Skip to main content

Pharmacogenetics of Antidepressant Response

  • Chapter
  • First Online:
Biomarkers for Psychiatric Disorders

Abstract

Nowadays, the efficacy of antidepressant treatment and the profile of side effects are not predictable: sociodemographic and clinical variables have not provided clinicians with consistent support. Emerging evidence reports promising results from the genetic approach: pharmacogenetics identifies which genetic variations are associated with drug treatment outcome. Both pharmacodynamic and pharmacokinetic key genes have been investigated, and even though consistent conclusions are yet to come, several lines of evidence have led researchers to assume a promising future of effective pharmacogenetic-based pretreatment assessment. The most important antidepressant pharmacogenetic results in this field are reviewed in this chapter and future research lines are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HT1A:

Serotonin receptor 1 A

5-HT2A:

Serotonin receptor 2A

5-HT6:

Serotonin receptor 6

ABCB1:

ATP-binding cassette subfamily B member 1

Ach:

Acetylcholine

AD:

Antidepressant

B1AR:

Beta1 adrenoceptor

B2AR:

Beta2 adrenoceptor

CLOCK:

Circadian Locomotor Output Cycles Kaput

COMT:

Catechol-O-methyl transferase

CYP:

Cytochrome

CRH:

Corticotropin releasing hormone

D2:

Dopamine (receptor) type 2

D3:

Dopamine (receptor) type 3

D4:

Dopamine (receptor) type 4

DRD2:

(gene for the) dopamine receptor D 2

DRD3:

(gene for the) dopamine receptor D 3

DRD4:

(gene for the) dopamine receptor D 4

IL:

Interleukin

LSD:

Lysergic acid diethylamide

MAO-A:

Mono amino oxidase A

MB-COMT:

Membrane-bound COMT

MDD:

Major depressive disorder

NET:

Norepinephrine transporter

NO:

Nitric oxide synthase

OCD:

Obsessive compulsive disorder

SNP:

Single nucleotide polymorphism

SSRIs:

Selective Serotonin Reuptake Inhibitors

S-COMT:

Soluble form of COMT

TCA:

Tricyclic antidepressants

U.S. FDA:

Food and Drug Administration (United States)

VNTR:

Variable number tandem repeat

References

  • Akin, D., et al. 2005. Signal transduction abnormalities in melancholic depression. Int J Neuropsychopharmacol, 8(1):5–16.

    PubMed  CAS  Google Scholar 

  • Albert, P.R. Lemonde, S. 2004. 5-HT1A receptors, gene repression, and depression: guilt by association. Neuroscientist, 10(6):575–593.

    PubMed  CAS  Google Scholar 

  • Anguelova, M., Benkelfat, C. Turecki, G. 2003. A systematic review of association studies investigating genes coding for serotonin receptors and the serotonin transporter: II. Suicidal behavior. Mol Psychiatr, 8(7):646–653.

    CAS  Google Scholar 

  • Anisman, H., et al. 1999. Interleukin-1 beta production in dysthymia before and after pharmacotherapy. Biol Psychiatr, 46(12):1649–1655.

    CAS  Google Scholar 

  • Anisman, H., Kokkinidis, L. Merali, Z. 2002. Further evidence for the depressive effects of cytokines: anhedonia and neurochemical changes. Brain Behav Immun, 16(5):544–556.

    PubMed  CAS  Google Scholar 

  • Arias, B., et al. Genetic variability in the promoter region of the serotonin transporter gene is associated with clinical remission of major depression after long term treatment with citalopram. In World Federation of societies of Biological Psychiatry. 2001. Berlin, Germany: The World Journal of Biological Psychiatry.

    Google Scholar 

  • Arias, B., et al. 2003. 5-HTTLPR polymorphism of the serotonin transporter gene predicts non-remission in major depression patients treated with citalopram in a 12-weeks follow up study. J Clin Psychopharmacol, 23(6):563–567.

    PubMed  CAS  Google Scholar 

  • Arias, B., et al. 2005. Evidence for a combined genetic effect of the 5-HT1A receptor and serotonin transporter genes in the clinical outcome of major depressive patients treated with citalopram. J Psychopharmacol, 19(2):166–172.

    PubMed  CAS  Google Scholar 

  • Arias, B., et al. 2006. Analysis of COMT gene (Val 158 Met polymorphism) in the clinical response to SSRIs in depressive patients of European origin. J Affect Disord, 90(2–3):251–256.

    PubMed  CAS  Google Scholar 

  • Arif, E., et al. 2007. Association of CYP2E1 and NAT2 gene polymorphisms with chronic obstructive pulmonary disease. Clin Chim Acta, 382(1–2):37–42.

    PubMed  CAS  Google Scholar 

  • Arinami, T., et al. 1996. An insertion/deletion polymorphism in the angiotensin converting enzyme gene is associated with both brain substance P contents and affective disorders. Biol Psychiatr, 40(11):1122–1127.

    CAS  Google Scholar 

  • Auron, P.E., et al. 1985. Human and murine interleukin 1 possess sequence and structural similarities. J Mol Cell Immunol, 2(3):169–177.

    PubMed  CAS  Google Scholar 

  • Baghai, T., et al. 2002. Hypothalamic-pituitary-adrenocortical axis dysregulation in patients with major depression is influenced by the insertion/deletion polymorphism in the angiotensin I-converting enzyme gene. Neurosci Lett, 328(3):299–303.

    PubMed  CAS  Google Scholar 

  • Baghai, T., et al. 2003. Influence of a functional polymorphism within the angiotensin I-converting enzyme gene on partial sleep deprivation in patients with major depression. Neurosci Lett, 339(3):223–226.

    PubMed  CAS  Google Scholar 

  • Baghai, T.C., et al. 2001. Possible influence of the insertion/deletion polymorphism in the angiotensin I-converting enzyme gene on therapeutic outcome in affective disorders. Mol Psychiatr, 6(3):258–259.

    CAS  Google Scholar 

  • Baghai, T.C., et al. 2004. The angiotensin I converting enzyme insertion/deletion polymorphism influences therapeutic outcome in major depressed women, but not in men. Neurosci Lett, 363(1):38–42.

    PubMed  CAS  Google Scholar 

  • Balant-Gorgia, A.E., et al. 1982. Role of oxidation polymorphism on blood and urine concentrations of amitriptyline and its metabolites in man. Arch Psychiatr Nervenkr, 232(3):215–222.

    PubMed  CAS  Google Scholar 

  • Ballaz, S.J., Akil, H. Watson, S.J. 2007. Analysis of 5-HT6 and 5-HT7 receptor gene expression in rats showing differences in novelty-seeking behavior. Neuroscience, 147(2):428–438.

    PubMed  CAS  Google Scholar 

  • Bartlett, C.W., et al. 2005. Three autism candidate genes: a synthesis of human genetic analysis with other disciplines. Int J Dev Neurosci, 23(2–3):221–234.

    PubMed  CAS  Google Scholar 

  • Bauer, M., et al. 2002. World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for Biological Treatment of Unipolar Depressive Disorders, Part 1: Acute and continuation treatment of major depressive disorder. World J Biol Psychiatr, 3(1):5–43.

    Google Scholar 

  • Baumann, P., et al. 1986. Amitriptyline pharmacokinetics and clinical response: I. Free and total plasma amitriptyline and nortriptyline. Int Clin Psychopharmacol, 1(2):89–101.

    CAS  Google Scholar 

  • Bellivier, F., et al. 2002. Serotonin transporter gene polymorphism influences age at onset in patients with bipolar affective disorder. Neurosci Lett, 334(1):17–20.

    PubMed  CAS  Google Scholar 

  • Bellivier, F., Chaste, P. Malafosse, A. 2004. Association between the TPH gene A218C polymorphism and suicidal behavior: a meta-analysis. Am J Med Genet B Neuropsychiatr Genet, 124(1):87–91.

    Google Scholar 

  • Benedetti, F., et al. 2003a. Dopamine receptor D2 and D3 gene variants are not associated with the antidepressant effect of total sleep deprivation in bipolar depression. Psychiatr Res, 118(3):241–247.

    CAS  Google Scholar 

  • Benedetti, F., et al. 2003b. Influence of CLOCK gene polymorphism on circadian mood fluctuation and illness recurrence in bipolar depression. Am J Med Genet, 123B(1):23–26.

    Google Scholar 

  • Benjamin, J., et al. 1996. Population and familial association between the D4 dopamine receptor gene and measures of Novelty Seeking. Nat Genet, 12(1):81–84.

    PubMed  CAS  Google Scholar 

  • Bertilsson, L., et al. 2002. Molecular genetics of CYP2D6: clinical relevance with focus on psychotropic drugs. Br J Clin Pharmacol, 53(2):111–122.

    PubMed  CAS  Google Scholar 

  • Bhagwagar, Z., et al. 2006. Increased 5-HT(2A) receptor binding in euthymic, medication-free patients recovered from depression: a positron emission study with (11)C]MDL 100,907 Am J Psychiatr, 163(9):1580–1587.

    PubMed  Google Scholar 

  • Bialecka, M., et al. 2007. Polymorphisms of catechol-0-methyltransferase (COMT), monoamine oxidase B (MAOB), N-acetyltransferase 2 (NAT2) and cytochrome P450 2D6 (CYP2D6) gene in patients with early onset of Parkinson’s disease. Parkinsonism Relat Disord, 13(4):224–229.

    PubMed  CAS  Google Scholar 

  • Binder, E., et al. 2004. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet, 36(12):1319–1325.

    PubMed  CAS  Google Scholar 

  • Binder, E.B. Holsboer, F. 2006. Pharmacogenomics and antidepressant drugs. Ann Med, 38(2):82–94.

    PubMed  CAS  Google Scholar 

  • Bishop, J.R., et al. 2006. Serotonin 2A -1438 G/A and G-protein Beta3 subunit C825T polymorphisms in patients with depression and SSRI-associated sexual side-effects. Neuropsychopharmacology, 31(10):2281–2288.

    PubMed  CAS  Google Scholar 

  • Bobb, A.J., et al. 2005. Molecular genetic studies of ADHD: 1991 to 2004. Am J Med Genet B Neuropsychiatr Genet, 132(1):109–125.

    Google Scholar 

  • Bondy, B., et al. 2005. Genetic variants in the angiotensin I-converting-enzyme (ACE) and angiotensin II receptor (AT1) gene and clinical outcome in depression. Prog Neuropsychopharmacol Biol Psychiatr, 29(6):1094–1099.

    CAS  Google Scholar 

  • Bondy, B., Buettner, and A. Zill, 2006. Genetics of suicide. Mol Psychiatr, 11(4):336–351.

    Google Scholar 

  • Brady, L.S., et al. 1992. The antidepressants fluoxetine, idazoxan and phenelzine alter corticotropin-releasing hormone and tyrosine hydroxylase mRNA levels in rat brain: therapeutic implications. Brain Res, 572(1–2):117–125.

    PubMed  CAS  Google Scholar 

  • Brockmoller, J., Meineke, I. Kirchheiner, J. 2007. Pharmacokinetics of mirtazapine: enantioselective effects of the CYP2D6 ultra rapid metabolizer genotype and correlation with adverse effects. Clin Pharmacol Ther, 81(5):699–707.

    PubMed  CAS  Google Scholar 

  • Brosen, K. Naranjo, C. 2001. Review of pharmacokinetic and pharmacodynamic interaction studies with citalopram. Eur Neuropsychopharmacol, 11(4):275–283.

    PubMed  CAS  Google Scholar 

  • Brosen, K., Hansen, J. Nielsen, K. 1993. Inhibition by paroxetine of desipramine metabolism in extensive but not in poor metabolizers of sparteine. Eur J Clin Pharmacol, 44(4):344–355.

    Google Scholar 

  • Brunner, H.G., et al. 1993. Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science, 262(5133):578–580.

    PubMed  CAS  Google Scholar 

  • Bruss, M., et al. 1993. Chromosomal mapping of the human gene for the tricyclic antidepressant-sensitive noradrenaline transporter. Hum Genet, 91(3):278–280.

    PubMed  CAS  Google Scholar 

  • Campbell, D., et al. 1997. Fine mapping of the human 5-HTR2a gene to chromosome 13q14 and identification of two highly polymorphic linked markers suitable for association studies in psychiatric disorders. Genet Test, 1(4):297–299.

    PubMed  CAS  Google Scholar 

  • Caspi, A., et al. 2003. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science, 301(5631):386–389.

    PubMed  CAS  Google Scholar 

  • Charlier, C., et al. 2003. Polymorphisms in the CYP 2D6 gene: association with plasma concentrations of fluoxetine and paroxetine. Ther Drug Monit, 25(6):738–742.

    PubMed  CAS  Google Scholar 

  • Chen, G., et al. 1999. Regulation of signal transduction pathways and gene expression by mood stabilizers and antidepressants. Psychosom Med, 61(5):599–617.

    PubMed  CAS  Google Scholar 

  • Chen, K., et al. 1992. The human 5-HT2 receptor is encoded by a multiple intron-exon gene. Brain Res Mol Brain Res, 14(1–2):20–26.

    PubMed  CAS  Google Scholar 

  • Chiavegatto, S., et al. 2001. Brain serotonin dysfunction accounts for aggression in male mice lacking neuronal nitric oxide synthase. Proc Natl Acad Sci U S A, 98(3):1277–1281.

    PubMed  CAS  Google Scholar 

  • Choi, M., et al. 2005. Serotonin receptor 2A gene polymorphism (-1438A/G) and short-term treatment response to citalopram. Neuropsychobiology, 52:155–162.

    PubMed  CAS  Google Scholar 

  • Choi, M.J., et al. 2006. Brain-derived neurotrophic factor gene polymorphism (Val66Met) and citalopram response in major depressive disorder. Brain Res, 1118(1):176–182.

    PubMed  CAS  Google Scholar 

  • Clark, J.A., et al. 2005. Differential hormonal regulation of tryptophan hydroxylase-2 mRNA in the murine dorsal raphe nucleus. Biol Psychiatr, 57(8):943–946.

    CAS  Google Scholar 

  • Courtet, P., et al. 2001. Association between violent suicidal behavior and the low activity allele of the serotonin transporter gene. Mol Psychiatr, 6(3):338–341.

    CAS  Google Scholar 

  • Craddock, N., O’Donovan, M.C. Owen, M.J. 2006. Genes for Schizophrenia and Bipolar Disorder? Implications for Psychiatric Nosology. Schizophr Bull, 32(1):9–16.

    PubMed  Google Scholar 

  • Craig, S.P., et al. 1991. Localization of human tryptophan hydroxylase (TPH) to chromosome 11p15.3–p14 by in situ hybridization. Cytogenet Cell Genet, 56(3–4):157–159.

    PubMed  CAS  Google Scholar 

  • Cramer, J.A. Rosenheck, R. 1998. Compliance with medication regimens for mental and physical disorders. Psychiatr Serv, 49:196–201.

    PubMed  CAS  Google Scholar 

  • Crissman, A.M., Makhay, M.M. O’Donnell, J.M. 2001. Discriminative stimulus effects of centrally administered isoproterenol in rats: mediation by beta-1 adrenergic receptors. Psychopharmacology (Berl), 154(1):70–75.

    CAS  Google Scholar 

  • Crowley, J.J., et al. 2006. Pharmacogenomic evaluation of the antidepressant citalopram in the mouse tail suspension test. Neuropsychopharmacology, 31(11):2433–2442.

    PubMed  CAS  Google Scholar 

  • Cusin, C., et al. 2001. Influence of 5-HTTLPR and TPH Variants on Illness Time Course in Mood Disorders. J Psychiatric Res, 35(4):217–223.

    CAS  Google Scholar 

  • Cusin, C., et al. 2002. Influence of monoamine oxydase A and serotonin receptor 2A polymorphisms in SSRIs antidepressant activity. Int Neuropsychopharmacol, 5:27–35.

    CAS  Google Scholar 

  • Dalen, P., et al. 1998. 10-Hydroxylation of nortriptyline in white persons with 0, 1, 2, 3, and 13 functional CYP2D6 genes. Clin Pharmacol Ther, 63(4):444–452.

    PubMed  CAS  Google Scholar 

  • Danish University Antidepressant, G., Clomipramine dose-effect study in patients with depression: clinical end points and pharmacokinetics. Danish University Antidepressant Group (DUAG). Clin Pharmacol Ther, 1999. 66(2):152–165.

    Google Scholar 

  • Lara, C.L., de et al. 2007. Effect of tryptophan hydroxylase-2 gene variants on suicide risk in major depression. Biol Psychiatr, 62(1):72–80.

    Google Scholar 

  • Leon, J., de 2007. The crucial role of the therapeutic window in understanding the clinical relevance of the poor versus the ultrarapid metabolizer phenotypes in subjects taking drugs metabolized by CYP2D6 or CYP2C19. J Clin Psychopharmacol, 27(3):241–245.

    PubMed  Google Scholar 

  • Luca, V., De et al. 2003. Investigation of polymorphism in the MDR1 gene and antidepressant-induced mania. Pharmacogenomics J, 3(5):297–299.

    PubMed  Google Scholar 

  • Dentino, A.N., et al. 1999. Association of interleukin-6 and other biologic variables with depression in older people living in the community. J Am Geriatr Soc, 47(1):6–11.

    PubMed  CAS  Google Scholar 

  • Giovine, F., Di Takhsh, E. Blakemore, A. 1992. Single base polymorphism at -511 in the human interleukin-1 gene (IL1). Hum Mol Genet, 1:450.

    PubMed  Google Scholar 

  • Dick, F., et al., Gene-environment interactions in parkinsonism and Parkinson’s disease: the Geoparkinson study. Occup Environ Med, 2007.

    Google Scholar 

  • Dunn, A.J., 1988. Systemic interleukin-1 administration stimulates hypothalamic norepinephrine metabolism parallelling the increased plasma corticosterone. Life Sci, 43(5):429–435.

    PubMed  CAS  Google Scholar 

  • Durham, L.K., et al. 2004. The serotonin transporter polymorphism, 5HTTLPR, is associated with a faster response time to sertraline in an elderly population with major depressive disorder. Psychopharmacology (Berl), 174(4):525–529.

    CAS  Google Scholar 

  • Duric, G., et al. 2007. [Polymorphisms in the genes of cytochrome oxidase P450 2D6 (CYP2D6), paraoxonase 1 (PON1) and apolipoprotein E (APOE) as risk factors for Parkinson’s disease] Vojnosanit Pregl,64(1):25–30.

    PubMed  Google Scholar 

  • Ebstein, R.P., et al. 1996. Dopamine D4 receptor (D4DR) exon III polymorphism associated with the human personality trait of Novelty Seeking. Nat Genet, 12(1):78–80.

    PubMed  CAS  Google Scholar 

  • Eichelbaum, M., Fromm, M.F. Schwab, M. 2004. Clinical aspects of the MDR1 (ABCB1) gene polymorphism. Ther Drug Monit, 26(2):180–185.

    PubMed  CAS  Google Scholar 

  • El-Omar, E.M., et al. 2000. Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature, 404(6776):398–402.

    PubMed  CAS  Google Scholar 

  • Entsuah, A.R., Huang, H. Thase, M.E. 2001. Response and remission rates in different subpopulations with major depressive disorder administered venlafaxine, selective serotonin reuptake inhibitors, or placebo. J Clin Psychiatr, 62(11):869–77.

    CAS  Google Scholar 

  • Eyada, T.K., et al. 2007. Study of genetic polymorphism of xenobiotic enzymes in acute leukemia. Blood Coagul Fibrinolysis, 18(5):489–495.

    PubMed  CAS  Google Scholar 

  • Feinn, R., Nellissery, M. Kranzler, H.R. 2005. Meta-analysis of the association of a functional serotonin transporter promoter polymorphism with alcohol dependence. Am J Med Genet B Neuropsychiatr Genet, 133(1):79–84.

    Google Scholar 

  • Fojo, A.T., et al. 1987. Expression of a multidrug-resistance gene in human tumors and tissues. Proc Natl Acad Sci U S A, 84(1):265–269.

    PubMed  CAS  Google Scholar 

  • Francke, U. Foellmer, B.E. 1989. The glucocorticoid receptor gene is in 5q31-q32 [corrected]. Genomics, 4(4):610–612.

    PubMed  CAS  Google Scholar 

  • Fuke, S., et al. 2001. The VNTR polymorphism of the human dopamine transporter (DAT1) gene affects gene expression. Pharmacogenomics J, 1(2):152–156.

    PubMed  CAS  Google Scholar 

  • Fukui, N., et al. 2007. Dose-dependent effects of the 3435 C>T genotype of ABCB1 gene on the steady-state plasma concentration of fluvoxamine in psychiatric patients. Ther Drug Monit, 29(2):185–189.

    PubMed  CAS  Google Scholar 

  • Garriock, H., et al. 2005. Lack of association of TPH2 exon XI polymorphisms with major depression and treatment resistance. Mol Psychiatr, 10(11):976–977.

    CAS  Google Scholar 

  • Garriock, H.A., et al. 2006. Number of risk genotypes is a risk factor for major depressive disorder: a case control study. Behav Brain Funct, 2:24.

    PubMed  Google Scholar 

  • Gaysina, D., et al. 2006. The serotonin transporter gene: polymorphism and haplotype analysis in Russian suicide attempters. Neuropsychobiology, 54(1):70–74.

    PubMed  CAS  Google Scholar 

  • Gelernter, J., et al. 1997. D4 dopamine-receptor (DRD4) alleles and novelty seeking in substance-dependent, personality-disorder, and control subjects. Am J Hum Genet, 61(5):1144–1152.

    PubMed  CAS  Google Scholar 

  • Gemma, C., et al. 1997. Interleukin-1 induces changes in sleep, brain temperature, and serotonergic metabolism. Am J Physiol, 272(Pt 2):R601–R606.

    Google Scholar 

  • Gemma, C., Imeri, L. Opp, M.R. 2003. Serotonergic activation stimulates the pituitary-adrenal axis and alters interleukin-1 mRNA expression in rat brain. Psychoneuroendocrinology, 28(7):875–884.

    PubMed  CAS  Google Scholar 

  • Geracitano, R., et al. 2006. On the effects of psychostimulants, antidepressants, and the antiparkinsonian drug levodopa on dopamine neurons. Ann N Y Acad Sci, 1074:320–329.

    PubMed  CAS  Google Scholar 

  • Giros, B., et al. 1992. Cloning, pharmacological characterization, and chromosome assignment of the human dopamine transporter. Mol Pharmacol, 42(3):383–390.

    PubMed  CAS  Google Scholar 

  • Golab-Janowska, M., et al. 2007. CYP2D6 gene polymorphism as a probable risk factor for Alzheimer’s disease and Parkinson’s disease with dementia. Neurol Neurochir Pol, 41(2):113–121.

    PubMed  CAS  Google Scholar 

  • Gold, P.W. Chrousos, G.P. 2002. Organization of the stress system and its dysregulation in melancholic and atypical depression: high vs. low CRH/NE states. Mol Psychiatr, 7(3):254–275.

    CAS  Google Scholar 

  • Grasmader, K., et al. 2004. Impact of polymorphisms of cytochrome-P450 isoenzymes 2C9, 2C19 and 2D6 on plasma concentrations and clinical effects of antidepressants in a naturalistic clinical setting. Eur J Clin Pharmacol, 60(5):329–336.

    PubMed  Google Scholar 

  • Grossman, M.H., Emanuel, B.S. Budarf, M.L. 1992. Chromosomal mapping of the human catechol-O-methyltransferase gene to 22q11.1–q11.2. Genomics, 12(4):822–825.

    PubMed  CAS  Google Scholar 

  • Guasch, J.F., Bertina, R.M. Reitsma, P.H. 1996. Five novel intragenic dimorphisms in the human interleukin-1 genes combine to high informativity. Cytokine, 8(8):598–602.

    PubMed  CAS  Google Scholar 

  • Gutierrez, B., et al. 1998. Variability in the serotonin transporter gene and increased risk for major depression with melancholia. Hum Gen, 103(3):319–322.

    CAS  Google Scholar 

  • Gutknecht, L., et al. 2007. Tryptophan hydroxylase-2 gene variation influences personality traits and disorders related to emotional dysregulation. Int J Neuropsychopharmacol, 10(3):309–320.

    PubMed  CAS  Google Scholar 

  • Hahn, M.K., Mazei-Robison, M.S. Blakely, R.D. 2005. Single nucleotide polymorphisms in the human norepinephrine transporter gene affect expression, trafficking, antidepressant interaction, and protein kinase C regulation. Mol Pharmacol, 68(2):457–466.

    PubMed  CAS  Google Scholar 

  • Ham, B., et al. 2005. No association between the tryptophan hydroxylase gene polymorphism and major depressive disorders and antidepressant response in a Korean population. Psychiatr Genet, 15(4):229–301.

    Google Scholar 

  • Ham, B.J., et al. 2007. Association between the tryptophan hydroxylase-1 gene A218C polymorphism and citalopram antidepressant response in a Korean population. Prog Neuropsychopharmacol Biol Psychiatr, 31(1):104–107.

    CAS  Google Scholar 

  • Heils, A., et al. 1996. Allelic variation of human serotonin trasporter gene expression. J Neurochem, 66(6):2621–2624.

    PubMed  CAS  Google Scholar 

  • Hemeryck, A. Belpaire, F.M. 2002. Selective serotonin reuptake inhibitors and cytochrome P-450 mediated drug-drug interactions: an update. Curr Drug Metab, 3(1):13–37.

    PubMed  CAS  Google Scholar 

  • Hemrick-Luecke, S.K., Snoddy, H.D. Fuller, R.W. 1994. Evaluation of nefazodone as a serotonin uptake inhibitor and a serotonin antagonist in vivo. Life Sci, 55(7):479–483.

    PubMed  CAS  Google Scholar 

  • Herbert, T.B. Cohen, S. 1993. Depression and immunity: a meta-analytic review. Psychol Bull, 113(3):472–486.

    PubMed  CAS  Google Scholar 

  • Holmes, A., Murphy, D.L. Crawley, J.N. 2003a. Abnormal behavioral phenotypes of serotonin transporter knockout mice: parallels with human anxiety and depression. Biol Psychiatr, 54(10):953–959.

    CAS  Google Scholar 

  • Holmes, A., et al. 2003b. Mice lacking the serotonin transporter exhibit 5-HT(1A) receptor-mediated abnormalities in tests for anxiety-like behavior. Neuropsychopharmacology, 28(12):2077–2088.

    CAS  Google Scholar 

  • Holsboer, F., 2000. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology, 23(5):477–501.

    PubMed  CAS  Google Scholar 

  • Hong, C.J., Wang, Y.C. Tsai, S.J. 2002. Association study of angiotensin I-converting enzyme polymorphism and symptomatology and antidepressant response in major depressive disorders. J Neural Transm, 109(9):1209–1214.

    PubMed  CAS  Google Scholar 

  • Hong, C.J., et al. 2006. Response to fluoxetine and serotonin 1A receptor (C-1019G) polymorphism in Taiwan Chinese major depressive disorder. Pharmacogenomics J, 6(1):27–33.

    PubMed  CAS  Google Scholar 

  • Hranilovic, D., et al. 2004. Serotonin transporter promoter and intron 2 polymorphisms: relationship between allelic variants and gene expression. Biol Psychiatr, 55(11):1090–1094.

    CAS  Google Scholar 

  • Hrdina, P.D. Vu, T.B. 1993. Chronic fluoxetine treatment upregulates 5-HT uptake sites and 5-HT2 receptors in rat brain: an autoradiographic study. Synapse, 14(4):324–331.

    PubMed  CAS  Google Scholar 

  • Hu, X., et al. 2005. An expanded evaluation of the relationship of four alleles to the level of response to alcohol and the alcoholism risk. Alcohol Clin Exp Res, 29(1):8–16.

    PubMed  CAS  Google Scholar 

  • Hu, X.Z., et al. 2007. Association between a functional serotonin transporter promoter polymorphism and citalopram treatment in adult outpatients with major depression. Arch Gen Psychiatr, 64(7):783–792.

    PubMed  CAS  Google Scholar 

  • Ito, K., et al. 2002. A variable number of tandem repeats in the serotonin transporter gene does not affect the antidepressant response to fluvoxamine. Psychiatr Res, 111(2–3):235–239.

    CAS  Google Scholar 

  • Itokawa, M., et al. 1993. A structural polymorphism of human dopamine D2 receptor, D2(Ser311‐‐>Cys). Biochem Biophys Res Commun, 196(3):1369–1375

    PubMed  CAS  Google Scholar 

  • Jezova, D., et al. 1998. Brain angiotensin II modulates sympathoadrenal and hypothalamic pituitary adrenocortical activation during stress. J Neuroendocrinol, 10(1):67–72.

    PubMed  CAS  Google Scholar 

  • Jonsson, E.G., et al. 1997. Tryptophan hydroxylase and catechol-O-methyltransferase gene polymorphisms: relationships to monoamine metabolite concentrations in CSF of healthy volunteers. Eur Arch Psychiatr & Clin Neurosci, 247(6):297–302.

    CAS  Google Scholar 

  • Joyce, P.R., et al. 2003. Age-dependent antidepressant pharmacogenomics: polymorphisms of the serotonin transporter and G protein beta3 subunit as predictors of response to fluoxetine and nortriptyline. Int J Neuropsychopharmacol, 6(4):339–346.

    PubMed  CAS  Google Scholar 

  • Kabiersch, A., et al. 1988. Interleukin-1 induces changes in norepinephrine metabolism in the rat brain. Brain Behav Immun, 2(3):267–274.

    PubMed  CAS  Google Scholar 

  • Kang, R.H., et al., Association study of the serotonin transporter promoter polymorphism and mirtazapine antidepressant response in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatr, 2007.

    Google Scholar 

  • Kato, M., et al. 2005. Controlled clinical comparison of paroxetine and fluvoxamine considering the serotonin transporter promoter polymorphism. Int Clin Psychopharmacol, 20(3):151–156.

    PubMed  Google Scholar 

  • Kato, M., et al. 2006. Effects of the serotonin type 2A, 3A and 3B receptor and the serotonin transporter genes on paroxetine and fluvoxamine efficacy and adverse drug reactions in depressed Japanese patients Neuropsychobiology, 53(4):186–195.

    PubMed  CAS  Google Scholar 

  • Katzenberg, D., et al. 1998. A CLOCK polymorphism associated with human diurnal preference. Sleep, 21(6):569–576.

    PubMed  CAS  Google Scholar 

  • Kehne, J.H., 2007. The CRF1 receptor, a novel target for the treatment of depression, anxiety, and stress-related disorders. CNS Neurol Disord Drug Targets, 6(3):163–182.

    PubMed  CAS  Google Scholar 

  • Kiecolt-Glaser, J.K. Glaser, R. 2002. Depression and immune function: central pathways to morbidity and mortality. J Psychosom Res, 53(4):873–876.

    PubMed  Google Scholar 

  • Kim, C.H., et al. 2006. A polymorphism in the norepinephrine transporter gene alters promoter activity and is associated with attention-deficit hyperactivity disorder. Proc Natl Acad Sci U S A, 103(50):19164–19169.

    PubMed  CAS  Google Scholar 

  • Kim, D.K., et al. 2000. Serotonin transporter gene polymorphism and antidepressant response. Neuroreport, 11(1):215–219.

    PubMed  CAS  Google Scholar 

  • Kim, H., et al. 2006. Monoamine transporter gene polymorphisms and antidepressant response in koreans with late-life depression. Jama, 296(13):1609–1618.

    PubMed  CAS  Google Scholar 

  • Kim, S.W., Park, S.Y. Hwang, O. 2002. Up-regulation of tryptophan hydroxylase expression and serotonin synthesis by sertraline. Mol Pharmacol, 61(4):778–785.

    PubMed  CAS  Google Scholar 

  • Kirchheiner, J., et al. 2001. CYP2D6 and CYP2C19 genotype-based dose recommendations for antidepressants: a first step towards subpopulation-specific dosages. Acta Psychiatr Scand, 104(3):173–192.

    PubMed  CAS  Google Scholar 

  • Kirchheiner, J., et al. 2004. Impact of the CYP2D6 ultrarapid metabolizer genotype on mirtazapine pharmacokinetics and adverse events in healthy volunteers. J Clin Psychopharmacol, 24(6):647–652.

    PubMed  CAS  Google Scholar 

  • Kirchheiner, J., Grundemann, D. Schomig, E. 2006a. Contribution of allelic variations in transporters to the phenotype of drug response. J Psychopharmacol, 20(Suppl 4):27–32.

    Google Scholar 

  • Kirchheiner, J., et al., A 40-basepair VNTR polymorphism in the dopamine transporter (DAT1) gene and the rapid response to antidepressant treatment. Pharmacogenomics J, 2006b.

    Google Scholar 

  • Kirchheiner, J., et al. 2007. A 40-basepair VNTR polymorphism in the dopamine transporter (DAT1) gene and the rapid response to antidepressant treatment. Pharmacogenomics J, 7(1):48–55.

    PubMed  CAS  Google Scholar 

  • Kirigiti, P., et al. 2000. Rat beta 1-adrenergic receptor regulatory region containing consensus AP-2 elements recognizes novel transactivator proteins. Mol Cell Biol Res Commun, 3(3):181–192.

    PubMed  CAS  Google Scholar 

  • Kishimoto, J., et al. 1992. Localization of brain nitric oxide synthase (NOS) to human chromosome 12. Genomics, 14(3):802–804.

    PubMed  CAS  Google Scholar 

  • Kobilka, B.K., et al. 1987. An intronless gene encoding a potential member of the family of receptors coupled to guanine nucleotide regulatory proteins. Nature, 329(6134):75–79.

    PubMed  CAS  Google Scholar 

  • Kohen, R., et al. 1996. Cloning, characterization, and chromosomal localization of a human 5-HT6 serotonin receptor. J Neurochem, 66(1):47–56.

    PubMed  CAS  Google Scholar 

  • Kraft, J., et al. 2005. Sequence analysis of the serotonin transporter and associations with antidepressant response. Biol Psychiatr, 58(374–381).

    CAS  Google Scholar 

  • Kraft, J.B., et al. 2007. Analysis of association between the serotonin transporter and antidepressant response in a large clinical sample. Biol Psychiatr, 61(6):734–742.

    CAS  Google Scholar 

  • Kramer, M.S., et al. 1998. Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science, 281(5383):1640–1645.

    PubMed  CAS  Google Scholar 

  • Kremer, I., et al. 2005. Association of the serotonin transporter gene with smoking behavior. Am J Psychiatr, 162(5):924–930.

    PubMed  Google Scholar 

  • Lachman, H.M., et al. 1996. Association of codon 108/158 catechol-O-methyltransferase gene polymorphism with the psychiatric manifestations of velo-cardio-facial syndrome. Am J Med Genet, 67(5):468–472.

    PubMed  CAS  Google Scholar 

  • Lachman, H.M., et al. 1997. Linkage studies suggest a possible locus for bipolar disorder near the velo-cardio-facial syndrome region on chromosome 22. Am J Med Genet, 74:121–128.

    PubMed  CAS  Google Scholar 

  • Laika, B., Leucht, S. Steimer, W. 2006. ABCB1 (P-glycoprotein/MDR1) gene G2677T/a sequence variation (polymorphism): lack of association with side effects and therapeutic response in depressed inpatients treated with amitriptyline. Clin Chem, 52(5):893–895.

    PubMed  CAS  Google Scholar 

  • Landen, M. Thase, M.E. 2006. A model to explain the therapeutic effects of serotonin reuptake inhibitors: the role of 5-HT2 receptors. Psychopharmacol Bull, 39(1):147–166.

    PubMed  Google Scholar 

  • Lavandera, J.V., et al. 2006. CYP2D6 polymorphisms in patients with porphyrias. Mol Med, 12(9–10):259–263.

    PubMed  CAS  Google Scholar 

  • Beau, M.M. Le Rowley, J.D. 1986. Chromosomal abnormalities in leukemia and lymphoma: clinical and biological significance. Adv Hum Genet, 15:1–54.

    PubMed  Google Scholar 

  • Lee, H.J., et al. 2004. Association between a G-protein beta3 subunit gene polymorphism and the symptomatology and treatment responses of major depressive disorders. Pharmacogenomics J, 4(1):29–33.

    PubMed  CAS  Google Scholar 

  • Lee, M.S., et al. 2004. Serotonin transporter promoter gene polymorphism and long-term outcome of antidepressant treatment. Psychiatr Genet, 14(2):111–115.

    PubMed  Google Scholar 

  • Lee, S., et al. 2005. Association between the 5-HT6 receptor C267T polymorphism and response to antidepressant treatment in major depressive disorder. Psychiatr Clin Neurosci, 59:140–145.

    CAS  Google Scholar 

  • Lee, S.Y., et al. 2006. Sequence-based CYP2D6 genotyping in the Korean population. Ther Drug Monit, 28(3):382–387.

    PubMed  CAS  Google Scholar 

  • Lemonde, S., et al. 2003. Impaired trans-repression at a 5-HT1A receptor gene polimorphism associated with major depression and suicide. J Neurosci, 23(25):8788–8799.

    PubMed  CAS  Google Scholar 

  • Lemonde, S., et al. 2004. Association of the C(1019)G 5-HT1A functional promoter polymorphism with antidepressant response. Psychopharmacology (Berl), 24:24.

    Google Scholar 

  • Lemos, M.C., et al., Genetic polymorphism of CYP2D6 influences susceptibility to papillary thyroid cancer. Clin Endocrinol (Oxf), 2007.

    Google Scholar 

  • Lesch, K.P., et al. 1994. Organization of the human serotonin transporter gene. J Neural Transm Gen Sect, 95(2):157–162.

    PubMed  CAS  Google Scholar 

  • Levine, M.A., et al. 1990. Molecular cloning of beta-3 subunit, a third form of the G protein beta-subunit polypeptide. Proc. Nat. Acad. Sci U S A, 87:2329–2333.

    CAS  Google Scholar 

  • Li, Z., Inenaga, K. Yamashita, H. 1993. GABAergic inputs modulate effects of interleukin-1 beta on supraoptic neurones in vitro. Neuroreport, 5(2):181–183.

    PubMed  CAS  Google Scholar 

  • Licinio, J. Wong, M.L. 1999. The role of inflammatory mediators in the biology of major depression: central nervous system cytokines modulate the biological substrate of depressive symptoms, regulate stress-responsive systems, and contribute to neurotoxicity and neuroprotection. Mol Psychiatr, 4(4):317–327.

    CAS  Google Scholar 

  • Licinio, J., et al. 2004. Association of a corticotropin-releasing hormone receptor 1 haplotype and antidepressant treatment response in Mexican-Americans. Mol Psychiatr, 9:1075–1082.

    CAS  Google Scholar 

  • Lim, J.E., et al. 2007. Tryptophan hydroxylase 2 (TPH2) haplotypes predict levels of TPH2 mRNA expression in human pons. Mol Psychiatr, 12(5):491–501.

    CAS  Google Scholar 

  • Lin, J.H. Lu, A.Y. 1998. Inhibition and induction of cytochrome P450 and the clinical implications. Clin Pharmacokinet, 35(5):361–390.

    PubMed  CAS  Google Scholar 

  • Linthorst, A.C., et al. 1994. Local administration of recombinant human interleukin-1 beta in the rat hippocampus increases serotonergic neurotransmission, hypothalamic-pituitary-adrenocortical axis activity, and body temperature. Endocrinology, 135(2):520–532.

    PubMed  CAS  Google Scholar 

  • Liu, Z., et al. 2007. Association study of corticotropin-releasing hormone receptor1 gene polymorphisms and antidepressant response in major depressive disorders. Neurosci Lett, 414(2):155–158.

    PubMed  CAS  Google Scholar 

  • Liu, Z.C., Luo, X.N. Wang, G.H. 2002. Corticotropin-releasing factor andmajor depression. Foreign Med Sci: Section of Psychiatry , 2:156–158.

    Google Scholar 

  • Lopez de Lara, C., et al. 2006. STin2 variant and family history of suicide as significant predictors of suicide completion in major depression. Biol Psychiatr, 59(2):114–120.

    CAS  Google Scholar 

  • MacKenzie, A. Quinn, J. 1999. A serotonin transporter gene intron 2 polymorphic region, correlated with affective disorders, has allele-dependent differential enhancer-like properties in the mouse embryo. Proc Natl Acad Sci U S A, 96(26):15251–15255.

    PubMed  CAS  Google Scholar 

  • Maes, M. and H.Y. Meltzer, The serotonin hypothesis of major depression, in Psychopharmacology: The fourth generation of progress, F.E. Bloom and D.J. Kupfer, Editors. 1995, Raven Press: New York, pp 933–944.

    Google Scholar 

  • Maes, M.,et al. 1993. Interleukin-1 beta: a putative mediator of HPA axis hyperactivity in major depression? Am J Psychiatr, 150(8):1189–1193.

    PubMed  CAS  Google Scholar 

  • Maj, J., et al. 1996. The effects of paroxetine given repeatedly on the 5-HT receptor subpopulations in the rat brain. Psychopharmacology (Berl), 127(1):73–82.

    CAS  Google Scholar 

  • Malhotra, A.K. Goldman, D. 2000. The dopamine D(4) receptor gene and novelty seeking. Am J Psychiatr, 157(11):1885–1886.

    PubMed  CAS  Google Scholar 

  • Manev, H. Uz, T. 2006. Clock genes: influencing and being influenced by psychoactive drugs. Trends Pharmacol Sci, 27(4):186–189.

    PubMed  CAS  Google Scholar 

  • Mannisto, Kaakkola, S. 2005. Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol Rev, 51(4):593–628.

    Google Scholar 

  • Manuck, S.B., et al. 2000. A regulatory polymorphism of the monoamine oxidase-A gene may be associated with variability in aggression, impulsivity, and central nervous system serotonergic responsivity. Psychiatr Res, 95(1):9–23.

    CAS  Google Scholar 

  • Marsh, S. McLeod, H.L. 2007. Pharmacogenetics and oncology treatment for breast cancer. Expert Opin Pharmacother, 8(2):119–127.

    PubMed  CAS  Google Scholar 

  • Masand, P.S., 2003. Tolerability and adherence issues in antidepressant therapy. Clin Ther, 25(8):2289–2304.

    PubMed  CAS  Google Scholar 

  • Mason, D.A., et al. 1999. A gain-of-function polymorphism in a G-protein coupling domain of the human beta1-adrenergic receptor. J Biol Chem, 274(18):12670–12674.

    PubMed  CAS  Google Scholar 

  • Matsushita, S., et al. 2004. Serotonin transporter regulatory region polymorphism is associated with anorexia nervosa. Am J Med Genet B Neuropsychiatr Genet, 128(1):114–117.

    Google Scholar 

  • McMahon, F.J., et al. 2006. Variation in the gene encoding the serotonin 2A receptor is associated with outcome of antidepressant treatment. Am J Hum Genet, 78(5):804–814.

    PubMed  CAS  Google Scholar 

  • Meyer, J.H., et al. 2001. The effect of paroxetine on 5-HT2A receptors in depression: an [18F]Setoperone PET imaging study. Am J Psychiatr, 158:78–85.

    PubMed  CAS  Google Scholar 

  • Michelson, D., et al. 1997. Chronic imipramine is associated with diminished hypothalamic-pituitary-adrenal axis responsivity in healthy humans. J Clin Endocrinol Metab, 82(8):2601–2606.

    PubMed  CAS  Google Scholar 

  • Mignone, F., et al., Untranslated regions of mRNAs. Genome Biol, 2002. 3(3):REVIEWS0004.

    Google Scholar 

  • Miller, L.G., et al. 1991. Interleukin-1 augments gamma-aminobutyric acidA receptor function in brain. Mol Pharmacol, 39(2):105–108.

    PubMed  CAS  Google Scholar 

  • Minov, C., et al. 2001. Serotonin-2A-receptor and -transporter polymorphisms: lack of association in patients with major depression. Neurosci Lett, 303(2):119–122.

    PubMed  CAS  Google Scholar 

  • Mitchell, A.J., 2006. Two-week delay in onset of action of antidepressants: new evidence. Br J Psychiatr, 188:105–106.

    Google Scholar 

  • Mitchell, E.S., Sexton, T. Neumaier, J.F. 2007. Increased expression of 5-HT6 receptors in the rat dorsomedial striatum impairs instrumental learning. Neuropsychopharmacology, 32(7):1520–1530.

    PubMed  CAS  Google Scholar 

  • Moncrieff, J. Kirsch, I. 2005. Efficacy of antidepressants in adults. BMJ, 331: (7509):551–557.

    Google Scholar 

  • Mossner, R., et al. 2006. Aberrant accumulation of serotonin in dopaminergic neurons. Neurosci Lett, 401(1–2):49–54.

    PubMed  Google Scholar 

  • Muller, D.J., et al. 2000. Moclobemide response in depressed patients: association study with a functional polymorphism in the monoamine oxidase-A promoter. in Eighth World Congress on Psychiatric Genetics. Neuropsychiatric Genetics, Wiley-Liss.Versailles, France:

    Google Scholar 

  • Muller, M. Renkawitz, R. 1991. The glucocorticoid receptor. Biochim Biophys Acta, 1088(2):171–182.

    PubMed  CAS  Google Scholar 

  • Mundo, E., et al. 2001. The Role of Serotonin Transporter Protein Gene in Antidepressant-Induced Mania in Bipolar Disorder. Arch Gen Psychiatr, 58:539–544.

    PubMed  CAS  Google Scholar 

  • Murphy, G., et al. Effects of the serotonin transporter promoter polymorphism on paroxetine and mirtazapine efficacy and side effects in geriatric major depression. in Pharmacogenetics in psychiatry meeting. 2003. New York.

    Google Scholar 

  • Murphy, G.M., Jr et al. 2003. Pharmacogenetics of Antidepressant Medication Intolerance. Am J Psychiatr, 160(10):1830–1835.

    PubMed  Google Scholar 

  • Murphy, G.M., Jr et al. 2004. Effects of the serotonin transporter gene promoter polymorphism on mirtazapine and paroxetine efficacy and adverse events in geriatric major depression Arch Gen Psychiatr, 61(11):1163–1169.

    PubMed  CAS  Google Scholar 

  • Myers, R.L., et al. 2006. Polymorphisms in the regulatory region of the human serotonin 5-HT(2A) receptor gene (HTR2A) influence gene expression. Biol Psychiatr, 11.

    Google Scholar 

  • Nebert, D. Dieter, M. 2002. The evolution of drug metabolism. Pharmacology, 61(3):124–135.

    Google Scholar 

  • Nemeroff, C.B., et al. 1984. Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science, 226(4680):1342–1344.

    PubMed  CAS  Google Scholar 

  • Nemeroff, C.B., et al. 1988. Reduced corticotropin releasing factor binding sites in the frontal cortex of suicide victims. Arch Gen Psychiatr, 45(6):577–579.

    PubMed  CAS  Google Scholar 

  • Newman, T.K., et al. 2005. Monoamine oxidase A gene promoter variation and rearing experience influences aggressive behavior in rhesus monkeys. Biol Psychiatr, 57(2):167–172.

    CAS  Google Scholar 

  • Newton, R.A., et al. 1996. Characterisation of human 5-hydroxytryptamine2A and 5-hydroxytryptamine2C receptors expressed in the human neuroblastoma cell line SH-SY5Y: comparative stimulation by hallucinogenic drugs. J Neurochem, 67(6):2521–2531.

    PubMed  CAS  Google Scholar 

  • Niculescu, A.B., et al. 2000. Identifying a series of candidate genes for mania and psychosis: a convergent functional genomics approach. Physiol Genom, 4(1):83–91.

    CAS  Google Scholar 

  • Nierenberg, A.A., 2003. Predictors of response to antidepressants general principals and clinical implications. Psychiatr Clin North Am, 26:345–352.

    PubMed  Google Scholar 

  • Nobile, M., et al. 2004. A case-control and family-based association study of the 5-HTTLPR in pediatric-onset depressive disorders. Biol Psychiatr, 56(4):292–295.

    CAS  Google Scholar 

  • Nutt, D., 1998. Substance-P antagonists: a new treatment for depression? Lancet, 352(9141):1644–1646.

    PubMed  CAS  Google Scholar 

  • O’Reilly, R.L., Bogue, L. Singh, S.M. 1994. Pharmacogenetic response to antidepressants in a multicase family with affective disorder. Biol Psychiatr, 36(7):467–471.

    Google Scholar 

  • Ogilvie, A.D., et al. 1996. Polymorphism in serotonin transporter gene associated with susceptibility to major depression. Lancet, 347:731–733.

    PubMed  CAS  Google Scholar 

  • Ohara, K., et al. 2003. CYP2D6*10 alleles do not determine plasma fluvoxamine concentration/dose ratio in Japanese subjects. Eur J Clin Pharmacol, 58(10):659–661.

    PubMed  CAS  Google Scholar 

  • Okamura, K., et al. 2005. Lack of an association between 5-HT receptor gene polymorphisms and suicide victims. Psychiatr Clin Neurosci, 59(3):345–349.

    CAS  Google Scholar 

  • Olsavsky, K.M., et al. 2007. Gene expression profiling and differentiation assessment in primary human hepatocyte cultures, established hepatoma cell lines, and human liver tissues. Toxicol Appl Pharmacol, 222(1):42–56.

    PubMed  CAS  Google Scholar 

  • Overstreet, D. Griebel, G. 2004. Antidepressant-like effects of CRF1 receptor antagonist SSR125543 in an animal model of depression. Eur J Pharmacol, 497(1):49–53.

    PubMed  CAS  Google Scholar 

  • Ozdemir, V., Tyndale, R. Reed, K. 1999. Paroxetine steady-state plasma concentration in relation to CYP2D6 genotype in extensive metabolizers. J Clin Psychopharmacol, 19(5):472–475.

    PubMed  CAS  Google Scholar 

  • Pae, C.U., et al. 2007. Dysbindin associated with selective serotonin reuptake inhibitor antidepressant efficacy. Pharmacogenetics Genomics, 17(1):69–75.

    CAS  Google Scholar 

  • Park, J.W., et al. 2004. Serotonin transporter polymorphism and harm avoidance personality in chronic tension-type headache. Headache, 44(10):1005–1009.

    PubMed  Google Scholar 

  • Parsian, A., 1999. Sequence analysis of exon 8 of MAO-A gene in alcoholics with antisocial personality and normal controls. Genomics, 55(3):290–295.

    PubMed  CAS  Google Scholar 

  • Paul, I.A., 2001. Antidepressant activity and calcium signaling cascades. Hum Psychopharmacol, 16(1):71–80.

    PubMed  CAS  Google Scholar 

  • Perez, V., et al. 1997. Randomised, double-blind, placebo-controlled trial of pindolol in combination with fluoxetine antidepressant treatment Lancet, 349:1594–1597.

    PubMed  CAS  Google Scholar 

  • Perlis, R.H., et al. 2003. Serotonin transporter polymorphisms and adverse effects with fluoxetine treatment. Biol Psychiatr, 54(9):879–883.

    CAS  Google Scholar 

  • Perlis, R.H., 2007. Pharmacogenetic studies of antidepressant response: how far from the clinic? Psychiatr Clin North Am, 30: (1):125–138.

    PubMed  Google Scholar 

  • Peters , E.J., et al., Investigation of serotonin-related genes in antidepressant response. Mol Psychiatr, 2004.

    Google Scholar 

  • Pociot, F., et al. 1992. A TaqI polymorphism in the human interleukin-1 beta (IL-1 beta) gene correlates with IL-1 beta secretion in vitro. Eur J Clin Invest, 22(6):396–402.

    PubMed  CAS  Google Scholar 

  • Pollock, B.G., et al. 2000. Allelic variation in the serotonin transporter promoter affects onset of paroxetine treatment response in late-life depression. Neuropsychopharmacology, 23(5):587–590.

    PubMed  CAS  Google Scholar 

  • Popp, J., et al. 2006. Serotonin transporter polymorphisms and side effects in antidepressant therapy–a pilot study. Pharmacogenomics, 7(2):159–166.

    PubMed  CAS  Google Scholar 

  • Preisig, M., Ferrero, F. Malafosse, A. 2005. Monoamine oxidase a and tryptophan hydroxylase gene polymorphisms: are they associated with bipolar disorder? Am J Pharmacogenomics, 5(1):45–52.

    PubMed  CAS  Google Scholar 

  • Raadsheer, F.C., et al. 1994. Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology, 60(4):436–444.

    PubMed  CAS  Google Scholar 

  • Rada, P., et al. 1991. Interleukin-1 beta decreases acetylcholine measured by microdialysis in the hippocampus of freely moving rats. Brain Res, 550(2):287–290.

    PubMed  CAS  Google Scholar 

  • Ramamoorthy, S., et al. 1993. Antidepressant- and cocaine-sensitive human serotonin transporter: molecular cloning, expression, and chromosomal localization Proc Natl Acad Sci U S A, 90(6):2542–2546.

    PubMed  CAS  Google Scholar 

  • Rao, N., 2007. The clinical pharmacokinetics of escitalopram. Clin Pharmacokinet, 46(4):281–290.

    PubMed  CAS  Google Scholar 

  • Rau, T., et al. 2004. CYP2D6 genotype: impact on adverse effects and nonresponse during treatment with antidepressants-a pilot study. Clin Pharmacol Ther, 75(5):386–393.

    PubMed  CAS  Google Scholar 

  • Rausch, J.L., et al. 2002. Initial conditions of serotonin transporter kinetics and genotype: influence on ssri treatment trial outcome. Biol Psychiatr, 51(9):723–732.

    CAS  Google Scholar 

  • Reppert, S.M. Weaver, D.R. 2002. Coordination of circadian timing in mammals. Nature, 418(6901):935–941.

    PubMed  CAS  Google Scholar 

  • Rigat, B., et al. 1990. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest, 86(4):1343–1346.

    PubMed  CAS  Google Scholar 

  • Roberts, R.L., et al. 2002. A common P-glycoprotein polymorphism is associated with nortriptyline-induced postural hypotension in patients treated for major depression. Pharmacogenomics J, 2(3):191–196.

    PubMed  CAS  Google Scholar 

  • Rosskopf, D., et al. 2000. G protein beta 3 gene: structure, promoter, and additional polymorphisms. Hypertension, 36(1):33–41.

    PubMed  CAS  Google Scholar 

  • Rousseva, A., et al. 2003. Antidepressant-induced mania, rapid cycling and the serotonin transporter gene polymorphism. Pharmacogenomics J, 3(2):101–104.

    PubMed  CAS  Google Scholar 

  • Ruiz-Velasco, V. Ikeda, S.R. 2003. A splice variant of the G protein beta 3-subunit implicated in disease states does not modulate ion channels. Physiol Genomics, 13(2):85–95.

    PubMed  CAS  Google Scholar 

  • Rujescu, D., et al. 2003. Genetic variations in tryptophan hydroxylase in suicidal behavior: analysis and meta-analysis. Biol Psychiatr, 54(4):465–473.

    CAS  Google Scholar 

  • Sabol, S.Z., Hu, S. Hamer, D. 1998. A functional polymorphism in the monoamine oxidase A gene promoter. Human Genetic, 103:273–279.

    CAS  Google Scholar 

  • Sakai, K., et al. 1998. The genomic organization of the human corticotropin-releasing factor type-1 receptor. Gene, 219(1–2):125–130.

    PubMed  CAS  Google Scholar 

  • Sakowski, S.A., et al. 2006. Differential tissue distribution of tryptophan hydroxylase isoforms 1 and 2 as revealed with monospecific antibodies. Brain Res, 1085(1):11–18.

    PubMed  CAS  Google Scholar 

  • Sato, K., et al. 2002. Association between -1438G/A promoter polymorphism in the 5-HT(2A) receptor gene and fluvoxamine response in Japanese patients with major depressive disorder. Neuropsychobiology, 46(3):136–140.

    PubMed  CAS  Google Scholar 

  • Scheuch , K., et al., Characterization of a functional promoter polymorphism of the human tryptophan hydroxylase 2 gene in serotonergic raphe neurons. Biol Psychiatr, 2007.

    Google Scholar 

  • Scordo, M.G., et al. 2005. Influence of CYP2C9, 2C19 and 2D6 genetic polymorphisms on the steady-state plasma concentrations of the enantiomers of fluoxetine and norfluoxetine. Basic Clin Pharmacol Toxicol, 97(5):296–301.

    PubMed  CAS  Google Scholar 

  • Sei, H., et al. 2006. Clock mutant mice with Jcl/ICR background shows an impaired learning ability in water maze, but not in passive avoidance, at the beginning of dark phase. Congenit Anom (Kyoto), 46(2):81–85.

    CAS  Google Scholar 

  • Serretti, A., et al. 1998. Mode of inheritance in mood disorders families according to fluvoxamine response. Acta Psychiatrica Scandinavica, 98(6):443–450.

    PubMed  CAS  Google Scholar 

  • Serretti, A., et al. 1999. Dopamine receptor D4 is not associated with antidepressant activity of sleep deprivation. Psychiatr Res, 89:107–114.

    CAS  Google Scholar 

  • Serretti, A., et al. 2001a. Influence of tryptophan hydroxylase and serotonin transporter genes on fluvoxamine antidepressant activity. Mol Psychiatr, 6:586–592.

    CAS  Google Scholar 

  • Serretti, A., et al. 2001b. No association between dopamine D2 and D4 receptor gene variants and antidepressant activity of two selective serotonin reuptake inhibitors. Psychiatr Res, 104(3):195–203.

    CAS  Google Scholar 

  • Serretti, A., et al. 2001c. Tryptophan hydroxylase gene associated with paroxetine antidepressant activity. Eur Neuropsychopharmacol, 11(5):375–380.

    CAS  Google Scholar 

  • Serretti, A., et al. 2003a. Genetic dissection of psychopathological symptoms: Insomnia in mood disorders and CLOCK gene polymorphism Am J Med Genet, 121B(1):39–43.

    Google Scholar 

  • Serretti, A., et al. 2003b. SSRIs antidepressant activity is influenced by Gbeta3 variants. Eur Neuropsychopharmacol, 13(2):117–122.

    CAS  Google Scholar 

  • Serretti, A., et al. 2004a. Further evidence of a combined effect of SERTPR and TPH on SSRIs response in mood disorders. Am J Med Genet B Neuropsychiatr Genet, 129(1):36–40.

    Google Scholar 

  • Serretti, A., et al. 2004b. Genetic features of antidepressant induced mania and hypo-mania in bipolar disorder. Psychopharmacology (Berl), 174(4):504–511.

    CAS  Google Scholar 

  • Serretti, A., et al. 2004c. Pharmacogenetics of selective serotonin reuptake inhibitor response: a 6-month follow-up. Pharmacogenetics, 14(9):607–613.

    CAS  Google Scholar 

  • Serretti, A., et al. 2004d. The C(-1019)G polymorphism of the 5-HT1A gene promoter and antidepressant response in mood disorders: preliminary findings. Int J Neuropsychopharmacol, 7(4):453–460.

    CAS  Google Scholar 

  • Serretti, A., et al. 2005a. Insomnia improvement during antidepressant treatment and CLOCK gene polymorphism. Am J Med Genet B Neuropsychiatr Genet, 10:10.

    Google Scholar 

  • Serretti, A., et al. 2005b. The influence of Serotonin Transporter Promoter Polymorphism (SERTPR) and other polymorphisms of the serotonin pathway on the efficacy of antidepressant treatments. Prog Neuropsychopharmacol Biol Psychiatr, 29(6):1074–1084.

    CAS  Google Scholar 

  • Serretti, A., et al. 2006b. Serotonin transporter gene variants and behavior: a comprehensive review. Curr Drug Targets, 7(12):1659–1669.

    CAS  Google Scholar 

  • Serretti, A., et al. 2006b. Temperament and character in mood disorders: influence of DRD4, SERTPR, TPH and MAO-A polymorphisms Neuropsychobiology, 53(1):9–16.

    CAS  Google Scholar 

  • Serretti, A., et al. 2007a. Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with selective serotonin reuptake inhibitor efficacy in depressed patients. Mol Psychiatr, 12(3):247–257.

    CAS  Google Scholar 

  • Serretti, A., et al. 2007b. Serotonin transporter gene influences the time course of improvement of “core” depressive and somatic anxiety symptoms during treatment with SSRIs for recurrent mood disorders. Psychiatr Res, 149(1–3):185–193.

    CAS  Google Scholar 

  • Seymour, P., Schmidt, A. Schulz, D. 2003. The pharmacology of CP-154,526, a non-peptide antagonist of the CRH1 receptor: a review. CNS Drug Rev, 9(1):57–96.

    PubMed  CAS  Google Scholar 

  • Shams, M.E., et al. 2006. CYP2D6 polymorphism and clinical effect of the antidepressant venlafaxine. J Clin Pharm Ther, 31(5):493–502.

    PubMed  CAS  Google Scholar 

  • Shang, Y., et al. 2007. Displacement of serotonin and dopamine transporters by venlafaxine extended release capsule at steady state: a [123I]2beta-carbomethoxy-3beta-(4-iodophenyl)-tropane single photon emission computed tomography imaging study. J Clin Psychopharmacol, 27(1):71–75.

    PubMed  CAS  Google Scholar 

  • Shintani, F., et al. 1993. Interleukin-1 beta augments release of norepinephrine, dopamine, and serotonin in the rat anterior hypothalamus. J Neurosci, 13(8):3574–3581.

    PubMed  CAS  Google Scholar 

  • Shirayama, Y., et al. 1996. Reduction of substance P after chronic antidepressants treatment in the striatum, substantia nigra and amygdala of the rat. Brain Res, 739(1–2):70–78.

    PubMed  Google Scholar 

  • Siffert, W., et al. 1998. Association of a human G-protein beta3 subunit variant with hypertension. Nat Genet, 18(1):45–48.

    PubMed  CAS  Google Scholar 

  • Sims, K.B., et al. 1989. Monoamine oxidase deficiency in males with an X chromosome deletion. Neuron, 2(1):1069–1076.

    PubMed  CAS  Google Scholar 

  • Skrebuhhova, T., Allikmets, L. Matto, V. 1999. Effects of anxiogenic drugs in rat forced swimming test. Meth Find Exp Clin Pharmacol, 21(3):173–178.

    CAS  Google Scholar 

  • Smeraldi, E., et al. 1998. Polymorphism within the promoter of the serotonin transporter gene and antidepressant efficacy of fluvoxamine. Mol Psychiatr, 3(6):508–511.

    CAS  Google Scholar 

  • Smeraldi, E., et al. 2006. Serotonin transporter gene-linked polymorphic region: possible pharmacogenetic implications of rare variants. Psychiatr Genet, 16(4):153–158.

    PubMed  Google Scholar 

  • Smith, D.A., et al. 1998. Human cytochrome P450s: selectivity and measurement in vivo. Xenobiotica, 28(12):1095–1128.

    PubMed  CAS  Google Scholar 

  • Smith, G., et al. 1998. Molecular genetics of the human cytochrome P450 monooxygenase superfamily. Xenobiotica, 28(12):1129–1165.

    PubMed  CAS  Google Scholar 

  • Smits, K., et al. 2007. Serotonin transporter polymorphisms and the occurrence of adverse events during treatment with selective serotonin reuptake inhibitors. Int Clin Psychopharmacol, 22(3):137–143.

    PubMed  Google Scholar 

  • Smits, K.M., et al. 2004. Influence of SERTPR and STin2 in the serotonin transporter gene on the effect of selective serotonin reuptake inhibitors in depression: a systematic review. Mol Psychiatr, 9(5):433–441.

    CAS  Google Scholar 

  • Smits, K.M., et al. 2007. Does pretreatment testing for serotonin transporter polymorphisms lead to earlier effects of drug treatment in patients with major depression? A decision-analytic model. Clin Ther, 29(4):691–702.

    PubMed  CAS  Google Scholar 

  • Spurlock, G., et al. 1998. A family based association study of T102C polymorphism in 5HT2A and schizophrenia plus identification of new polymorphisms in the promoter. Mol Psychiatr, 3(1):42–49.

    CAS  Google Scholar 

  • Steeves, T.D., et al. 1999. Molecular cloning and characterization of the human clock gene: mexpression in the suprachiasmatic nuclei. Genomics, 57:198–200.

    Google Scholar 

  • Steiger, H., et al. 2005. The 5HTTLPR polymorphism, psychopathologic symptoms, and platelet [3H-] paroxetine binding in bulimic syndromes Int J Eat Disord, 37(1):57–60.

    PubMed  Google Scholar 

  • Steimer, W., et al. 2005. Amitriptyline or not, that is the question: pharmacogenetic testing of CYP2D6 and CYP2C19 identifies patients with low or high risk for side effects in amitriptyline therapy. Clin Chem, 51(2):376–385.

    PubMed  CAS  Google Scholar 

  • Stockmeier, C.A., et al. 1998. Increase in serotonin-1A autoreceptors in the midbrain of suicide victims with major depression-postmortem evidence for decreased serotonin activity. J Neurosci, 18(18):7394–7401.

    PubMed  CAS  Google Scholar 

  • Sugai, T., et al. 2006. The effect of 5-hydroxytryptamine 3A and 3B receptor genes on nausea induced by paroxetine. Pharmacogenomics J, 6(5):351–356.

    PubMed  CAS  Google Scholar 

  • Suzuki, E., et al. 2003. Long-term imipramine treatment increases nitrate levels in the rat hypothalamus. Cell Mol Neurobiol, 23(6):953–962.

    PubMed  CAS  Google Scholar 

  • Suzuki, Y., Sawamura, K. Someya, T. 2004. The effects of a 5-hydroxytryptamine 1A receptor gene polymorphism on the clinical response to fluvoxamine in depressed patients. Pharmacoeconomics J, 4(4):283–286.

    CAS  Google Scholar 

  • Suzuki, Y., Sawamura, K. Someya, T. 2006. Polymorphisms in the 5-hydroxytryptamine 2A receptor and CytochromeP4502D6 genes synergistically predict fluvoxamine-induced side effects in japanese depressed patients. Neuropsychopharmacology, 31(4):825–831.

    PubMed  CAS  Google Scholar 

  • Svenningsson, P., et al. 2007. Biochemical and behavioral evidence for antidepressant-like effects of 5-HT6 receptor stimulation. J Neurosci, 27(15):4201–4209.

    PubMed  CAS  Google Scholar 

  • Szegedi, A., et al. 2005. The catechol-O-methyltransferase Val108/158Met polymorphism affects short-term treatment response to mirtazapine, but not to paroxetine in major depression. Pharmacogenomics J, 5(1):49–53.

    PubMed  CAS  Google Scholar 

  • Tadic, A., et al. 2007. The MAOA T941G polymorphism and short-term treatment response to mirtazapine and paroxetine in major depression. Am J Med Genet B Neuropsychiatr Genet, 144(3):325–331.

    Google Scholar 

  • Takahashi, H., et al. 2002. No association between the serotonergic polymorphisms and incidence of nausea induced by fluvoxamine treatment. Eur Neuropsychopharmacol, 12(5):477–481.

    PubMed  CAS  Google Scholar 

  • Thuerauf, N. Lunkenheimer, J. 2006. The impact of the CYP2D6-polymorphism on dose recommendations for current antidepressants. Eur Arch Psychiatr Clin Neurosci, 256(5):287–293.

    Google Scholar 

  • Trent, J.M. Witkowski, C.M. 1987. Clarification of the chromosomal assignment of the human P-glycoprotein/mdr1 gene: possible coincidence with the cystic fibrosis and c-met oncogene. Cancer Genet Cytogenet, 26(1):187–190.

    PubMed  CAS  Google Scholar 

  • Tringali, G., et al. 1996. Evidence for the neuronal origin of immunoreactive interleukin-1 beta released by rat hypothalamic explants. Neurosci Lett, 219(3):143–146.

    PubMed  CAS  Google Scholar 

  • Tsai, S.J., et al. 2004. Association study of serotonin 1B receptor (A-161T) genetic polymorphism and suicidal behaviors and response to fluoxetine in major depressive disorder. Neuropsychobiology, 50(3):235–238.

    PubMed  CAS  Google Scholar 

  • Usiello, A., et al. 2000. Distinct functions of the two isoforms of dopamine D2 receptors. Nature, 408(6809):199–203.

    PubMed  CAS  Google Scholar 

  • Uz, T., et al. 2005. Effect of fluoxetine and cocaine on the expression of clock genes in the mouse hippocampus and striatum. Neuroscience, 134(4):1309–1316.

    PubMed  CAS  Google Scholar 

  • Weide, J., van der Baalen-Benedek, E.H. van Kootstra-Ros, J.E. 2005. Metabolic ratios of psychotropics as indication of cytochrome P450 2D6/2C19 genotype. Ther Drug Monit, 27(4):478–483.

    PubMed  Google Scholar 

  • Pett, K., Van et al. 2000. Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse. J Comp Neurol, 428(2):191–212.

    PubMed  Google Scholar 

  • Rossum, E.F., van et al. 2006. Polymorphisms of the glucocorticoid receptor gene and major depression. Biol Psychiatr, 59(8):681–688.

    Google Scholar 

  • Tol, H.H., Van et al. 1991. Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature, 350(6319):610–614.

    PubMed  Google Scholar 

  • Veefkind, A., Haffmans, Hoencamp, E. 2000. Venlafaxine serum levels and CYP2D6 genotype. Ther Drug Monit, 22(2):202–208.

    Google Scholar 

  • Vilar, R., et al. 2007. Association of A313 G polymorphism (GSTP1*B) in the glutathione-S-transferase P1 gene with sporadic Parkinson’s disease. Eur J Neurol, 14(2):156–161.

    PubMed  CAS  Google Scholar 

  • Wegener, G., et al. 2003. Local, but not systemic, administration of serotonergic antidepressants decreases hippocampal nitric oxide synthase activity. Brain Res, 959(1):128–134.

    PubMed  CAS  Google Scholar 

  • Weinshilboum, R.M., Otterness, D.M. Szumlanski, C.L. 1999. Methylation pharmacogenetics: catechol O-methyltransferase, thiopurine methyltransferase, and histamine N-methyltransferase. Annu Rev Pharmacol Toxicol, 39:19–52.

    PubMed  CAS  Google Scholar 

  • Wendland, J.R., et al. 2006. Simultaneous genotyping of four functional loci of human SLC6A4, with a reappraisal of 5-HTTLPR and rs25531 Mol Psychiatr, 11(3):224–226.

    CAS  Google Scholar 

  • Wendland, J.R., et al., A Large Case-Control Study of Common Functional SLC6A4 and BDNF Variants in Obsessive-Compulsive Disorder. Neuropsychopharmacology, 2007.

    Google Scholar 

  • Wesolowska, A. Nikiforuk, A. 2007. Effects of the brain-penetrant and selective 5-HT6 receptor antagonist SB-399885 in animal models of anxiety and depression. Neuropharmacology, 52(5):1274–1283.

    PubMed  CAS  Google Scholar 

  • Wess, J., 1998. Molecular basis of receptor/G-protein-coupling selectivity. Pharmacol Ther, 80(3):231–264.

    PubMed  CAS  Google Scholar 

  • Wilkie, M.J., et al. 2007. A splice site polymorphism in the G-protein beta subunit influences antidepressant efficacy in depression. Pharmacogenet Genomics, 17(3):207–215.

    PubMed  CAS  Google Scholar 

  • Willner, P., Hale, A.S. Argyropoulos, S. 2005. Dopaminergic mechanism of antidepressant action in depressed patients. J Affect Disord, 86(1):37–45.

    PubMed  CAS  Google Scholar 

  • Wu, W.H., et al. 2001. Association study of the 5-HT(6) receptor polymorphism (C267T) and symptomatology and antidepressant response in major depressive disorders. Neuropsychobiology, 44(4):172–175.

    PubMed  CAS  Google Scholar 

  • Xu, J., et al. 2003. Heterodimerization of alpha 2A- and beta 1-adrenergic receptors. J Biol Chem, 278(12):10770–10777.

    PubMed  CAS  Google Scholar 

  • Xu, W., et al. 1993. Regional localization of the gene coding for human brain nitric oxide synthase (NOS1) to 12q24.2‐‐>24.31 by fluorescent in situ hybridization. Cytogenet Cell Genet, 64(1):62–63.

    PubMed  CAS  Google Scholar 

  • Yamauchi, M., et al., Desensitization of 5-HT2A receptor function by chronic administration of selective serotonin reuptake inhibitors. Brain Res, 2005:164–169.

    Google Scholar 

  • Yan, Z. Wu, Y. 2007. [Relation between cytochrome P450 2D6 and lung cancer susceptibility caused by smoking]. Wei Sheng Yan Jiu, 36(1):112–3, 116.

    PubMed  CAS  Google Scholar 

  • Yang, K., et al. 2007. Levels of serum interleukin (IL)-6, IL-1beta, tumour necrosis factor-alpha and leptin and their correlation in depression. Aust N Z J Psychiatr, 41(3):266–273.

    Google Scholar 

  • Yang-Feng, T.L., et al. 1990. Chromosomal organization of adrenergic receptor genes. Proc Natl Acad Sci U S A, 87(4):1516–1520.

    PubMed  CAS  Google Scholar 

  • Yatham, L.N., et al. 1999. Decrease in brain serotonin 2 receptor binding in patients with major depression following desipramine treatment – A positron emission tomography study with fluorine-18-labeled setoperone. Arch Gen Psychiatr, 56(8):705–711.

    PubMed  CAS  Google Scholar 

  • Yeo, A., et al. 2004. Association between a functional polymorphism in the serotonin transporter gene and diarrhoea predominant irritable bowel syndrome in women. Gut, 53(10):1452–1458.

    PubMed  CAS  Google Scholar 

  • Yin, O.Q., et al. 2006. Phenotype-genotype relationship and clinical effects of citalopram in Chinese patients. J Clin Psychopharmacol, 26(4):367–372.

    PubMed  CAS  Google Scholar 

  • Yoshida, K., et al. 2002. Influence of the serotonin transporter gene-linked polymorphic region on the antidepressant response to fluvoxamine in Japanese depressed patients. Prog Neuropsychopharmacol Biol Psychiatr, 26(2):383–386.

    CAS  Google Scholar 

  • Yoshida, K., et al. 2002. Monoamine oxidase: A gene polymorphism, tryptophan hydroxylase gene polymorphism and antidepressant response to fluvoxamine in Japanese patients with major depressive disorder Prog Neuropsychopharmacol Biol Psychiatr, 26(7–8):1279–1283.

    CAS  Google Scholar 

  • Yoshida, K., et al. 2003. Monoamine oxidase A gene polymorphism, 5-HT 2A receptor gene polymorphism and incidence of nausea induced by fluvoxamine. Neuropsychobiology, 48(1):10–13.

    PubMed  CAS  Google Scholar 

  • Yoshida, K., et al. 2004. Prediction of antidepressant response to milnacipran by norepinephrine transporter gene polymorphisms. Am J Psychiatr, 161(9):1575–1580.

    PubMed  Google Scholar 

  • Yu, Y., et al., Association study of a monoamine oxidase a gene promoter polymorphism with major depressive disorder and antidepressant response. Neuropsychopharmacology, 2005. 30(1719–1723).

    Google Scholar 

  • Yu, Y.W., et al. 2002. Association study of the serotonin transporter promoter polymorphism and symptomatology and antidepressant response in major depressive disorders. Mol Psychiatr, 7(10):1115–1119.

    CAS  Google Scholar 

  • Yu, Y.W., et al. 2003a. Association analysis for neuronal nitric oxide synthase gene polymorphism with major depression and fluoxetine response. Neuropsychobiology, 47(3):137–140.

    CAS  Google Scholar 

  • Yu, Y.W., et al. 2003b. Association study of the interleukin-1beta (C-511T) genetic polymorphism with major depressive disorder, associated symptomatology, and antidepressant response. Neuropsychopharmacology, 28(6):1182–1185.

    CAS  Google Scholar 

  • Yu, Y.W., et al. 2006. Association study of two serotonin 1A receptor gene polymorphisms and fluoxetine treatment response in Chinese major depressive disorders. Eur Neuropsychopharmacol, 16(7):498–503.

    PubMed  CAS  Google Scholar 

  • Zanardi, R., et al. 2000. Efficacy of paroxetine in depression is influenced by a functional polymorphism within the promoter of serotonin transporter gene. J Clin Psychopharmacol, 20(1):105–107.

    PubMed  CAS  Google Scholar 

  • Zanardi, R., et al. 2001. Factors affecting fluvoxamine antidepressant activity: influence of pindolol and 5-HTTLPR in delusional and nondelusional depression. Biol Psychiatr, 50(5):323–330.

    CAS  Google Scholar 

  • Zangen, A., et al. 2001. Association between depressive behavior and absence of serotonin-dopamine interaction in the nucleus accumbens. Psychopharmacology (Berl), 155(4):434–439.

    CAS  Google Scholar 

  • Zateyshchikov, D.A., et al. 2007. Association of CYP2D6 and ADRB1 genes with hypotensive and antichronotropic action of betaxolol in patients with arterial hypertension. Fundam Clin Pharmacol, 21(4):437–443.

    PubMed  CAS  Google Scholar 

  • Zeise, M.L., Madamba, S. Siggins, G.R. 1992. Interleukin-1 beta increases synaptic inhibition in rat hippocampal pyramidal neurons in vitro. Regul Pept, 39(1):1–7.

    PubMed  CAS  Google Scholar 

  • Zhang, X., et al. 2004. Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science, 305(5681):217.

    PubMed  CAS  Google Scholar 

  • Zhang, X., et al., Loss-of-Function Mutation in Tryptophan Hydroxylase-2 Identified in Unipolar Major Depression. Neuron, 2005. 45(11–16).

    Google Scholar 

  • Zhou, Z. et al. 2005. Haplotype-based linkage of tryptophan hydroxylase 2 to suicide attempt, major depression, and cerebrospinal fluid 5-hydroxyindoleacetic acid in 4 populations. Arch Gen Psychiatr, 62(10):1109–1118.

    PubMed  CAS  Google Scholar 

  • Zill, P., et al. 2000. Evidence for an association between a G-protein beta3-gene variant with depression and response to antidepressant treatment. Neuroreport, 11(9):1893–1897.

    PubMed  CAS  Google Scholar 

  • Zill, P., et al. 2003. Beta-1-adrenergic receptor gene in major depression: Influence on antidepressant treatment response. Am J Med Genet, 120B(1):85–89.

    PubMed  Google Scholar 

  • Zill, P., et al. 2004a. Single nucleotide polymorphism and haplotype analysis of a novel tryptophan hydroxylase isoform (TPH2) gene in suicide victims. Biol Psychiatr, 56(8):581–586.

    CAS  Google Scholar 

  • Zill, P., et al. 2004b. The dysbindin gene in major depression: an association study. Am J Med Genet B Neuropsychiatr Genet, 129(1):55–58.

    Google Scholar 

  • Zill , P., et al., Analysis of tryptophan hydroxylase I and II mRNA expression in the human brain: A post-mortem study. J Psychiatr Res, 2005: [Epub ahead of print].

    Google Scholar 

  • Zorrilla, E.P., et al. 2001. The relationship of depression and stressors to immunological assays: a meta-analytic review. Brain Behav Immun, 15(3):199–226.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Serretti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Serretti, A., Drago, A., Liebman, M.N. (2008). Pharmacogenetics of Antidepressant Response. In: Turck, C. (eds) Biomarkers for Psychiatric Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-79251-4_14

Download citation

Publish with us

Policies and ethics