Skip to main content

IL-2 Signaling and CD4+ CD25+ Regulatory T Cells

  • Chapter
  • First Online:
Regulatory T Cells and Clinical Application

Abstract

Over the last two decades, our understanding of the function of Interleukin-2 (IL-2) has experienced several paradigmatic shifts. Although IL-2 was initially identified as a T cell growth factor, loss of function experiments clearly showed that it rather acts as a gatekeeper of immune homeostasis and tolerance. It is now widely accepted that the major non-redundant function of IL-2 is the maintenance of naturally occurring CD25+ Foxp3+ regulatory T cells (Treg). Importantly, this role as an essential survival factor may blur the interpretation of loss-of-function studies that tried to address other, mutually not exclusive functions of IL-2 in Treg biology, such as development and function. This chapter will summarize our current understanding of how IL-2 signaling may relate to these aspects of immune regulation by Treg.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taniguchi, T., et al., Structure and expression of a cloned cDNA for human interleukin-2. Nature, 1983, 302(5906):305–10.

    Article  PubMed  CAS  Google Scholar 

  2. Yang-Snyder, J.A. and E.V. Rothenberg, Spontaneous expression of interleukin-2 in vivo in specific tissues of young mice. Dev Immunol, 1998, 5(4):223–45.

    Article  PubMed  CAS  Google Scholar 

  3. Granucci, F., et al., Inducible IL-2 production by dendritic cells revealed by global gene expression analysis. Nat Immunol, 2001, 2(9):882–8.

    Article  PubMed  CAS  Google Scholar 

  4. Sugamura, K., et al., The interleukin-2 receptor gamma chain: its role in the multiple cytokine receptor complexes and T cell development in XSCID. Annu Rev Immunol, 1996, 14: 179–205.

    Article  PubMed  CAS  Google Scholar 

  5. Nelson, B.H. and D.M. Willerford, Biology of the interleukin-2 receptor. Adv Immunol, 1998, 70:1–81.

    Article  PubMed  CAS  Google Scholar 

  6. Eklund, J.W. and T.M. Kuzel, A review of recent findings involving interleukin-2-based cancer therapy. Curr Opin Oncol, 2004, 16(6):542–6.

    Article  PubMed  CAS  Google Scholar 

  7. Pahwa, S. and M. Morales, Interleukin-2 therapy in HIV infection. AIDS Patient Care STDS, 1998, 12(3):187–97.

    Article  PubMed  CAS  Google Scholar 

  8. Waldmann, T.A., The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol, 2006, 6(8):595–601.

    Article  PubMed  CAS  Google Scholar 

  9. Schorle, H., et al., Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting. Nature, 1991, 352(6336):621–4.

    Article  PubMed  CAS  Google Scholar 

  10. Willerford, D.M., et al., Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity, 1995, 3(4):521–30.

    Article  PubMed  CAS  Google Scholar 

  11. Suzuki, H., et al., Abnormal development of intestinal intraepithelial lymphocytes and peripheral natural killer cells in mice lacking the IL-2 receptor beta chain. J Exp Med, 1997, 185(3):499–505.

    Article  PubMed  CAS  Google Scholar 

  12. Sadlack, B., et al., Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell, 1993, 75(2):253–61.

    Article  PubMed  CAS  Google Scholar 

  13. Kramer, S., A. Schimpl, and T. Hunig, Immunopathology of interleukin (IL) 2-deficient mice: thymus dependence and suppression by thymus-dependent cells with an intact IL-2 gene. J Exp Med, 1995, 182(6):1769–76.

    Article  PubMed  CAS  Google Scholar 

  14. Ma, A., et al., T cells, but not B cells, are required for bowel inflammation in interleukin 2-deficient mice. J Exp Med, 1995, 182(5):1567–72.

    Article  PubMed  CAS  Google Scholar 

  15. Van Parijs, L., et al., Functional responses and apoptosis of CD25 (IL-2R alpha)-deficient T cells expressing a transgenic antigen receptor. J Immunol, 1997, 158(8):3738–45.

    PubMed  Google Scholar 

  16. Lenardo, M.J., Interleukin-2 programs mouse alpha beta T lymphocytes for apoptosis. Nature, 1991, 353(6347):858–61.

    Article  PubMed  CAS  Google Scholar 

  17. Zheng, L., et al., T cell growth cytokines cause the superinduction of molecules mediating antigen-induced T lymphocyte death. J Immunol, 1998, 160(2):763–9.

    PubMed  CAS  Google Scholar 

  18. Refaeli, Y., et al., Biochemical mechanisms of IL-2-regulated Fas-mediated T cell apoptosis. Immunity, 1998, 8(5):615–23.

    Article  PubMed  CAS  Google Scholar 

  19. Suzuki, H., et al., Normal thymic selection, superantigen-induced deletion and Fas-mediated apoptosis of T cells in IL-2 receptor beta chain-deficient mice. Int Immunol, 1997, 9(9): 1367–74.

    Article  PubMed  CAS  Google Scholar 

  20. Leung, D.T., S. Morefield, and D.M. Willerford, Regulation of lymphoid homeostasis by IL-2 receptor signals in vivo. J Immunol, 2000, 164(7):3527–34.

    PubMed  CAS  Google Scholar 

  21. D'Souza, W.N., et al., Essential role for IL-2 in the regulation of antiviral extralymphoid CD8 T cell responses. J Immunol, 2002, 168(11):5566–72.

    PubMed  Google Scholar 

  22. Papiernik, M., et al., Regulatory CD4 T cells: expression of IL-2R alpha chain, resistance to clonal deletion and IL-2 dependency. Int Immunol, 1998, 10(4):371–8.

    Article  PubMed  CAS  Google Scholar 

  23. Malek, T.R., et al., CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rbeta-deficient mice. Implications for the nonredundant function of IL-2. Immunity, 2002. 17(2):167–78.

    Article  PubMed  CAS  Google Scholar 

  24. Almeida, A.R., et al., Homeostasis of peripheral CD4+ T cells: IL-2R alpha and IL-2 shape a population of regulatory cells that controls CD4+ T cell numbers. J Immunol, 2002, 169(9):4850–60.

    PubMed  Google Scholar 

  25. Taniguchi, T., et al., IL-2 signaling involves recruitment and activation of multiple protein tyrosine kinases by the IL-2 receptor. Ann N Y Acad Sci, 1995, 766:235–44.

    Article  PubMed  CAS  Google Scholar 

  26. Witthuhn, B.A., et al., Involvement of the Jak-3 Janus kinase in signalling by interleukins 2 and 4 in lymphoid and myeloid cells. Nature, 1994, 370(6485):153–7.

    Article  PubMed  CAS  Google Scholar 

  27. Johnston, J.A., et al., Phosphorylation and activation of the Jak-3 Janus kinase in response to interleukin-2. Nature, 1994, 370(6485):151–3.

    Article  PubMed  CAS  Google Scholar 

  28. Van Parijs, L., et al., Uncoupling IL-2 signals that regulate T cell proliferation, survival, and Fas-mediated activation-induced cell death. Immunity, 1999, 11(3):281–8.

    Article  PubMed  Google Scholar 

  29. Gaffen, S.L., et al., Distinct tyrosine residues within the interleukin-2 receptor beta chain drive signal transduction specificity, redundancy, and diversity. J Biol Chem, 1996, 271(35): 21381–90.

    Article  PubMed  CAS  Google Scholar 

  30. Moriggl, R., et al., Stat5 activation is uniquely associated with cytokine signaling in peripheral T cells. Immunity, 1999, 11(2):225–30.

    Article  PubMed  CAS  Google Scholar 

  31. Lin, J.X. and W.J. Leonard, The role of Stat5a and Stat5b in signaling by IL-2 family cytokines. Oncogene, 2000, 19(21):2566–76.

    Article  PubMed  CAS  Google Scholar 

  32. Graves, J.D., et al., The growth factor IL-2 activates p21ras proteins in normal human T lymphocytes. J Immunol, 1992, 148(8):2417–22.

    PubMed  CAS  Google Scholar 

  33. Miyazaki, T., et al., Pyk2 is a downstream mediator of the IL-2 receptor-coupled Jak signaling pathway. Genes Dev, 1998, 12(6):770–5.

    Article  PubMed  CAS  Google Scholar 

  34. Friedmann, M.C., et al., Different interleukin 2 receptor beta-chain tyrosines couple to at least two signaling pathways and synergistically mediate interleukin 2-induced proliferation. Proc Natl Acad Sci USA, 1996, 93(5):2077–82.

    Article  PubMed  CAS  Google Scholar 

  35. Ravichandran, K.S., et al., Evidence for a role for the phosphotyrosine-binding domain of Shc in interleukin 2 signaling. Proc Natl Acad Sci USA, 1996, 93(11):5275–80.

    Article  PubMed  CAS  Google Scholar 

  36. Blanchard, D.A., et al., Cdk2 associates with MAP kinase in vivo and its nuclear translocation is dependent on MAP kinase activation in IL-2-dependent Kit 225 T lymphocytes. Oncogene, 2000, 19(36):4184–9.

    Article  PubMed  CAS  Google Scholar 

  37. Merida, I., E. Diez, and G.N. Gaulton, IL-2 binding activates a tyrosine-phosphorylated phosphatidylinositol-3-kinase. J Immunol, 1991, 147(7):2202–7.

    PubMed  CAS  Google Scholar 

  38. Augustine, J.A., S.L. Sutor, and R.T. Abraham, Interleukin 2- and polyomavirus middle T antigen-induced modification of phosphatidylinositol 3-kinase activity in activated T lymphocytes. Mol Cell Biol, 1991, 11(9):4431–40.

    PubMed  CAS  Google Scholar 

  39. Kelly, E., et al., IL-2 and related cytokines can promote T cell survival by activating AKT. J Immunol, 2002, 168(2):597–603.

    PubMed  CAS  Google Scholar 

  40. Ahmed, N.N., et al., Transduction of interleukin-2 antiapoptotic and proliferative signals via Akt protein kinase. Proc Natl Acad Sci USA, 1997, 94(8):3627–32.

    Article  PubMed  CAS  Google Scholar 

  41. Jones, R.G., et al., Protein kinase B regulates T lymphocyte survival, nuclear factor kappaB activation, and Bcl-X(L) levels in vivo. J Exp Med, 2000, 191(10):1721–34.

    Article  PubMed  CAS  Google Scholar 

  42. Reif, K., B.M. Burgering, and D.A. Cantrell, Phosphatidylinositol 3-kinase links the interleukin-2 receptor to protein kinase B and p70 S6 kinase. J Biol Chem, 1997, 272(22):14426–33.

    Article  PubMed  CAS  Google Scholar 

  43. Brennan, P., et al., Phosphatidylinositol 3-kinase couples the interleukin-2 receptor to the cell cycle regulator E2F. Immunity, 1997, 7(5):679–89.

    Article  PubMed  CAS  Google Scholar 

  44. Fontenot, J.D., et al., A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol, 2005, 6(11):1142–51.

    Article  PubMed  CAS  Google Scholar 

  45. D'Cruz, L.M. and L. Klein, Development and function of agonist-induced CD25+Foxp3+ regulatory T cells in the absence of interleukin 2 signaling. Nat Immunol, 2005, 6(11):1152–9.

    Article  PubMed  Google Scholar 

  46. Setoguchi, R., et al., Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med, 2005, 201(5):723–35.

    Article  PubMed  CAS  Google Scholar 

  47. Burchill, M.A., et al., Distinct effects of STAT5 activation on CD4+ and CD8+ T cell homeostasis: development of CD4+CD25+ regulatory T cells versus CD8+ memory T cells. J Immunol, 2003, 171(11):5853–64.

    PubMed  CAS  Google Scholar 

  48. Antov, A., et al., Essential role for STAT5 signaling in CD25+CD4+ regulatory T cell homeostasis and the maintenance of self-tolerance. J Immunol, 2003, 171(7):3435–41.

    PubMed  CAS  Google Scholar 

  49. Bensinger, S.J., et al., Distinct IL-2 receptor signaling pattern in CD4+CD25+ regulatory T cells. J Immunol, 2004, 172(9):5287–96.

    PubMed  CAS  Google Scholar 

  50. Walker, L.S., et al., Antigen-dependent proliferation of CD4+ CD25+ regulatory T cells in vivo. J Exp Med, 2003, 198(2):249–58.

    Article  PubMed  CAS  Google Scholar 

  51. Klein, L., K. Khazaie, and H. von Boehmer, In vivo dynamics of antigen-specific regulatory T cells not predicted from behavior in vitro. Proc Natl Acad Sci USA, 2003, 100(15):8886–91.

    Google Scholar 

  52. Romagnoli, P., D. Hudrisier, and J.P. van Meerwijk, Preferential recognition of self antigens despite normal thymic deletion of CD4(+)CD25(+) regulatory T cells. J Immunol, 2002, 168(4):1644–8.

    Google Scholar 

  53. Hsieh, C.S., et al., Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors. Immunity, 2004, 21(2):267–77.

    Article  PubMed  CAS  Google Scholar 

  54. Yu, A. and T.R. Malek, Selective availability of IL-2 is a major determinant controlling the production of CD4+CD25+Foxp3+ T regulatory cells. J Immunol, 2006, 177(8):5115–21.

    PubMed  CAS  Google Scholar 

  55. Cheng, L.E., et al., Enhanced signaling through the IL-2 receptor in CD8+ T cells regulated by antigen recognition results in preferential proliferation and expansion of responding CD8+ T cells rather than promotion of cell death. Proc Natl Acad Sci USA, 2002, 99(5): 3001–6.

    Article  PubMed  CAS  Google Scholar 

  56. Fontenot, J.D., M.A. Gavin, and A.Y. Rudensky, Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol, 2003, 4(4):330–6.

    Article  PubMed  CAS  Google Scholar 

  57. Hori, S., T. Nomura, and S. Sakaguchi, Control of regulatory T cell development by the transcription factor Foxp3. Science, 2003, 299(5609):1057–61.

    Article  PubMed  CAS  Google Scholar 

  58. Wu, Y., et al., FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell, 2006, 126(2):375–87.

    Article  PubMed  CAS  Google Scholar 

  59. Nakamura, K., A. Kitani, and W. Strober, Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med, 2001, 194(5):629–44.

    Article  PubMed  CAS  Google Scholar 

  60. Piccirillo, C.A., et al., CD4(+)CD25(+) regulatory T cells can mediate suppressor function in the absence of transforming growth factor beta1 production and responsiveness. J Exp Med, 2002, 196(2):237–46.

    Article  PubMed  CAS  Google Scholar 

  61. de la Rosa, M., et al., Interleukin-2 is essential for CD4+CD25+ regulatory T cell function. Eur J Immunol, 2004, 34(9):2480–8.

    Article  PubMed  Google Scholar 

  62. Thornton, A.M. and E.M. Shevach, CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med, 1998, 188(2):287–96.

    Article  PubMed  CAS  Google Scholar 

  63. Thornton, A.M., et al., Cutting edge: IL-2 is critically required for the in vitro activation of CD4+CD25+ T cell suppressor function. J Immunol, 2004, 172(11):6519–23.

    PubMed  CAS  Google Scholar 

  64. Barthlott, T., G. Kassiotis, and B. Stockinger, T cell regulation as a side effect of homeostasis and competition. J Exp Med, 2003, 197(4):451–60.

    Article  PubMed  CAS  Google Scholar 

  65. Furtado, G.C., et al., Interleukin 2 signaling is required for CD4(+) regulatory T cell function. J Exp Med, 2002, 196(6):851–7.

    Article  PubMed  CAS  Google Scholar 

  66. Liang, S., et al., Conversion of CD4+ CD25- cells into CD4+ CD25+ regulatory T cells in vivo requires B7 costimulation, but not the thymus. J Exp Med, 2005, 201(1):127–37.

    Article  PubMed  CAS  Google Scholar 

  67. Thorstenson, K.M. and A. Khoruts, Generation of anergic and potentially immunoregulatory CD25+CD4 T cells in vivo after induction of peripheral tolerance with intravenous or oral antigen. J Immunol, 2001, 167(1):188–95.

    PubMed  CAS  Google Scholar 

  68. Mahnke, K., et al., Induction of CD4+/CD25+ regulatory T cells by targting of antigens to immature dendritic cells. Blood, 2003, 101(12):4862–9.

    Article  PubMed  CAS  Google Scholar 

  69. Chen, W., et al., Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med, 2003, 198(12):1875–86.

    Article  PubMed  CAS  Google Scholar 

  70. Kretschmer, K., et al., Making regulatory T cells with defined antigen specificity: role in autoimmunity and cancer. Immunol Rev, 2006, 212:163–9.

    Article  PubMed  CAS  Google Scholar 

  71. Kretschmer, K., et al., Inducing and expanding regulatory T cell populations by foreign antigen. Nat Immunol, 2005, 6(12):1219–27.

    Article  PubMed  CAS  Google Scholar 

  72. Knoechel, B., et al., Sequential development of interleukin 2-dependent effector and regulatory T cells in response to endogenous systemic antigen. J Exp Med, 2005, 202(10):1375–86.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludger Klein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

D’Cruz, L.M., Klein, L. (2008). IL-2 Signaling and CD4+ CD25+ Regulatory T Cells. In: Jiang, S. (eds) Regulatory T Cells and Clinical Application. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77909-6_5

Download citation

Publish with us

Policies and ethics