Skip to main content

Light Signal Transduction Networks in Maize

  • Chapter
Handbook of Maize: Its Biology

Abstract

Light signal transduction networks integrate environmental signals with endogenous developmental programs. Several photoreceptors, including phytochromes, cryptochromes, and phototropins as well as some of their signaling partners have been characterized in higher plants. Recent studies in maize have revealed the importance of phytochromes in the regulation of several agronomi-cally important traits, indicating that the manipulation of light response may prove fruitful in enhancing maize yields. However, little is known of the molecular components of light signal transduction pathways in maize, making it difficult to dissect the pathway using reverse genetic or association mapping techniques. Here, we summarize our current understanding of light response in maize and discuss strategies for enhancing agronomic performance through the manipulation of light signal transduction pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Sady, B., W. Ni, S. Kircher, E. Schafer and P.H. Quail (2006) Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated degradation. Mol Cell, 23: 439–446.

    CAS  PubMed  Google Scholar 

  • Andel, F. 3rd, J.C. Lagarias and R.A. Mathies (1996) Resonance raman analysis of chromophore structure in the lumi-R photoproduct of phytochrome. Biochemistry, 35: 15997–16008.

    CAS  PubMed  Google Scholar 

  • Andrieu, B., J. Hillier and C. Birch (2006) Onset of sheath extension and duration of lamina extension are major determinants of the response of maize lamina length to plant density. Ann Bot ( Lond), 98: 1005–1016.

    PubMed  Google Scholar 

  • Ballare, C.L. (1999) Keeping up with the neighbours: phytochrome sensing and other signalling mechanisms. Trends Plant Sci, 4: 97–102.

    PubMed  Google Scholar 

  • Ballare, C.L. and J.J. Casal (2000) Light signals perceived by crop and weed plants. Field Crops Res, 67: 149–160.

    Google Scholar 

  • Ballare, C.L., A.L. Scopel and R.A. Sanchez (1990) Far-red radiation reflected from adjacent leaves: an early signal of competition in plant canopies. Science, 247: 329–332.

    CAS  PubMed  Google Scholar 

  • Banerjee, R. and A. Batschauer (2005) Plant blue-light receptors. Planta, 220: 498–502.

    CAS  PubMed  Google Scholar 

  • Bansal, K.C., J.F. Viret, J. Haley, B.M. Khan, R. Schantz and L. Bogorad (1992) Transient expression from cab-m1and rbcS-m3promoter sequences is different in mesophyll and bundle sheath cells in maize leaves. Proc Natl Acad Sci USA, 89: 3654–3658.

    CAS  PubMed  Google Scholar 

  • Baskin, T.I., J. McGuffin and B.S. Sonderman (1999) On the weak phototropic response of the maize variety, strawberry popcorn. Maydica, 44: 119–125.

    Google Scholar 

  • Beggs, C.J. and E. Wellman (1985) Analysis of light-controlled anthocyanin formation in coleop-tiles of Zea maysL.: the role of UV-B, blue, red and far-red light. Photochem Photobiol, 41: 481–486.

    CAS  Google Scholar 

  • Bjorn, L.O. and Vogelmann (1994) Quantification of light. In: Photomorphogenesis In Plants (Kendrick, R.E. and Kronenberg, G.H.M., eds). Kluwer Academics, Netherlands.

    Google Scholar 

  • Borras, L., G.A. Maddonni and M.E. Otegui (2003) Leaf senescence in maize hybrids: plant population, row spacing and kernel set effects. Field Crop Res, 82: 13–26.

    Google Scholar 

  • Borthwick, H.A., S.B. Hendricks, M.W. Parker, E.H. Toole and V.K. Toole (1952) A reversible photoreaction controlling seed germination. Proc Natl Acad Sci USA, 38: 662–666.

    CAS  PubMed  Google Scholar 

  • Brutnell, T.P., R.J. Sawers, A. Mant and J.A. Langdale (1999) BUNDLE SHEATH DEFECTIVE2, a novel protein required for post-translational regulation of the rbcLgene of maize. Plant Cell, 11: 849–864.

    CAS  PubMed  Google Scholar 

  • Buchsenschutz, K., I. Marten, D. Becker, K. Philippar, P. Ache and R. Hedrich (2005) Differential expression of K+ channels between guard cells and subsidiary cells within the maize stomatal complex. Planta, 222: 968–976.

    PubMed  Google Scholar 

  • Carabelli, M., G. Morelli, G. Whitelam and I. Ruberti (1996) Twilight-zone and canopy shade induction of the Athb-2homeobox gene in green plants. Proc Natl Acad Sci USA, 93: 3530–3535.

    CAS  PubMed  Google Scholar 

  • Casati, P. and V. Walbot (2003) Gene expression profiling in response to ultraviolet radiation in maize genotypes with varying flavonoid content. Plant Physiol, 132: 1739–1754.

    CAS  PubMed  Google Scholar 

  • Casati, P., M.F. Drincovich, G.E. Edwards and C.S. Andreo (1999) Regulation of the expression of NADP-malic enzyme by UV-B, red and far-red light in maize seedlings. Braz J Med Biol Res, 32: 1187–1193.

    CAS  PubMed  Google Scholar 

  • Cerdan, P.D. and J. Chory (2003) Regulation of flowering time by light quality. Nature, 423:881–885.

    CAS  PubMed  Google Scholar 

  • Chen, M., J. Chory and C. Fankhauser (2004) Light signal transduction in higher plants. Annu Rev Genet, 38: 87–117.

    CAS  PubMed  Google Scholar 

  • Childs, K.L., F.R. Miller, M.M. Cordonnier-Pratt, L.H. Pratt, P.W. Morgan and J.E. Mullet (1997)The sorghum photoperiod sensitivity gene, Ma3, encodes a phytochrome B. Plant Physiol113: 611–619.

    CAS  PubMed  Google Scholar 

  • Christie, J.M. (2007) Phototropin blue-light receptors. Annu Rev Plant Biol, 58: 21–45.

    CAS  PubMed  Google Scholar 

  • Clack, T., S. Mathews and R.A. Sharrock (1994) The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYDand PHYE. Plant Mol Biol, 25: 413–427.

    CAS  PubMed  Google Scholar 

  • Cone, K.C., F.A. Burr and B. Burr (1986) Molecular analysis of the maize anthocyanin regulatory locus C1 Proc Natl Acad Sci USA, 83: 9631–9635.

    CAS  Google Scholar 

  • Cone, K.C., S.M. Cocciolone, C.A. Moehlenkamp, T. Weber, B.J. Drummond, L.A. Tagliani, B.A.Bowen and G.H. Perrot (1993) Role of the regulatory gene plin the photocontrol of maize anthocyanin pigmentation. Plant Cell, 5: 1807–1816.

    CAS  PubMed  Google Scholar 

  • Darwin, C. (1880) The Power of Movement in Plants John Murray, London.

    Google Scholar 

  • Devlin, P.F., M.J. Yanovsky and S.A. Kay (2003) A genomic analysis of the shade avoidance response in Arabidopsis. Plant Physiol, 133: 1617–1629.

    CAS  PubMed  Google Scholar 

  • Dooner, H.K., T.P. Robbins and R.A. Jorgensen (1991) Genetic and developmental control of anthocyanin biosynthesis. Annu Rev Genet, 25: 173–199.

    CAS  PubMed  Google Scholar 

  • Drincovich, M.F., P. Casati, C.S. Andreo, R. Donahue and G.E. Edwards (1998) UV-B induction of NADP-malic enzyme in etiolated and green maize seedlings. Plant Cell Environ, 21: 63–70.

    CAS  Google Scholar 

  • Duek, P.D. and C. Fankhauser (2005) bHLH class transcription factors take centre stage in phyto-chrome signalling. Trends Plant Sci, 10: 51–54.

    CAS  PubMed  Google Scholar 

  • Duvick, D.N. (1997) What is yield? In: Developing Drought and Low N-Tolerant Maize (G.O.Edmeades, ed). CIMMYT, Mexico: El Batan, pp. 332–335.

    Google Scholar 

  • Edwards, G.E. and D.A. Walker (1983) C3, C4: Mechanisms of Cellular and Environmental Regulation of Photosynthesis Oxford: Blackwell scientific publications.

    Google Scholar 

  • Finlayson, S.A., Lee, I.-J. and J.W. Morgan (1998) Phytochrome B and the regulation of circadian ethylene production in sorghum. Plant Physiol, 116: 17–25.

    CAS  Google Scholar 

  • Finlayson, S.A., I.J. Lee, J.E. Mullet and P.W. Morgan (1999) The mechanism of rhythmic ethyl-ene production in sorghum. The role of phytochrome B and simulated shading. Plant Physiol119: 1083–1089.

    CAS  PubMed  Google Scholar 

  • Finlayson, S.A., D.B. Hays and P.W. Morgan (2007) phyB-1sorghum maintains responsiveness to simulated shade, irradiance and red light: far-red light. Plant Cell Environ, 30: 952–962.

    CAS  PubMed  Google Scholar 

  • Fischer, A.J., N.C. Rockwell, A.Y. Jang, L.A. Ernst, A.S. Waggoner, Y. Duan, H. Lei and J.C.Lagarias (2005) Multiple roles of a conserved GAF domain tyrosine residue in cyanobacterial and plant phytochromes. Biochemistry, 44: 15203–15215.

    CAS  PubMed  Google Scholar 

  • Folta, K.M. and S.A. Maruhnich (2007) Green light: a signal to slow down or stop. J Exp Bot, 58:3099–3111.

    CAS  PubMed  Google Scholar 

  • Franklin, K.A. and G.C. Whitelam (2005) Phytochromes and shade-avoidance responses in plants Ann Bot ( Lond), 96: 169–175.

    CAS  PubMed  Google Scholar 

  • Franklin, K.A., U. Praekelt, W.M. Stoddart, O.E. Billingham, K.J. Halliday and G.C. Whitelam (2003) Phytochromes B, D, and E act redundantly to control multiple physiological responses in Arabidopsis. Plant Physiol, 131: 1340–1346.

    CAS  PubMed  Google Scholar 

  • Fuchs, I., K. Philippar, K. Ljung, G. Sandberg and R. Hedrich (2003) Blue light regulates an auxin-induced K+-channel gene in the maize coleoptile. Proc Natl Acad Sci USA, 100:11795–11800.

    CAS  PubMed  Google Scholar 

  • Garg, A.K., R.J. Sawers, H. Wang, J.K. Kim, J.M. Walker, T.P. Brutnell, M.V. Parthasarathy, R.D. Vierstra and R.J. Wu (2006) Light-regulated overexpression of an Arabidopsis phytochrome A gene in rice alters plant architecture and increases grain yield. Planta, 223: 627–636.

    CAS  PubMed  Google Scholar 

  • Gavazzi, G., M. Mereghetti, G. Consonni and C. Tonelli (1990) Sn, a light-dependent and tissue-specific gene of maize: the genetic basis of its instability. Genetics, 125: 193–199.

    CAS  PubMed  Google Scholar 

  • Goff, S.A., D. Ricke, T.H. Lan, G. Presting, R. Wang, M. Dunn, J. Glazebrook, A. Sessions, P. Oeller, H. Varma, D. Hadley, D. Hutchison, C. Martin, F. Katagiri, B.M. Lange, T. Moughamer, Y. Xia, P. Budworth, J. Zhong, T. Miguel, U. Paszkowski, S. Zhang, M. Colbert, W.L. Sun, L. Chen, B. Cooper, S. Park, T.C. Wood, L. Mao, P. Quail, R. Wing, R. Dean, Y. Yu, A. Zharkikh, R. Shen, S. Sahasrabudhe, A. Thomas, R. Cannings, A. Gutin, D. Pruss, J. Reid, S. Tavtigian, J. Mitchell, G. Eldredge, T. Scholl, R.M. Miller, S. Bhatnagar, N. Adey, T. Rubano, N. Tusneem, R. Robinson, J. Feldhaus, T. Macalma, A. Oliphant and S. Briggs (2002) A draft sequence of the rice genome ( Oryza sativa L. ssp. japonica). Science, 296: 92–100.

    CAS  PubMed  Google Scholar 

  • Grotewold, E., M. Chamberlin, M. Snook, B. Siame, L. Butler, J. Swenson, S. Maddock, G. St Clair and B. Bowen (1998) Engineering secondary metabolism in maize cells by ectopic expression of transcription factors. Plant Cell, 10: 721–740.

    CAS  PubMed  Google Scholar 

  • Hall, L.N., L. Rossini, L. Cribb and J.A. Langdale (1998a) GOLDEN 2: a novel transcriptional regulator of cellular differentiation in the maize leaf. Plant Cell, 10: 925–936.

    CAS  Google Scholar 

  • Hall, L.N., R. Roth, T.P. Brutnell and J.A. Langdale (1998b) Cellular differentiation in the maize leaf is disrupted by bundle sheath defective mutations. Symp Soc Exp Biol, 51: 27–31.

    CAS  Google Scholar 

  • Halliday, K. and C. Fankhauser (2003) Phytochrome-hormonal signalling networks. New Phytol 157: 449–463.

    CAS  Google Scholar 

  • Hashemi, A.M., S.J. Herbert and D.H. Putnam (2005) Yield response of corn to crowding stress. Agron J, 97: 839–846.

    Google Scholar 

  • Hatch, M.D. (1971) The C4-pathway of photosynthesis: evidence for an intermediate pool of carbon dioxide and the identity of the donor C4 acid. Biochem J, 125: 425–432.

    CAS  PubMed  Google Scholar 

  • Hirose, F., Shinomura, T., Tanabata, T., Shimada, H. and M. Takano (2006) Involvement of rice cryptochromes in de-etiolation responses and flowering. Plant Cell Physiol, 47: 915–925.

    CAS  PubMed  Google Scholar 

  • Hudson, M. (2007) Photoreceptor biotechnology. In: Light and Plant Development(Whitelam, G.C. and Halliday, K.J., eds). Blackwell, Oxford.

    Google Scholar 

  • Huq, E. and P.H. Quail (2002) PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO J, 21: 2441–2450.

    CAS  PubMed  Google Scholar 

  • Huq, E., B. Al-Sady, M. Hudson, C. Kim, K. Apel and P.H. Quail (2004) Phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyll biosynthesis. Science, 305: 1937–1941.

    CAS  PubMed  Google Scholar 

  • Iino, M. (1990) Phototropism: mechanism and ecological implications. Plant Cell Environ, 13: 633–650.

    Google Scholar 

  • Ishikawa, R., Tamaki, S., Yokoi, S., Inagaki, N., Shinomura, T., Takano, M. and K. Shimamoto (2005) Suppression of the floral activator Hd3ais the principal cause of the night break effect in rice. Plant Cell, 17: 3326–3336.

    CAS  PubMed  Google Scholar 

  • Izaguirre, M.M., C.A. Mazza, M. Biondini, I.T. Baldwin and C.L. Ballare (2006) Remote sensing of future competitors: impacts on plant defenses. Proc Natl Acad Sci USA, 103: 7170–7174.

    CAS  PubMed  Google Scholar 

  • Izawa, T., T. Oikawa, S. Tokutomi, K. Okuno and K. Shimamoto (2000) Phytochromes confer the photoperiodic control of flowering in rice (a short-day plant). Plant J, 22: 391–399.

    CAS  PubMed  Google Scholar 

  • Jeong, D.H., S. Lee, S.L. Kim, I. Hwang and G. An (2007) Regulation of brassinosteroid responses by phytochrome B in rice. Plant Cell Environ, 30: 590–599.

    CAS  PubMed  Google Scholar 

  • Jiao, Y., L. Ma, E. Strickland and X.W. Deng (2005) Conservation and divergence of light-regulated genome expression patterns during seedling development in rice and Arabidopsis. Plant Cell, 17: 3239–3256.

    CAS  PubMed  Google Scholar 

  • Jiao, Y., O.S. Lau and X.W. Deng (2007) Light-regulated transcriptional networks in higher plants. Nat Rev Genet, 8: 217–230.

    CAS  PubMed  Google Scholar 

  • Jordan, D.B. and W.L. Ogren (1984) The CO2/O2 specificity of ribulose 1,5-bisphoshate carboxy-lase/oxygenase. Planta, 161: 308–313.

    CAS  Google Scholar 

  • Kasperbauer, M.J. and D.L. Karlen (1994) Plant spacing and reflected far-red light effects on phytochrome-regulated photosynthate allocation in corn seedlings. Crop Sci, 34: 1564–1569.

    CAS  Google Scholar 

  • Kebrom, T.H., Burson, B.L. and S.A. Finlayson (2006) Phytochrome B represses Teosinte Branched1expression and induces sorghum axillary bud outgrowth in response to light signals. Plant Physiol, 140: 1109–1117.

    CAS  PubMed  Google Scholar 

  • Kebrom, T. and T.P. Brutnell (2007) The molecular analysis of the shade avoidance syndrome in the grasses has begun. J Exp Bot, 58: 3079–3089.

    CAS  PubMed  Google Scholar 

  • Kim, J., H. Yi, G. Choi, B. Shin and P.S. Song (2003) Functional characterization of phytochrome interacting factor 3 in phytochrome-mediated light signal transduction. Plant Cell, 15:2399–2407.

    CAS  PubMed  Google Scholar 

  • Kircher, S., L. Kozma-Bognar, L. Kim, E. Adam, K. Harter, E. Schafer and F. Nagy (1999) Light quality-dependent nuclear import of the plant photoreceptors phytochrome A and B. Plant Cell, 11: 1445–1456.

    CAS  PubMed  Google Scholar 

  • Klar, T., R. Pokorny, J. Moldt, A. Batschauer and L.O. Essen (2007) Cryptochrome 3 from Arabidopsis thaliana: structural and functional analysis of its complex with a folate light antenna. J Mol Biol, 366: 954–964.

    CAS  PubMed  Google Scholar 

  • Kong, S.-G., D.-S. Lee, S.-N. Kwak, J.-K. Kim, J.-K. Sohn and I.-S. Kim (2004) Characterization of sunlight-grown transgenic rice plants expressing Arabidopsis phytochrome A. Mol Breeding, 14: 35–45.

    CAS  Google Scholar 

  • Koornneef, M., E. Rolff and C.J.P. Spruitt (1980) Genetic control of light-induced hypocotyl elongation in Arabidopsis thalianaL. Z Pflanzenphysiol, 100: 147–160.

    Google Scholar 

  • Kreuzaler, F., H. Ragg, E. Fautz, D.N. Kuhn and K. Hahlbrock (1983) UV-induction of chalcone synthase mRNA in cell suspension cultures of Petroselinum hortense. Proc Natl Acad Sci USA80: 2591–2593.

    CAS  PubMed  Google Scholar 

  • Lagarias, J.C. and D.M. Lagarias (1989) Self-assembly of synthetic phytochrome holoprotein in vitro. Proc Natl Acad Sci USA, 86: 5778–5780.

    CAS  PubMed  Google Scholar 

  • Lagarias, J.C., Kelly, J.M., Cyr, K.L. and W.O. Smith Jr (1987) Comparative photochemical analysis of highly purified 124 kilodalton oat and rye phytochromes in vitro. Photochem Photobiol, 46: 5–13.

    CAS  Google Scholar 

  • Langdale, J.A., I. Zelitch, E. Miller and T. Nelson (1988) Cell position and light influence C4 versus C3 patterns of photosynthetic gene expression in maize. EMBO J, 7: 3643–3651.

    CAS  PubMed  Google Scholar 

  • Lin, C. (2002) Blue light receptors and signal transduction. Plant Cell, 14(Suppl): S207–S225.

    CAS  Google Scholar 

  • Maddonni, G.A. and M.E. Otegui (2006) Intra-specific competition in maize: contribution of extreme plant hierarchies to grain yield, grain yield component and kernel composition. Field Crops Res, 97 : 155 – 166.

    Google Scholar 

  • Maddonni, G.A., M. Chelle, J.-L. Drouet and B. Andrieu (2001a) Light interception of contrasting azimuth canopies under square and rectangular plant spatial distributions: simulations and crop measurements. Field Crops Res, 70: 1–13.

    Google Scholar 

  • Maddonni, G.A., M.E. Otegui and A.G. Cirilo (2001b) Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation. Field Crops Res, 71: 181–193.

    Google Scholar 

  • Maddonni, G.A., M.E. Otegui, B. Andrieu, M. Chelle and J.J. Casal (2002) Maize leaves turn away from neighbors. Plant Physiol, 130: 1181–1189.

    CAS  PubMed  Google Scholar 

  • Mancinelli, A. (1994) The physiology of phytochrome action. In: Photomorphogenesis in Plants(R.E. Kendrick and G.H.M. Kronenberg, eds). Dordrecht: Kluwer, The Netherlands.

    Google Scholar 

  • Markelz, N.H., D.E. Costich and T.P. Brutnell (2003) Photomorphogenic responses in maize seedling development. Plant Physiol, 133: 1578–1591.

    CAS  PubMed  Google Scholar 

  • Martinez-Garcia, J.F., E. Huq and P.H. Quail (2000) Direct targeting of light signals to a promoter element-bound transcription factor. Science, 288: 859–863.

    CAS  PubMed  Google Scholar 

  • Mathews, S. (2006) Phytochrome-mediated development in land plants: red light sensing evolves to meet the challenges of changing light environments. Mol Ecol, 15: 3483–3503.

    CAS  PubMed  Google Scholar 

  • Mathews, S. and M.J. Donoghue (1999) The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science, 286: 947–950.

    CAS  PubMed  Google Scholar 

  • Mathews, S. and R.A. Sharrock (1996) The phytochrome gene family in grasses (Poaceae): a phylogeny and evidence that grasses have a subset of the loci found in dicot angiosperms. Mol Biol Evol, 13: 1141–1150.

    CAS  PubMed  Google Scholar 

  • Mathews, S. and R.A. Sharrock (1997) Phytochrome gene diversity. Plant Cell Environ, 20:666–671.

    CAS  Google Scholar 

  • Matsushita, T., N. Mochizuki and A. Nagatani (2003) Dimers of the N-terminal domain of phyto-chrome B are functional in the nucleus. Nature, 424: 571–574.

    CAS  PubMed  Google Scholar 

  • Monte, E., B. Al-Sady, P. Leivar and P.H. Quail (2007) Out of the dark: how the PIFs are unmasking a dual temporal mechanism of phytochrome signalling. J Exp Bot, 58: 3125–3133.

    CAS  PubMed  Google Scholar 

  • Montgomery, B.L. and J.C. Lagarias (2002) Phytochrome ancestry: sensors of bilins and light. Trends Plant Sci, 7: 357–366.

    CAS  PubMed  Google Scholar 

  • Morelli, G. and I. Ruberti (2000) Shade avoidance responses. Driving auxin along lateral routes. Plant Physiol, 122: 621–626.

    CAS  PubMed  Google Scholar 

  • Multani, D.S., S.P. Briggs, M.A. Chamberlin, J.J. Blakeslee, A.S. Murphy and G.S. Johal (2003) Loss of an MDR transporter in compact stalks of maize br2and sorghum dw3mutants. Science, 302: 81–84.

    CAS  PubMed  Google Scholar 

  • Nakamura, Y., T. Kato, T. Yamashino, M. Murakami and T. Mizuno (2007) Characterization of a set of phytochrome-interacting factor-like bHLH proteins in Oryza sativa. Biosci Biotechnol Biochem, 71: 1183–1191.

    CAS  PubMed  Google Scholar 

  • Noh, B., A. Bandyopadhyay, W.A. Peer, E.P. Spalding and A.S. Murphy (2003) Enhanced gravi-and phototropism in plant mdrmutants mislocalizing the auxin efflux protein PIN1. Nature 423: 999–1002.

    CAS  PubMed  Google Scholar 

  • O'Bryan, K., S. Paszkiewicz and S. Butzen (2006) Corn hybrid response to plant population Crop Insights, Pioneer Hi-bred International, Inc., Johnston, Iowa, 16

    Google Scholar 

  • Oh, E., J. Kim, E. Park, J.I. Kim, C. Kang and G. Choi (2004) PIL5, a phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana. Plant Cell, 16: 3045–3058.

    CAS  PubMed  Google Scholar 

  • Oh, E., S. Yamaguchi, J. Hu, J. Yusuke, B. Jung, I. Paik, H.S. Lee, T.P. Sun, Y. Kamiya and G. Choi (2007) PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAIand RGApromoters in Arabidopsis seeds. Plant Cell, 19: 1192–1208.

    CAS  PubMed  Google Scholar 

  • Pagano, E. and G.A. Maddonni (2007) Intra-specific competition in maize: early established hierarchies differ in plant growth and biomass partitioning to the ear around silking. Field Crops Res, 101: 306–320.

    Google Scholar 

  • Pao, C.I. and P.W. Morgan (1986) Genetic regulation of development in Sorghum bicolor: I. Role of the maturity genes. Plant Physiol, 82: 575–580.

    CAS  PubMed  Google Scholar 

  • Parks, B.M., K.M. Folta and E.P. Spalding (2001) Photocontrol of stem growth. Curr Opin Plant Biol, 4: 436–440.

    CAS  PubMed  Google Scholar 

  • Paz-Ares, J., U. Wienand, P.A. Peterson and H. Saedler (1986) Molecular cloning of the c locus of Zea mays: a locus regulating the anthocyanin pathway. EMBO J, 5: 829–833.

    CAS  PubMed  Google Scholar 

  • Petroni, K., E. Cominelli, G. Consonni, G. Gusmaroli, G. Gavazzi and C. Tonelli (2000) The developmental expression of the maize regulatory gene Hopidetermines germination-dependent anthocyanin accumulation. Genetics, 155: 323–336.

    CAS  PubMed  Google Scholar 

  • Philippar, K., I. Fuchs, H. Luthen, S. Hoth, C.S. Bauer, K. Haga, G. Thiel, K. Ljung, G. Sandberg, M. Bottger, D. Becker and R. Hedrich (1999) Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism. Proc Natl Acad Sci USA, 96: 12186–12191.

    CAS  PubMed  Google Scholar 

  • Piazza, P., A. Procissi, G.I. Jenkins and C. Tonelli (2002) Members of the c1/pl1 regulatory gene family mediate the response of maize aleurone and mesocotyl to different light qualities and cytokinins. Plant Physiol, 128: 1077–1086.

    CAS  PubMed  Google Scholar 

  • Pierik, R., M.L. Cuppens, L.A. Voesenek and E.J. Visser (2004) Interactions between ethylene and gibberellins in phytochrome-mediated shade avoidance responses in tobacco. Plant Physiol 136: 2928–2936.

    CAS  PubMed  Google Scholar 

  • Pilu, R., P. Piazza, K. Petroni, A. Ronchi, C. Martin and C. Tonelli (2003) pl-bol3, a complex allele of the anthocyanin regulatory pl1 locus that arose in a naturally occurring maize population. Plant J, 36: 510–521.

    CAS  PubMed  Google Scholar 

  • Procissi, A., S. Dolfini, A. Ronchi and C. Tonelli (1997) Light-dependent spatial and temporal expression of pigment regulatory genes in developing maize seeds. Plant Cell 9 : 1547–1557.

    CAS  PubMed  Google Scholar 

  • Purcell, M., Y.M. Mabrouk and L. Bogorad (1995) Red/far-red and blue light-responsive regions of maize rbcS-m3 are active in bundle sheath and mesophyll cells, respectively. Proc Natl Acad Sci USA, 92: 11504–11508.

    CAS  PubMed  Google Scholar 

  • Qiu, Q.S., S.C. Hardin, J. Mace, T.P. Brutnell and S.C. Huber (2007) Light and metabolic signals control the selective degradation of sucrose synthase in maize leaves during deetiolation. Plant Physiol, 144: 468–478.

    CAS  PubMed  Google Scholar 

  • Quail, P.H., M.T. Boylan, B.M. Parks, T.W. Short, Y. Xu and D. Wagner (1995) Phytochromes: photosensory perception and signal transduction. Science, 268: 675–680.

    CAS  PubMed  Google Scholar 

  • Rajcan, I., Chandler, K.J. and C.J. Swanton (2004) Red-far-red ratio of reflected light: a hypothesis of why early season weed control is important in corn. Weed Sci, 52: 774–778.

    CAS  Google Scholar 

  • Reed, J.W., K.R. Foster, P.W. Morgan and J. Chory (1996) Phytochrome B affects responsiveness to gibberellins in Arabidopsis. Plant Physiol, 112: 337–342.

    CAS  PubMed  Google Scholar 

  • Robson, P.R., A.C. McCormac, A.S. Irvine and H. Smith (1996) Genetic engineering of harvest index in tobacco through overexpression of a phytochrome gene. Nat Biotechnol, 14: 995–998.

    CAS  PubMed  Google Scholar 

  • Rockwell, N.C., Y.S. Su and J.C. Lagarias (2006) Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol, 57: 837–858.

    CAS  PubMed  Google Scholar 

  • Roig-Villanova, I., J. Bou, C. Sorin, P.F. Devlin and J.F. Martinez-Garcia (2006) Identification of primary target genes of phytochrome signaling. Early transcriptional control during shade avoidance responses in Arabidopsis. Plant Physiol, 141: 85–96.

    CAS  PubMed  Google Scholar 

  • Roth, R., L.N. Hall, T.P. Brutnell and J.A. Langdale (1996) bundle sheath defective2, a mutation that disrupts the coordinated development of bundle sheath and mesophyll cells in the maize leaf. Plant Cell, 8: 915–927.

    CAS  PubMed  Google Scholar 

  • Rudiger, W., F. Thummler, E. Cmiel and S. Schneider (1983) Chromophore structure of the physiologically active form (P(fr)) of phytochrome. Proc Natl Acad Sci USA, 80: 6244–6248.

    CAS  PubMed  Google Scholar 

  • Ryu, J.S., J.I. Kim, T. Kunkel, B.C. Kim, D.S. Cho, S.H. Hong, S.H. Kim, A.P. Fernandez, Y. Kim, J.M. Alonso, J.R. Ecker, F. Nagy, P.O. Lim, P.S. Song, E. Schafer and H.G. Nam (2005) Phytochrome-specific type 5 phosphatase controls light signal flux by enhancing phytochrome stability and affinity for a signal transducer. Cell, 120: 395–406.

    CAS  PubMed  Google Scholar 

  • Sage, R.F. (2004) The evolution of C4 photosynthesis. New Phytol, 161: 341–370.

    CAS  Google Scholar 

  • Sage, R.F. and R.K. Monson (1999) C4 Plant Biology San Diego: Academic press.

    Google Scholar 

  • Sakamoto, K. and A. Nagatani (1996) Nuclear localization activity of phytochrome B. Plant J, 10: 859–868.

    CAS  PubMed  Google Scholar 

  • Salter, M.G., K.A. Franklin and G.C. Whitelam (2003) Gating of the rapid shade-avoidance response by the circadian clock in plants. Nature, 426: 680–683.

    CAS  PubMed  Google Scholar 

  • Sawers, R.J., P.J. Linley, P.R. Farmer, N.P. Hanley, D.E. Costich, M.J. Terry and T.P. Brutnell (2002) elongated mesocotyl1, a phytochrome-deficient mutant of maize. Plant Physiol, 130: 155–163.

    CAS  PubMed  Google Scholar 

  • Sawers, R.J., P.J. Linley, J.F. Gutierrez-Marcos, T. Delli-Bovi, P.R. Farmer, T. Kohchi, M.J. Terry and T.P. Brutnell (2004) The Elm1 ( ZmHy2) gene of maize encodes a phytochromobilin syn-thase. Plant Physiol, 136: 2771–2781.

    CAS  PubMed  Google Scholar 

  • Sawers, R.J., P. Liu, K. Anufrikova, J.T. Hwang and T.P. Brutnell (2007) A multi-treatment experimental system to examine photosynthetic differentiation in the maize leaf. BMC Genomics, 8: 12.

    PubMed  Google Scholar 

  • Sawers, R.J., M.J. Sheehan and T.P. Brutnell (2005) Cereal phytochromes: targets of selection, targets for manipulation ? Trends Plant Sci, 10: 138–143.

    CAS  PubMed  Google Scholar 

  • Schaffner, A.R. and J. Sheen (1991) Maize rbcS promoter activity depends on sequence elements not found in dicot rbcS promoters. Plant Cell, 3: 997–1012.

    CAS  PubMed  Google Scholar 

  • Sessa, G., M. Carabelli, M. Sassi, A. Ciolfi, M. Possenti, F. Mittempergher, J. Becker, G. Morelli and I. Ruberti (2005) A dynamic balance between gene activation and repression regulates the shade avoidance response in Arabidopsis. Genes Dev, 19: 2811–2815.

    CAS  PubMed  Google Scholar 

  • Sheehan, M.J., P.R. Farmer and T.P. Brutnell (2004) Structure and expression of maize phyto-chrome family homeologs. Genetics, 167: 1395–1405.

    CAS  PubMed  Google Scholar 

  • Sheehan, M.J., L.M. Kennedy, D.E. Costich and T.P. Brutnell (2007) Subfunctionalization of PhyB1 and PhyB2 in the control of seedling and mature plant traits in maize. Plant J, 49: 338–353.

    CAS  PubMed  Google Scholar 

  • Sheen, J. (1999) C4 Gene Expression. Annu Rev Plant Physiol Plant Mol Biol, 50: 187–217.

    CAS  PubMed  Google Scholar 

  • Sheen, J. and L. Bogorad (1988) Differential expression in bundle sheath and mesophyll cells of maize of genes for photosystem II components encoded by the plastid genome. Plant Physiol 86: 1020–1026.

    CAS  PubMed  Google Scholar 

  • Sheen, J.Y. and L. Bogorad (1986) Differential expression of six light-harvesting chlorophyll a/b binding protein genes in maize leaf cell types. Proc Natl Acad Sci USA, 83: 7811–7815.

    CAS  PubMed  Google Scholar 

  • Sheen, J.Y. and L. Bogorad (1987) Differential expression of C4 pathway genes in mesophyll and bundle sheath cells of greening maize leaves. J Biol Chem, 262: 11726–11730.

    CAS  Google Scholar 

  • Shin, J., E. Park and G. Choi (2007) PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis. Plant J, 49: 981–994.

    CAS  PubMed  Google Scholar 

  • Shinomura, T., A. Nagatani, H. Hanzawa, M. Kubota, M. Watanabe and M. Furuya (1996) Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana. Proc Natl Acad Sci USA, 93: 8129–8133.

    CAS  PubMed  Google Scholar 

  • Shlumukov, L.R., F. Barro, P. Barcelo, P. Lazzeri and H. Smith (2001) Establishment of far-red high irradiance responses in wheat through transgenic expression of an oat phytochrome A gene. Plant Cell Environ, 24: 703–712.

    CAS  Google Scholar 

  • Smith, H. (1982) Light quality, photoperception and plant strategy. Annu Rev Plant Physiol, 33: 481–518.

    CAS  Google Scholar 

  • Smith, H. (1995) Physiological and ecological function within the phytochrome family. Annu Rev Plant Physiol Plant Mol Biol, 46: 289–315.

    CAS  Google Scholar 

  • Smith, H. (2000) Phytochromes and light signal perception by plants-an emerging synthesis. Nature, 407: 585–591.

    CAS  PubMed  Google Scholar 

  • Smith, H. and G.C. Whitelam (1997) The shade avoidance syndrome: multiple responses mediated by multiple phytochromes. Plant Cell Environ, 20: 840–844.

    Google Scholar 

  • Stapleton, A.E. and V. Walbot (1994) Flavonoids can protect maize DNA from the induction of ultraviolet radiation damage. Plant Physiol, 105: 881–889.

    CAS  PubMed  Google Scholar 

  • Steindler, C., A. Matteucci, G. Sessa, T. Weimar, M. Ohgishi, T. Aoyama, G. Morelli and I. Ruberti (1999) Shade avoidance responses are mediated by the ATHB-2 HD-zip protein, a negative regulator of gene expression. Development, 126: 4235–4245.

    CAS  PubMed  Google Scholar 

  • Su, Y.S. and J.C. Lagarias (2007) Light-independent phytochrome signaling mediated by dominant GAF domain tyrosine mutants of Arabidopsis phytochromes in transgenic plants. Plant Cell, 19: 2124–2139.

    CAS  PubMed  Google Scholar 

  • Takano, M., H. Kanegae, T. Shinomura, A. Miyao, H. Hirochika and M. Furuya (2001) Isolation and characterization of rice phytochrome A mutants. Plant Cell, 13: 521–534.

    CAS  PubMed  Google Scholar 

  • Takano, M., N. Inagaki, X. Xie, N. Yuzurihara, F. Hihara, T. Ishizuka, M. Yano, M. Nishimura, A. Miyao, H. Hirochika and T. Shinomura (2005) Distinct and cooperative functions of phyto-chromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell, 17: 3311–3325.

    CAS  PubMed  Google Scholar 

  • Tepperman, J.M., T. Zhu, H.S. Chang, X. Wang and P.H. Quail (2001) Multiple transcription-factor genes are early targets of phytochrome A signaling. Proc Natl Acad Sci USA, 98: 9437–9442.

    CAS  PubMed  Google Scholar 

  • Terry, M.J. (1997) Phytochrome chromophore-deficient mutants. Plant Cell Environ,20: 740–745.

    CAS  Google Scholar 

  • Terry, M.J., J.A. Wahleithner and J.C. Lagarias (1993) Biosynthesis of the plant photoreceptor phytochrome. Arch Biochem Biophys,306: 1–15.

    CAS  PubMed  Google Scholar 

  • Tollenaar, M. and J. Wu (1999) Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Sci, 39: 1597–1604.

    Google Scholar 

  • Troyer, A.F. (1996) Breeding widely adapted, popular maize hybrids. Euphytica, 92: 163–174.

    Google Scholar 

  • Troyer, A.F. (2006) Adaptedness and heterosis in corn and mule hybrids. Crop Sci, 46: 528–543.

    Google Scholar 

  • Vandenbussche, F., R. Pierik, F.F. Millenaar, L.A. Voesenek and D. Van Der Straeten (2005) Reaching out of the shade. Curr Opin Plant Biol, 8: 462–468.

    CAS  PubMed  Google Scholar 

  • Vandenbussche, F., W.H. Vriezen, J. Smalle, L.J. Laarhoven, F.J. Harren and D. Van Der Straeten (2003) Ethylene and auxin control the Arabidopsis response to decreased light intensity. Plant Physiol, 133: 517–527.

    CAS  PubMed  Google Scholar 

  • Vierstra, R.D. (2003) The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci, 8: 135–142.

    CAS  PubMed  Google Scholar 

  • Viret, J.F., Y. Mabrouk and L. Bogorad (1994) Transcriptional photoregulation of cell-type-preferred expression of maize rbcS-m3 : 3′and 5′sequences are involved. Proc Natl Acad Sci USA 91: 8577–8581.

    CAS  PubMed  Google Scholar 

  • von Caemmerer, S. and R.T. Furbank (2003) The C4 pathway: an efficient CO2 pump. Photosynth Res, 77: 191–207.

    Google Scholar 

  • Wagner, J.R., J.S. Brunzelle, K.T. Forest and R.D. Vierstra (2005) A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome. Nature, 438: 325–331.

    CAS  PubMed  Google Scholar 

  • Wagner, J.R., Zhang, J., Brunzelle, J.S., Vierstra, R.D. and K.T. Forest (2007) High resolution structure of Deinococcus bacteriophytochrome yields new insights into phytochrome architecture and evolution. J Biol Chem, 16: 12298–12309.

    Google Scholar 

  • Whippo, C.W. and R.P. Hangarter (2006) Phototropism: bending towards enlightenment. Plant Cell, 18: 1110–1119.

    CAS  PubMed  Google Scholar 

  • Xie, X., Shinomura, T., Inagaki, N., Kiyota, S. and M. Takano (2007) Phytochrome-mediated inhibition of coleoptile growth in rice: age-dependency and action spectra. Photochem Photobiol, 83: 131–138.

    CAS  PubMed  Google Scholar 

  • Xu, T., M. Purcell, P. Zucchi, T. Helentjaris and L. Bogorad (2001) TRM1, a YY1-like suppressor of rbcS-m3 expression in maize mesophyll cells. Proc Natl Acad Sci USA, 98: 2295–2300.

    CAS  PubMed  Google Scholar 

  • Yanagisawa, S. (2000) Dof1 and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize. Plant J, 21: 281–288.

    CAS  PubMed  Google Scholar 

  • Yeh, K.C. and J.C. Lagarias (1998) Eukaryotic phytochromes: light-regulated serine/threonine protein kinases with histidine kinase ancestry. Proc Natl Acad Sci USA,95: 13976–13981.

    CAS  PubMed  Google Scholar 

  • Yu, J., Holland, J.B., McMullen, M.D. and E.S. Buckler (2008) Genetic design and statistical power of nested association mapping in maize. Genetics, 178: 539–551.

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Matthew Hudson, Tesfamichael Kebrom, and Michael Gore for comments on the manuscript, Keith Williams for the coleoptile curvature photographs, and Tobias Baskin for sharing the bluelessmaize mutant. Support for this work was provided by grants from the National Science Foundation to T.P.B. and by a FQRNT fellowship to P.G.D.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Dubois, P.G., Brutnell, T.P. (2009). Light Signal Transduction Networks in Maize. In: Bennetzen, J.L., Hake, S.C. (eds) Handbook of Maize: Its Biology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79418-1_11

Download citation

Publish with us

Policies and ethics