Skip to main content

DC Electrical Field Effects on Plant Tissues and Gels

  • Chapter
  • First Online:
Electrotechnologies for Extraction from Food Plants and Biomaterials

Part of the book series: Food Engineering Series ((FSES))

  • 1858 Accesses

Abstract

Gels (intermediate between a solid and a liquid) have similarities to both animal and vegetative materials. Most food products are solids composed of 50–90% water, and they can be regarded in many ways as multicomponent gels. Moreover, the cellular structure of fruits and vegetables can be considered a “foam” with a closed-cell geometry, filled with gel. Gels are omnipresent, and as such gel electrification seems to be a necessary step in studying the effects of electrical fields in biology and life. Early studies described the collapse of polyacrylamide gels and the shrinkage of ionic gel beads near the phase-transition point under DC and AC excitations. The similarity between food gels (i.e., alginate, agar, agarose, and gellan) and vegetative materials (cut pieces of potato, sweet potato, kohlrabi, radish, and pear) is reflected in their similar behavior under application of a low DC electrical field (nonthermal effect). Both moieties’ samples shrink under such a field. Surface changes in the shrunken sample, mineral diffusion, changes in the treated specimens’ mechanical properties, and local changes in sample pH have also been observed. In potato, inhibition of browning and reduction in polyphenol oxidase activity are detected. Similar to gels, pores are produced in the vegetative tissue (from the anode side), promoting slow release of cell components. Electrification of vegetative tissues in fluid results in induced extraction of soluble solids, pigments, and minerals with almost no alteration of those tissues’ gross textural properties. It is therefore possible to simultaneously obtain the desired ingredients and utilize the tissue that is left for further applications, such as pieces to be included in jams or soups, or for individual quick-frozen processes. The electrical treatment displays advantages over ingredient extraction performed by freezing the tissue. Electrification of leaves results in stomatal opening on both sides of the leaf lamina (from both anode and cathode sides), as compared to the closed stomata of the untreated tissues. Possible implications of this stomatal opening could be facilitating water loss from the tissue to enhance drying processes and perhaps ethylene production

and involvement in the ripening process of fruits. Electrification of vegetative and animal materials, gels in particular, by low-intensity DC electrification could be of interest in many future biotechnological, medicinal, food, and agricultural applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilera, J. M. (1992) Generation of engineered structures in gels. In: H. G. Schwartzberg and R. W. Hartel (Eds.), Physical Chemistry of Foods . Marcel Dekker Inc., New York, pp. 387–421.

    Google Scholar 

  • Aguilera, J. M. and Stanley, D. W. (1999) Microstructural Principles of Food Processing and Engineering . Aspen Publishers Inc., Gaithersuburg, MD.

    Google Scholar 

  • Almdal, K., Dyre, J., Hvidt, S. and Kramer, O. (1993) Towards a phenomenological definition of the term “gel”. Polym. Gels Networks 1, 5–17.

    Google Scholar 

  • Araki, C. (1958) Seaweed polysaccharide. In: Proc. 4 th Int. Cong. Biochem ., Vienna, Pergamon Press, London, pp. 15–30.

    Google Scholar 

  • Araki, C. (1965) Some recent studies on the polysaccharides of agarophytes. Proc. Intl. Seaweed Symp. 5, 3–17.

    Google Scholar 

  • Armisen, R. and Galatas, F. (2000) Agar. In: G. O. Phillips and P. A. Williams (Eds.), Handbook of Hydrocolloids . Woodhead Publishing Co., Cambridge, UK, pp. 21–40.

    Google Scholar 

  • Barbosa-Canovas, G. V., Gongora-Nieto, M. M., Pothakamury, U. R. and Swanson, B. G. (1999) Preservation of Foods with Pulsed Electric Fields . Academic Press, Washington, DC.

    Google Scholar 

  • Barbosa-Canovas, G. V. and Zhang, Q. H. (2001) Pulsed Electric Fields in Food Processing: Fundamental Aspects and Applications . Technomic Publishing Co. Inc., Washington, DC.

    Google Scholar 

  • Bennion, M. (1985) Gels and Gelatin . Macmillan Publishing Co., New York, pp. 501–507.

    Google Scholar 

  • Beutner, R. (1920) Entstehung elektrischer Strome in lebenden . Geweben, Stuttgart.

    Google Scholar 

  • Bourne, M. C. (1983) Physical properties and structure of horticultural crops. In: M. Peleg and E. B. Bagely (Eds.), Physical Properties of Foods . Avi Publishing Co. Inc., Westport, CT, pp. 207–228.

    Google Scholar 

  • Chen, Y. H., Barthakur, N. N. and Arnold, N. P. (1994) Electrohydrodynamic (Ehd) drying of potato slabs. J. Food Eng. 23, 107–119.

    Article  Google Scholar 

  • Colin, F. and Timberlake, C. F. (1986) Plant pigments for coloring food. BNF Nutr. Bull. 14 (2), 113–125.

    Google Scholar 

  • Cosgrove, D. J. (2001) Wall structure and wall loosening. A look backwards and forwards. Plant Physiol. 125, 131–134.

    Article  CAS  Google Scholar 

  • Cottrell, I. W. and Baird, J. K. (1980) Kirk-Othmer Encyclopedia of Chemical Technology (vol. 12). John Wiley and Sons, New York, pp. 45–66.

    Google Scholar 

  • DeRossi, D. and Chiarelli, P. (1994) Biomimetic macromolecular actuators. Macro-Ion Characterization . Amer. Chem. Soc. Symp. 54, Ch.40, 517–530.

    Article  CAS  Google Scholar 

  • Doi, M., Matsumoto, M. and Hirose, Y. (1992) Deformation of ionic polymer gels by electric-fields.Macromolecules 25, 5504–5511.

    Article  CAS  Google Scholar 

  • Duckworth, M., Hong, K. C. and Yaphe, W. (1971) The agar polysaccharides of Gracilaria species. Carbohydr. Res. 18, 1–9.

    Article  CAS  Google Scholar 

  • Duckworth, M. and Yaphe, W. (1971) Structure of agar. 1. Fractionantion of a complex mixture of polysaccharides. Carbohydr. Res. 16, 189–197.

    Article  CAS  Google Scholar 

  • Eshtiaghi, M. N. and Knorr, D. (2002) High electric field pulse pretreatment: potential for sugar beet processing. J. Food Eng. 52, 265–272.

    Article  Google Scholar 

  • Eskin, N. A. M. (1990) Biochemistry of Foods . Academic Press, Inc., New York.

    Google Scholar 

  • Fellows, P. J. (2000) Food Processing Technology—Principles and Practice (2nd ed.) . Woodhead Publishing Limited, Cambridge, UK, pp. 150–157.

    Google Scholar 

  • Gates, J. C. (1981) Basic Foods . Holt, Reinhart and Winston, New York, pp. 99–153.

    Google Scholar 

  • Glicksman, M. (1969) Gum Technology in the Food Industry . Academic Press, New York.

    Google Scholar 

  • Gong, J. P., Komatsu, N., Nitta, T. and Osada, Y. (1997) Electrical conductance of polyelectrolyte gels. J. Phys. Chem. B. 101, 740–745.

    Article  CAS  Google Scholar 

  • Hamlen, R. R., Kent, C. E. and Shafer S. N. (1965) Electrically activated contractile polymer. Nature 206, 1148–1149.

    Article  Google Scholar 

  • Hirose, Y., Giannetti, G., Marquardt, J. and Tanaka, T. (1992) Migration of ions and pH gradients in gels under stationary electric-fields. J. Phys. Soc. Jpn. 61, 4085–4097.

    Article  CAS  Google Scholar 

  • Hirotsu, S. (1987) Phase-transition of a polymer gel in pure and mixed solvent media. J. Phys. Soc. Jpn. 56 (1), 233–242.

    Article  CAS  Google Scholar 

  • Kishi, R., Hasebe, M., Hara, M. and Osada, Y. (1990) Mechanism and process of chemomechanical contraction of polyelectrolyte gels under electric field. Polymers Adv. Tech. 1, 19–25.

    Article  CAS  Google Scholar 

  • Kishi, R. and Osada, Y. (1989) Reversible volume change of microparticles in an electric-field. J. Chem. Soc. Farad. Trans. I 85, 655–662.

    Article  CAS  Google Scholar 

  • Knorr, D., Geulen, M., Grahl, T. and Sitzmann, W. (1994) Food application of high-electric-field pulses. Trends Food Sci. Tech. 5, 71–75.

    Article  CAS  Google Scholar 

  • Lund, E. J. (1930) Distribution of potentials in the Douglas fir. Pub. Puget Sound Biol. Sta. 7, 259–287.

    Google Scholar 

  • Meer, W. (1980) Agar. In: R. Davidson (Ed.), Handbook of Water-Soluble Gums and Resins . McGraw-Hill, New York, pp. 1–19.

    Google Scholar 

  • Nobel, P. S. (1999) Physiochemical and Environmental Plant Physiology (2nd ed. ). Academic Press, London.

    Google Scholar 

  • Nussinovitch, A. (1997) Hydrocolloid Applications: Gum Technology in the Food and Other Industries . Blackie Academic & Professional, London, pp. 169–184.

    Google Scholar 

  • Nussinovitch, A. (2003) Water-Soluble Polymer Applications in Foods . Blackwell Publishing, Oxford, UK.

    Book  Google Scholar 

  • Nussinovitch, A. and Peleg, M. (1990) An empirical model for describing weight changes in swelling and shrinking gels. Food Hydrocolloid. 4, 69–76.

    Article  Google Scholar 

  • Nussinovitch, A., Velez-Silvestre, R. and Peleg, M. (1993) Compressive characteristics of freeze-dried agar and alginate gel sponges. Biotech. Prog. 9, 101–104.

    Article  CAS  Google Scholar 

  • Nussinovitch, A. and Zvitov, R. (2004) System and method for treating biological tissue using direct current electrical field. Israel Patent Application #PCT/IL2004/000223.

    Google Scholar 

  • Nussinovitch, A. and Zvitov, R. (2007) Dried electrified hydrocolloid gels having unique structure and porosity (PCT application PCT/IL2007/000888 filed 15/7/2007, Publication No. WO2008/007383).

    Google Scholar 

  • Nussinovitch, A. and Zvitov-Marabi, R. (2008) Unique shape, surface and porosity of dried electrified alginate gels. Food Hydrocolloid. 22 (3), 364–372.

    Article  CAS  Google Scholar 

  • Osada, Y., Kishi, R. and Hasebe, M. (1987) Anomalous chemomechanical characteristics of electro-activated polyelectrolyte gel. J. Polym. Sci. C-Polym. Lett. 25, 481–485.

    Article  CAS  Google Scholar 

  • Osada, Y., Gong, J. P. and Sawahata, K. (1991) Synthesis, mechanism, and application of an electro-driven chemomechanical system using polymer gels. J. Macromol. Sci. Chem. A28, 1189–1205.

    Article  CAS  Google Scholar 

  • Ramanathan, S. and Block, L. H. (2001) The use of chitosan gels as matrices for electrically-modulated drug delivery. J. Contr. Release 70, 109–123.

    Article  CAS  Google Scholar 

  • Rassis, D., Nussinovitch, A. and Saguy, I. S. (1997) Tailor-made porous solid foods. Inter. J. Food Sci. Tech. 32, 271–278.

    Article  CAS  Google Scholar 

  • Rastogi, N. K., Eshtiaghi, M. N. and Knorr, D. (1999) Accelerated mass transfer during osmotic dehydration of high intensity electrical field pulse pretreated carrots. J. Food Sci. 64, 1020–1023.

    Article  CAS  Google Scholar 

  • Seifriz, W. (1936) Protoplasm . McGraw-Hill Book Company, Inc. New York and London, pp. 332–389.

    Google Scholar 

  • Sensoy, I. and Sastry, S. K. (2004) Extraction using moderate electric fields. J. Food Sci. 69 (1), 7–13.

    Article  Google Scholar 

  • Shiga, T. and Kurauchi, T. (1990) Deformation of polyelectrolyte gels under the influence of electric field. J. Appl. Polym. Sci, 39, 2305–2320.

    Article  CAS  Google Scholar 

  • Shinohara, H. and Aizawa, M. (1989). Control of polymer gel morphology by small potential electric-stimulation with a conducting polymer electrode. Jpn. Polym. Sci. Tech. 46 (11), 703–708.

    CAS  Google Scholar 

  • Shoenfeld, N. A. and Gradzinsky, A. J. (1980) Contribution of electrodiffusion to the dynamics of electrically stimulated changes in mechanical properties of collagen membranes. Biopolymers 19 (2), 241–262.

    Article  CAS  Google Scholar 

  • Silberberg, A. (1989) Gelled aqueous systems. Adv. Chem. Ser. 223, 3–14.

    Article  CAS  Google Scholar 

  • Szczesniak, A. (1968) Simulated fruits and vegetables. US patent No. 3,362,831.

    Google Scholar 

  • Taiwo, K. A., Angersbach, A., Ade-Omowaye, B. I. O. and Knorr, D. (2001) Effects of pretreatments on the diffusion kinetics and some quality parameters of osmotically dehydrated apple slices. J. Agric. Food Chem. 49, 2804–2811.

    Article  CAS  Google Scholar 

  • Tal, Y., van Rijn, J. and Nussinovitch, A. (1999) Improvement of mechanical and biological properties of freeze-dried denitrifying alginate beads by using starch as a filler and carbon source. Appl. Microb. Biotech. 51, 773–779.

    Article  CAS  Google Scholar 

  • Tanaka, T. (1981) Gels. Sci. Amer. 244, 110–116.

    Google Scholar 

  • Tanaka, T., Nishio, I., Sun, S. and Uneo-Nishio, S. (1982) Collapse of gels in an electric field. Science 218, 467–469.

    Article  CAS  Google Scholar 

  • Timberlake, C. F. and Henry, B. S. (1986) Plant pigments as natural food colors. Endeavour 10 (1), 31–36.

    Article  CAS  Google Scholar 

  • Tolstoguzov, V. B. and Braudo, E. E. (1983) Fabricated foodstuffs as multicomponent gels. J. Texture Stud. 14 (3), 183–212.

    Article  CAS  Google Scholar 

  • Trevors, J. T. and Pollack, G. H. (2005) Hypothesis: the origion of life in a hydrogel environment. Prog. Biophys. Mol. Biol. 89, 1–8.

    Article  CAS  Google Scholar 

  • Ueoka, Y., Gon, J. and Osada, Y. (1997) Chemomechanical polymer gel with fish-like motion. J. Intel. Mater. Syst. Struct. 8, 465–471.

    Article  CAS  Google Scholar 

  • Vamos-Vigyazo, L. (1981) Polyphenol oxidase and peroxidase in fruits and vegetables. CRC Crit. Rev. Food Sci. Nutr. 15, 49–127.

    Article  CAS  Google Scholar 

  • Wahab, S. M. A., Ahmed, M. A., Radwan, F. A., Hassan, R. M. and ElRefae, A. M. (1997) Relative permittivity and electrical conductivity of some divalent metal alginate complexes. Mater. Lett. 30, 183–188.

    Article  CAS  Google Scholar 

  • Walker, J. R. L. (1977) Enzymatic browning in foods, its chemistry and control. Food Tech. N.Z. 12, 19–25.

    CAS  Google Scholar 

  • Wang, W. C. and Sastry, S. K. (1997) Changes in electrical conductivity of selected vegetables during multiple thermal treatments. J. Food Proc. Eng. 20 (6), 799–516.

    Article  Google Scholar 

  • Whitaker, J. R. and Lee, C. Y. (1995) Recent advances in chemistry of enzymatic browning. In: C. Y. Lee and J. R. Whitaker (Eds.), Enzymatic Browning and Its Prevention (ACS Symposium Series 600) . American Chemical Society, Washington, DC, pp. 2–7.

    Chapter  Google Scholar 

  • Whiting, C. J., Voice A. M., Olmsted, P. D. and McLeish, T. C. B. (2001) Shear modulus of polyelectrolyte gels under electric field. J. Phys. Condens. Matter. 13, 1381–1393.

    Article  CAS  Google Scholar 

  • Willis, R. H., Lee, T. H., Graham, D., McGlasson, W. B. and Hall, E. G. (1981) Postharvest, an Introduction to the Physiology and Handling of Fruit and Vegetables. Avi Publishing Co. Inc., Westport, CN, pp. 1–2.

    Google Scholar 

  • Yang, R. J., Li, S. Q. and Zhang, Q. H. (2004) Effects of pulsed electric fields on the activity of enzymes in aqueous solution. J. Food Sci. 69 (4), 241–248.

    Google Scholar 

  • Ye, H., Huang, L. L., Chen S. D. and Zhong, J. J. (2004) Pulsed electric field stimulates plant secondary metabolism in suspension cultures of Taxus chinensis . Biotech. Bioeng. 88 (6), 788–795.

    Article  CAS  Google Scholar 

  • Yin, Y. G., Han, Y. and Liu, J. B. (2007) A novel protecting method for visual green color in spinach puree treated by high intensity pulsed electric fields. J. Food Eng. 79 (4), 1256–1260.

    Article  CAS  Google Scholar 

  • Yoshioka, Y. and Calvert, P. (2002) Epoxy-based electroactive polymer gels. Exp. Mech. 42 (4), 404–408.

    Article  CAS  Google Scholar 

  • Zvitov, R. and Nussinovitch, A. (2001a) Physico-chemical properties and structural changes in vegetative tissues as affected by direct current (DC) electrical field. Biotech. Prog. 17, 1099–1106.

    Article  CAS  Google Scholar 

  • Zvitov, R. and Nussinovitch, A. (2001b) Weight, mechanical and structural changes induced in alginate gel beads by DC electrical field. Food Hydrocolloid. 15 (1), 33–42.

    Article  CAS  Google Scholar 

  • Zvitov, R. and Nussinovitch, A. (2002) Gel network as a model of vegetative tissue under the application of low intensity DC electrical fields. In: 6th Int. Hydrocolloid. Conf . Toronto, Canada, Jul 10–15.

    Google Scholar 

  • Zvitov, R. and Nussinovitch, A. (2003) Changes induced by DC electrical field in agar, agarose, alginate and gellan gel beads. Food Hydrocolloid., 17 (3), 255–263.

    Article  CAS  Google Scholar 

  • Zvitov, R., Schwartz, A. and Nussinovitch, A. (2003a) Comparison of betalain extraction from beet (Beta vulgaris ) by low DC electrical field versus cryogenic freezing. J. Texture Stud. 34 (1), 83–95.

    Article  Google Scholar 

  • Zvitov, R., Schwartz, A., Zamski, E. and Nussinovitch, A. (2003b) Direct current electrical field effects on intact plant organs. Biotech. Prog. 19, 965–971.

    Article  CAS  Google Scholar 

  • Zvitov, R., Zohar-Perez, C. and Nussinovitch, A. (2004) Short-duration low-DC electrical field treatment: a practical tool for considerably reducing counts of gram-negative bacteria entrapped in gel beads. Appl. Environ. Microbiol. 70 (6), 3781–3784.

    Article  CAS  Google Scholar 

  • Zvitov, R. and Nussinovitch, A. (2005) Low DC electrification of gel-plant tissue 'sandwiches' facilitates extraction and separation of substances from Beta vulgaris beetroots. Food Hydrocolloid. 19 (6), 997–1004.

    Article  CAS  Google Scholar 

  • Zwieniecki, M. A., Melcher, P. J. and Holbrook, N. M. (2001) Hydrogel control of xylem hydraulic resistance in plants. Science 291, 1059–1062.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amos Nussinovitch .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nussinovitch, A., Zvitov, R. (2009). DC Electrical Field Effects on Plant Tissues and Gels. In: Electrotechnologies for Extraction from Food Plants and Biomaterials. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79374-0_4

Download citation

Publish with us

Policies and ethics