdinger, F., Wen, T.J., Zimmermann, R., Chimot-Marolle, P., da Costa e Silva, O., Bruce, W., Lamkey, K.R., Wienand, U. and Schnable, P.S. (2008) The maize ( Zea mays L.) roothairless 3 gene encodes a putative GPI-anchored, monocot-specific, COBRA-like protein that significantly affects grain yield. Plant J. 54: 888–898.

    Article  CAS  PubMed  Google Scholar 

  • Hoppe, D.C., McCully, M.E. and Wenzel, C.L. (1986) The nodal roots of Zea: their development in relation to structural features of the stem. Can. J. Bot. 64: 2524–2537.

    Article  Google Scholar 

  • Hose, E., Clarkson, D.T., Steudle, E., Schreiber, L. and Hartung, W. (2001) The exodermis: a variable apoplastic barrier. J. Exp. Bot. 52: 2245–2264.

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa, H. and Evans, M.L. (1995) Specialized zones of development in roots. Plant Physiol 109: 725–727.

    CAS  PubMed  Google Scholar 

  • Jenkins, M.T. (1930) Heritable characters of maize XXXIV-rootless. J. Hered. 21: 79–80.

    Google Scholar 

  • Jiang, K., Meng, Y.L. and Feldman, L.J. (2003) Quiescent center formation in maize roots is associated with an auxin-regulated oxidizing environment. Development 130: 1429–1438.

    Article  CAS  PubMed  Google Scholar 

  • Kausch, W. (1967) Lebensdauer der Primärwurzel von Monokotyledonen. Naturwissenschaften 54: 475.

    Article  Google Scholar 

  • Kiesselbach, T.A. (1949) The root system. In: The Structure and Reproduction of Corn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor pp. 16–25.

    Google Scholar 

  • Kozinka, V. (1977) Primary seminal root, a permanent part of the root system of Zea mays. L. Biologia 32: 779–786.

    Google Scholar 

  • Lawson, W.E. and Hanway, J.J. (1977) Corn production. In: Corn and Corn Improvement. (G.F. Sprague ed.American Society of Agronomy Publishers, Madison pp. 625–669.

    Google Scholar 

  • Liu, Y., Lamkemeyer, T., Jakob, A., Mi,G., Zhang, F., Nordheim, A. and Hochholdinger, F. (2006) Comparative proteome analyses of maize ( Zea mays L.) primary roots prior to lateral root initiation reveal differential protein expression in the lateral root initiation mutant rum1 Proteomics 6: 4300–4308.

    Article  CAS  Google Scholar 

  • Lynch, J. (1995) Root architecture and plant productivity. Plant Physiol. 109: 7–13.

    CAS  PubMed  Google Scholar 

  • Martin, E.M. and Harris, W.M. (1976) Adventitious root development from the coleoptilar node in Zea mays L. Am. J. Bot. 63: 890–897.

    Article  Google Scholar 

  • McCully, M.E. (1999) Roots in soil: unearthing the complexities of roots and their rhizospheres. Ann. Rev. Plant Physiol. Plant Mol. Biol. 50: 697–718.

    Article  Google Scholar 

  • McCully, M.E. and Canny, M.J. (1985) Localization of translocated 14 C in roots and root exudates of field-grown maize. Physiol. Plant. 65: 380–392.

    Article  CAS  Google Scholar 

  • McCully, M.E. and Canny, M.J. (1988) Pathways and processes of water and nutrient movements in roots. Plant Soil 111: 159–170.

    Article  CAS  Google Scholar 

  • Neuffer, M.G., Coe, E.H and Wessler, S.R. (1997) Mutants of Maize. Cold Spring Harbor Laboratory Press, Woodbury, NY.

    Google Scholar 

  • Paszkowski, U. and Boller, T. (2002) The growth defect of lrt1, a maize mutant lacking lateral roots, can be complemented by symbiotic fungi or high phosphate nutrition. Planta 214: 584–590.

    Article  CAS  PubMed  Google Scholar 

  • Renaudin, J.P., Colasanti, J., Rime, H., Yuan, Z. and Sundaresan, V. (1994) Cloning of four cyclins from maize indicates that higher plants have three structurally distinct groups of mitotic cyclins. Proc. Natl. Acad. Sci. USA 91: 7375–7379.

    Article  CAS  PubMed  Google Scholar 

  • Row, H.C. and Reeder, J.R. (1957) Root-hair development as evidence of relationships among genera of gramineae. Am. J. Bot. 44: 596–601.

    Article  Google Scholar 

  • Sass, J.E. (1977) Morphology. In: Corn and Corn Improvement (G.F. Sprague ed.) American Society of Agronomy Publishers, Madison pp. 89–110.

    Google Scholar 

  • Sauer, M., Jakob, A., Nordheim, A. and Hochholdinger, F. (2006) Proteomic analysis of shoot-borne root initiation in maize ( Zea mays L.). Proteomics 6: 2530–2541.

    Article  CAS  PubMed  Google Scholar 

  • Schiefelbein, J.W. (2003) Cell-fate specification in the epidermis: a common patterning mechanism in the root and shoot. Curr. Opin. Plant Biol. 6: 74–78.

    Article  CAS  PubMed  Google Scholar 

  • Schnable, P.S., Hochholdinger, F. and Nakazono, M. (2004) Global expression profiling applied to plant development. Curr. Opin. Plant Biol. 7: 50–56.

    Article  CAS  PubMed  Google Scholar 

  • Taramino, G., Sauer, M., Stauffer, J., Multani, D., Niu, X., Sakai, H. and Hochholdinger, F. (2007) The rtcs gene in maize ( Zea mays L.) encodes a lob domain protein that is required for postem-bryonic shoot-borne and embryonic seminal root initiation. Plant J. 50: 649–659.

    Article  CAS  PubMed  Google Scholar 

  • Tillich, H.J. (1977) Vergleichend morphologische Untersuchungen zur Identität der Gramineen-Primärwurzel. Flora 166: 415–421.

    Google Scholar 

  • Tillich, H.J. (1992) Bauprinzipien und Evolutionslinien bei monokotylen Keimpflanzen. Bot. Jahrb. System 114: 91–132.

    Google Scholar 

  • Varney, G.T. and McCully, M.E. (1991) The branch roots of Zea. II. Developmental loss of the apical meristem in field-grown roots. New Phytol. 118: 535–546.

    Article  Google Scholar 

  • Varney, G.T. and Canny, M.J. (1993) Rates of water uptake into the mature root system of maize plants. New Phytol. 123: 775–786.

    Article  Google Scholar 

  • Varney, G.T., Canny, M.J., Wang, X.L. and McCully, M.E. (1991) The branch roots of Zea. I. Firstorder branches, their number, sizes and division into classes. Ann. Bot. 67: 357–364.

    Google Scholar 

  • Wang, X.L., Canny, M.J. and McCully, M.E. (1991) The water status of the roots of soil-grown maize in relation to the maturity of their xylem. Physiol. Plant 82: 157–162.

    Article  Google Scholar 

  • Wang, X.L., McCully, M.E. and Canny, M.J. (1994) The branch roots of Zea. IV. The maturation and openness of xylem conduits in first-order branches of soil-grown roots. New Phytol. 126: 21–29.

    Article  Google Scholar 

  • Wang, X.L., McCully, M.E. and Canny, M.J. (1995) Branch roots of Zea. V. Structural features that may influence water and nutrient transport. Bot. Acta 108: 209–219.

    Google Scholar 

  • Watt, M., Silk, W.K. and Passioura, J.B. (2006) Rates of root and organism growth, soil conditions, and temporal and spatial development of the rhizosphere. Ann. Bot. 97: 839–855.

    Article  PubMed  Google Scholar 

  • Wen, T.J. and Schnable, P.S. (1994) Analyses of mutants of three genes that influence root hair development in Zea mays (Gramineae) suggest that root hairs are dispensable. Am. J. Bot. 81: 833–843.

    Article  Google Scholar 

  • Wen, T.J., Hochholdinger, F., Sauer, M., Bruce, W. and Schnable, P.S. (2005) The roothairless1 gene of maize ( Zea mays) encodes a homolog of sec3, which is involved in polar exocytosis. Plant Physiol. 138: 1637–1643.

    Article  CAS  PubMed  Google Scholar 

  • Woll, K., Borsuk, L., Stransky, H., Nettleton, D., Schnable, P.S. and Hochholdinger, F. (2005) Isolation, characterization and pericycle specific transcriptome analyses of the novel maize ( Zea mays L.) lateral and seminal root initiation mutant rum1. Plant Physiol. 139: 1255–1267.

    Article  CAS  PubMed  Google Scholar 

  • Yamashita, T. (1991) Ist die Primärwurzel bei Samenpflanzen exogen oder endogen? Beitr. Biol. Pflanz. 66: 371–391.

    Google Scholar 

  • Yang, T. and Poovaiah, B.W. (2000) Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action. J. Biol. Chem. 275: 3137–3143.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Root research in FHs laboratory is supported by the Deutsche Forschung-sgemeinschaft (DFG) grants HO2249/4; HO2249/6; SFB446 B16 and a research grant by DuPont Crop Science.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hochholdinger, F. (2009). The Maize Root System: Morphology, Anatomy, and Genetics. In: Bennetzen, J.L., Hake, S.C. (eds) Handbook of Maize: Its Biology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79418-1_8

Download citation

Publish with us

Policies and ethics