Skip to main content

CD4+CD25+ Regulatory T Cell Therapy for the Induction of Clinical Transplantation Tolerance

  • Chapter
  • First Online:
Regulatory T Cells and Clinical Application

Abstract

The pursuit of transplantation tolerance is still in progress some 53 years after Medawar and colleagues’ first description. It has been established beyond doubt that regulatory T cells can confer donor-specific tolerance in mouse models of transplantation. However, this is crucially dependent on the strain combination, the organ transplanted and most importantly, the ratio of Tregs to alloreactive effector T cells. The ex-vivo expansion of Tregs is one solution to increase the number of alloantigen specific cells capable of suppressing the alloresponse. This technique has been used to demonstrate long term graft survival in mouse models, where ex-vivo expanded, alloantigen specific T cells are shown to preferentially migrate to, and proliferate in, the graft and draining lymph node. When such models are selected to test the role of the different allorecognition pathways for Treg induced graft survival, it appears that only a modest direct pathway alloresponse is sufficient to abrogate tolerance in immunocompetent mice. This remains the case when Tregs are expanded with both direct and indirect pathway allospecificity. Therefore, in human transplantation it is likely that depletion of the majority of direct pathway alloreactive T cells will be required to tip the balance in favour of regulation. Ex-vivo expansion of alloantigen specific, indirect pathway human Tregs, which can cross regulate the residual direct pathway has been established. Rapid expansion of these cells is possible, while they retain antigen specificity, suppressive properties and favourable homing markers. Furthermore, considerable progress has been made in the last few years to define which immunosuppressive drugs favour the expansion and function of Tregs. It is proposed that a trial of Treg therapy in combination with depletion of alloreactive T cells and short term immunosuppression is on the near horizon for human transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jiang S, Lechler RI. Regulatory T cells in the control of transplantation tolerance and autoimmunity. Am J Trans. 2003; 3:516–24.

    Article  CAS  Google Scholar 

  2. Bluestone JA. Regulatory T-cell therapy: Is it ready for the clinic? Nat Rev Immunol. 2005 Apr; 5(4):343–9.

    Article  PubMed  CAS  Google Scholar 

  3. Gershon RK, Kondo K. Cell interactions in the induction of tolerance: The role of thymic lymphocytes. Immunology. 1970; 18:723–37.

    PubMed  CAS  Google Scholar 

  4. Hall BM, Jelbart ME, Dorsch SE. Suppressor T cells in rats with prolonged cardiac allograft survival after treatment with cyclosporine. Transplantation. 1984 Jun; 37(6):595–600.

    Article  PubMed  CAS  Google Scholar 

  5. Hall BM, Pearce NW, Gurley KE, Dorsch SE. Specific unresponsiveness in rats with prolonged cardiac allograft survival after treatment with cyclosporine. III. Further characterization of the CD4+ suppressor cell and its mechanisms of action. J Exp Med. 1990 Jan 1; 171(1):141–57.

    Article  PubMed  CAS  Google Scholar 

  6. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995 Aug 1; 155(3):1151–64.

    PubMed  CAS  Google Scholar 

  7. Game DS, Lechler RI. Pathways of allorecognition: Implications for transplantation tolerance. Trans Immunol. 2002; 10(2–3):101–8.

    Article  CAS  Google Scholar 

  8. Suchin EJ, Langmuir PB, Palmer E, Sayegh MH, Wells AD, Turka LA. Quantifying the frequency of alloreactive T cells in vivo: New answers to an old question. J Immunol. 2001; 166:973–81.

    PubMed  CAS  Google Scholar 

  9. Lechler RI, Batchelor JR. Immunogenicity of retransplanted rat kidney allografts. Effect of inducing chimerism in the first recipient and quantitative studies on immunosuppression of the second recipient. J Exp Med. 1982a; 156(6):1835–41.

    Google Scholar 

  10. Baker RJ, Hernandez-Fuentes MP, Brookes PA, Chaudhry AN, Cook HT, Lechler RI. Assessment of the immunological contribution to chronic allograft nephropathy. J Immunol. 2001a; 167:7199–206.

    Google Scholar 

  11. Baker RJ, Hernandez-Fuentes MP, Brookes PA, Chaudhry AN, Lechler RI. The role of the allograft in the induction of donor-specific T cell hyporesponsiveness. Transplantation. 2001b; 72(3):480–5.

    Google Scholar 

  12. Ng WF, Hernandez-Fuentes MP, Baker RJ, Chaudhry AN, Lechler RI. Reversibility with interleukin 2 suggests that T cell anergy contribute to donor-specific hyporesponsiveness in renal transplant patients. J Am Soc Nephrol. 2002; 13(12):2983–9.

    Article  PubMed  CAS  Google Scholar 

  13. Ng WF, Duggan PJ, Ponchel F, Matarese G, Lombardi G, Edwards AD, et al. Human CD4+CD25+ T cells: A naturally occuring population of regulatory T cells. Blood. 2001; 98(9):2736–44.

    Article  PubMed  CAS  Google Scholar 

  14. Game DS, Hernandez-Fuentes MP, Chaudhry AN, Lechler RI. CD4+CD25+ regulatory T cells do not significantly contribute to direct pathway hyporesponsiveness in stable renal transplant patients. J Am Soc Nephrol. 2003; 14(6):1652–61.

    Article  PubMed  Google Scholar 

  15. Suciu-Foca N, Ciubbotaria R, Itescu S, Rose EA, Cortesini R. Indirect allorecognition of donor HLA-DR peptides in chronic rejection of heart allografts. Transplant proc. 1998; 30:3999–4000.

    Article  PubMed  CAS  Google Scholar 

  16. Hornick P, Mason P, Baker R, Hernandez-Fuentes M, Frasca L, Lombardi G, et al. Significant frequencies of T cells with indirect specificity in heart graft recipients with chronic rejection. Circulation. 2000; 101:2405–16.

    PubMed  CAS  Google Scholar 

  17. Salama AD, Najafian N, Clarkson MR, Harmon WE, Sayegh MH. Regulatory CD25+ T cells in human kidney transplant recipients. J Am Soc Nephrol. 2003; 14(6):1643–51.

    Article  PubMed  Google Scholar 

  18. Itoh M, Takahashi T, Sakaguchi N, Kuniyasu Y, Shimizu J, Otsuka F, et al. Thymus and autommunity: Production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunological self-tolerance. J Immunol. 1999; 162:5317–26.

    PubMed  CAS  Google Scholar 

  19. Thornton A, Shevach EM. CD4+CD25+ Immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med. 1998; 188:287–96.

    Article  PubMed  CAS  Google Scholar 

  20. Game DS, Lechler RI. HLA-DR matching and immune regulation. Am J Trans. 2004; 4(10):1725–6.

    Article  Google Scholar 

  21. Baecher-Allan C, Viglietta V, Hafler DA. Inhibition of human CD4(+)CD25(+high) regulatory T cell function. J Immunol. 2002 Dec 1; 169(11):6210–7.

    PubMed  CAS  Google Scholar 

  22. Taams LS, Vukmanovic-Stejic M, Smith J, Dunne PJ, Fletcher JM, Plunkett FJ, et al. Antigen-specific T cell suppression by human CD4+CD25+ regulatory T cells. Eur J Immunol. 2002 Jun; 32(6):1621–30.

    Article  PubMed  CAS  Google Scholar 

  23. Lechler RI, Garden OA, Turka LA. The complementary roles of deletion and regulation in transplantation tolerance. Nat Rev Immunol. 2003; 3:147–58.

    Article  PubMed  CAS  Google Scholar 

  24. Li XC, Strom TB, Turka LA, Wells AD. T cell death and transplantation tolerance. Immunity. 2001b; 14:407–16.

    Google Scholar 

  25. Hara M, Kingsley CI, Niimi M, Read S, Turvey SE, Bushell AR, et al. IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J Immunol. 2001 Mar 15; 166(6):3789–96.

    PubMed  CAS  Google Scholar 

  26. Kingsley CI, Karim M, Bushell AR, Wood KJ. CD25+CD4+ regulatory T cells prevent graft rejection: CTLA-4 and IL10 dependent immunoregulation of alloresponses. J Immunol. 2002; 168:1080–6.

    PubMed  CAS  Google Scholar 

  27. Qin S, Cobbold SP, Pope H, Elliot J, Kioussis D, Davies J, et al. Infectious transplantation tolerance. Science. 1993; 259:974.

    Article  PubMed  CAS  Google Scholar 

  28. Davies JD, Leong LY, Mellor A, Cobbold SP, Waldmann H. T cell suppression in transplantation tolerance through linked recognition. J Immunol. 1996; 156(10):3602–7.

    PubMed  CAS  Google Scholar 

  29. Graca L, Cobbold SP, Waldmann H. Identification of regulatory T cells in tolerated allografts. J Exp Med. 2002a Jun 17; 195(12):1641–6.

    Google Scholar 

  30. Taylor PA, Noelle RJ, Blazar BR. CD4+CD25+ Immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade. J Exp Med. 2001; 193(11):1311–7.

    Article  PubMed  CAS  Google Scholar 

  31. Taylor PA, Lees CJ, Blazar BR. The infusion of ex vivo activated and expanded CD4(+)CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality. Blood. 2002a May 15; 99(10):3493–9.

    Google Scholar 

  32. Jiang S, Camara NOS, Lombardi G, Lechler RI. Induction of allopeptide-specific human CD4+CD25+ regulatory T cells ex-vivo. Blood. 2003; 102(6):2180–6.

    Article  PubMed  CAS  Google Scholar 

  33. Jiang S, Tsang J, Game DS, Stevenson S, Lombardi G, Lechler RI. Generation and expansion of human CD4+ CD25+ regulatory T cells with indirect allospecificity: Potential reagents to promote donor-specific transplantation tolerance. Transplantation. 2006 Dec 27; 82(12):1738–43.

    Article  PubMed  CAS  Google Scholar 

  34. Jiang S, Tsang J, Tanriver Y, Leung E, Lechler R. In-vitro generated human CD4+CD25high regulatory T cells with indirect allospecificity as potential patient-specific reagents to promote donor-specific transplantation tolerance. Am J Transplant. 2007; 7(s2):173.

    Google Scholar 

  35. Golshayan D, Jiang S, Tsang J, Garin MI, Mottet C, Lechler RI. In vitro-expanded donor alloantigen-specific CD4+CD25+ regulatory T cells promote experimental transplantation tolerance. Blood. 2007 Jan 15; 109(2):827–35.

    Article  PubMed  CAS  Google Scholar 

  36. Fisson S, Darrasse-Jeze G, Litvinova E, Septier F, Klatzmann D, Liblau R, et al. Continuous activation of autoreactive CD4+ CD25+ regulatory T cells in the steady state. J Exp Med. 2003 Sep 1; 198(5):737–46.

    Article  PubMed  CAS  Google Scholar 

  37. Thornton AM, Shevach EM. Suppressor effector function of CD4+CD25+ immunoregulatory T Cells is antigen nonspecific. J Immunol. 2000; 164:183–90.

    PubMed  CAS  Google Scholar 

  38. Mirenda V, Berton I, Read J, Cook T, Smith J, Dorling A, et al. Modified dendritic cells coexpressing self and allogeneic major histocompatability complex molecules: an efficient way to induce indirect pathway regulation. J Am Soc Nephrol. 2004 Apr; 15(4):987–97.

    Article  PubMed  CAS  Google Scholar 

  39. Tsang J, Tanriver Y, Jiang S, Xue S, Stauss HJ, Bucy RP, et al. Conferring indirect allospecificity on CD4+CD25+ regulatory T cells by T cell receptor gene transfer: a novel strategy for the induction of transplanation tolerance. J Clin Invest. 2008, in press.

    Google Scholar 

  40. Xia G, He J, Zhang Z, Leventhal JR. Targeting acute allograft rejection by immunotherapy with ex vivo-expanded natural CD4+ CD25+ regulatory T cells. Transplantation. 2006 Dec 27; 82(12):1749–55.

    Article  PubMed  Google Scholar 

  41. Yamada A, Chandrakar A, Laufer TM, Gerth AJ, Sayegh MH, Auchincloss H. Recipient MHC class II expression is required to achieve long term survival of murine cardiac allografts after costimulatory blockade. J Immunol. 2001; 167:5522–6.

    PubMed  CAS  Google Scholar 

  42. Tarbell KV, Petit L, Zuo X, Toy P, Luo X, Mqadmi A, et al. Dendritic cell-expanded, islet-specific CD4+ CD25+ CD62L+ regulatory T cells restore normoglycemia in diabetic NOD mice. J Exp Med. 2007 Jan 22; 204(1):191–201.

    Article  PubMed  CAS  Google Scholar 

  43. Haribhai D, Lin W, Relland LM, Truong N, Williams CB, Chatila TA. Regulatory T cells dynamically control the primary immune response to foreign antigen. J Immunol. 2007 Mar 1; 178(5):2961–72.

    PubMed  CAS  Google Scholar 

  44. Fucs R, Jesus JT, Souza Junior PH, Franco L, Vericimo M, Bellio M, et al. Frequency of natural regulatory CD4+CD25+ T lymphocytes determines the outcome of tolerance across fully mismatched MHC barrier through linked recognition of self and allogeneic stimuli. J Immunol. 2006 Feb 15; 176(4):2324–9.

    PubMed  CAS  Google Scholar 

  45. Koenen HJ, Fasse E, Joosten I. CD27/CFSE-based ex vivo selection of highly suppressive alloantigen-specific human regulatory T cells. J Immunol. 2005 Jun 15; 174(12):7573–83.

    PubMed  CAS  Google Scholar 

  46. Fernandez I, Zeiser R, Karsunky H, Kambham N, Beilhack A, Soderstrom K, et al. CD101 Surface expression discriminates potency among murine FoxP3+ regulatory T cells. J Immunol. 2007 Sep 1; 179(5):2808–14.

    Google Scholar 

  47. Bluestone JA, Thomson AW, Shevach EM, Weiner HL. What does the future hold for cell-based tolerogenic therapy? Nat Rev Immunol. 2007 Aug; 7(8):650–4.

    Article  PubMed  CAS  Google Scholar 

  48. Bushell A, Jones E, Gallimore A, Wood K. The generation of CD25+ CD4+ regulatory T cells that prevent allograft rejection does not compromise immunity to a viral pathogen. J Immunol. 2005 Mar 15; 174(6):3290–7.

    PubMed  CAS  Google Scholar 

  49. Adams AB, Pearson TC, Larsen CP. Heterologous immunity: an overlooked barrier to tolerance. Immunol Rev. 2003 Dec; 196:147–60.

    Article  PubMed  CAS  Google Scholar 

  50. Neujahr DC, Chen C, Huang X, Markmann JF, Cobbold S, Waldmann H, et al. Accelerated memory cell homeostasis during T cell depletion and approaches to overcome it. J Immunol. 2006 Apr 15; 176(8):4632–9.

    PubMed  CAS  Google Scholar 

  51. Pearl JP, Parris J, Hale DA, Hoffmann SC, Bernstein WB, McCoy KL, et al. Immunocompetent T-cells with a memory-like phenotype are the dominant cell type following antibody-mediated T-cell depletion. Am J Transplant. 2005 Mar; 5(3):465–74.

    Article  PubMed  CAS  Google Scholar 

  52. Trzonkowski P, Zilvetti M, Friend P, Wood KJ. Recipient memory-like lymphocytes remain unresponsive to graft antigens after CAMPATH-1H induction with reduced maintenance immunosuppression. Transplantation. 2006 Nov 27; 82(10):1342–51.

    Article  PubMed  Google Scholar 

  53. Schwartz RH. Models of T cell anergy: is there a common molecular mechanism? J Exp Med. 1996 Jul 1; 184(1):1–8.

    Google Scholar 

  54. Macian F, Garcia-Cozar F, Im S-H, Horton HF, Byrne MC, Rao A. Transcriptional mechanisms underlying lymphocyte tolerance. Cell. 2002; 109:719–31.

    Article  PubMed  CAS  Google Scholar 

  55. Wells AD, Li XC, Li Y, Walsh MC, Zheng XX, Wu Z, et al. Requirement for T-cell apoptosis in the induction of peripheral transplantation tolerance. Nat Med. 1999 Nov; 5(11):1303–7.

    Article  PubMed  CAS  Google Scholar 

  56. Wekerle T, Kurtz J, Sayegh M, Ito H, Wells A, Bensinger S, et al. Peripheral deletion after bone marrow transplantation with costimulatory blockade has features of both activation-induced cell death and passive cell death. J Immunol. 2001 Feb 15; 166(4):2311–6.

    PubMed  CAS  Google Scholar 

  57. Noris M, Casiraghi F, Todeschini M, Cravedi P, Cugini D, Monteferrante G, et al. Regulatory T cells and T cell depletion: Role of immunosuppressive drugs. J Am Soc Nephrol. 2007 Mar; 18(3):1007–18.

    Article  PubMed  CAS  Google Scholar 

  58. Baan CC, van der Mast BJ, Klepper M, Mol WM, Peeters AM, Korevaar SS, et al. Differential effect of calcineurin inhibitors, anti-CD25 antibodies and rapamycin on the induction of FOXP3 in human T cells. Transplantation. 2005 Jul 15; 80(1):110–7.

    Article  PubMed  CAS  Google Scholar 

  59. Tian L, Lu L, Yuan Z, Lamb JR, Tam PK. Acceleration of apoptosis in CD4+CD8+ thymocytes by rapamycin accompanied by increased CD4+CD25+ T cells in the periphery. Transplantation. 2004 Jan 27; 77(2):183–9.

    Article  PubMed  CAS  Google Scholar 

  60. Gao W, Lu Y, El Essawy B, Oukka M, Kuchroo VK, Strom TB. Contrasting effects of cyclosporine and rapamycin in de novo generation of alloantigen-specific regulatory T cells. Am J Transplant. 2007 Jul; 7(7):1722–32.

    Article  PubMed  CAS  Google Scholar 

  61. Game DS, Hernandes-Fuentes MP, Lechler RI. Everolimus and basiliximab permit suppression by human CD4CD25 Cells in vitro. Am J Transplant. 2005; 5(3):454–64.

    Article  PubMed  CAS  Google Scholar 

  62. Knechtle SJ, Pirsch JD, H. Fechner J J, Becker BN, Friedl A, Colvin RB, et al. Campath-1H induction plus rapamycin monotherapy for renal transplantation: Results of a pilot study. Am J Transplant. 2003 Jun; 3(6):722–30.

    Google Scholar 

  63. Flechner SM, Goldfarb D, Solez K, Modlin CS, Mastroianni B, Savas K, et al. Kidney transplantation with sirolimus and mycophenolate mofetil-based immunosuppression: 5-year results of a randomized prospective trial compared to calcineurin inhibitor drugs. Transplantation. 2007 Apr 15; 83(7):883–92.

    Article  PubMed  CAS  Google Scholar 

  64. Sawicka E, Dubois G, Jarai G, Edwards M, Thomas M, Nicholls A, et al. The sphingosine 1-phosphate receptor agonist FTY720 differentially affects the sequestration of CD4+/CD25+ T-regulatory cells and enhances their functional activity. J Immunol. 2005 Dec 15; 175(12):7973–80.

    Google Scholar 

  65. Zheng XX, Sanchez-Fueyo A, Sho M, Domenig C, Sayegh MH, Strom TB. Favorably tipping the balance between cytopathic and regulatory T cells to create transplantation tolerance. Immunity. 2003a Oct; 19(4):503–14.

    Google Scholar 

  66. Koulmanda M, Budo E, Bonner-Weir S, Qipo A, Putheti P, Degauque N, et al. Modification of adverse inflammation is required to cure new-onset type 1 diabetic hosts. Proc Natl Acad Sci USA. 2007 Aug 7; 104(32):13074–9.

    Article  PubMed  CAS  Google Scholar 

  67. Korn T, Bettelli E, Gao W, Awasthi A, Jager A, Strom TB, et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature. 2007 Jul 26; 448(7152): 484–7.

    Article  PubMed  CAS  Google Scholar 

  68. Karim M, Feng G, Wood KJ, Bushell AR. CD25+CD4+ regulatory T cells generated by exposure to a model protein antigen prevent allograft rejection: Antigen-specific reactivation in vivo is critical for bystander regulation. Blood. 2005 Jun 15; 105(12):4871–7.

    Google Scholar 

  69. Newell KA, Larsen CP. Tolerance assays: Measuring the unknown. Transplantation. 2006 Jun 15; 81(11):1503–9.

    Article  PubMed  Google Scholar 

  70. Muthukumar T, Dadhania D, Ding R, Snopkowski C, Naqvi R, Lee JB, et al. Messenger RNA for FOXP3 in the urine of renal-allograft recipients. N Engl J Med. 2005 Dec 1; 353(22): 2342–51.

    Google Scholar 

  71. Langan LL, Park LP, Hughes TL, Irish A, Luxton G, Witt CS, et al. Post-transplant HLA class II antibodies and high soluble CD30 levels are independently associated with poor kidney graft survival. Am J Transplant. 2007 Apr; 7(4):847–56.

    Article  PubMed  CAS  Google Scholar 

  72. Kowalski RJ, Post DR, Mannon RB, Sebastian A, Wright HI, Sigle G, et al. Assessing relative risks of infection and rejection: A meta-analysis using an immune function assay. Transplantation. 2006 Sep 15; 82(5):663–8.

    Article  PubMed  Google Scholar 

  73. Martinez-Llordella M, Puig-Pey I, Orlando G, Ramoni M, Tisone G, Rimola A, et al. Multiparameter immune profiling of operational tolerance in liver transplantation. Am J Transplant. 2007 Feb; 7(2):309–19.

    Article  PubMed  CAS  Google Scholar 

  74. VanBuskirk AM, Burlingham WJ, Jankowska-Gan E, Chin T, Kusaka S, Geissler F, et al. Human allograft acceptance is associated with immune regulation. J Clin Invest. 2000 Jul; 106(1):145–55.

    Google Scholar 

  75. Warnecke G, Chapman SJ, Bushell A, Hernandez-Fuentes M, Wood KJ. Dependency of the trans vivo delayed type hypersensitivity response on the action of regulatory T cells: Implications for monitoring transplant tolerance. Transplantation. 2007 Aug 15; 84(3):392–9.

    Article  PubMed  Google Scholar 

  76. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003 Apr; 4(4):330–6.

    Article  PubMed  CAS  Google Scholar 

  77. Shimizu J, Yamazaki S, Takahashi T, Yasumasa I, Sakaguchi S. Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol. 2002; 3(2):135–42.

    Article  PubMed  CAS  Google Scholar 

  78. Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N, et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med. 2000 Jul 17; 192(2):303–10.

    Article  PubMed  CAS  Google Scholar 

  79. Fu S, Yopp AC, Mao X, Chen D, Zhang N, Mao M, et al. CD4+ CD25+ CD62+ T-regulatory cell subset has optimal suppressive and proliferative potential. Am J Transplant. 2004 Jan; 4(1):65–78.

    Google Scholar 

  80. Zeiser R, Nguyen VH, Hou JZ, Beilhack A, Zambricki E, Buess M, et al. Early CD30 signaling is critical for adoptively transferred CD4+CD25+ regulatory T cells in prevention of acute graft-versus-host disease. Blood. 2007 Mar 1; 109(5):2225–33.

    Article  PubMed  CAS  Google Scholar 

  81. Banz A, Peixoto A, Pontoux C, Cordier C, Rocha B, Papiernik M. A unique subpopulation of CD4+ regulatory T cells controls wasting disease, IL-10 secretion and T cell homeostasis. Eur J Immunol. 2003 Sep; 33(9):2419–28.

    Article  PubMed  CAS  Google Scholar 

  82. Iellem A, Mariani M, Lang R, Recalde H, Panina-Bordignon P, Sinigaglia F, et al. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J Exp Med. 2001 Sep 17; 194(6):847–53.

    Google Scholar 

  83. Wysocki CA, Jiang Q, Panoskaltsis-Mortari A, Taylor PA, McKinnon KP, Su L, et al. Critical role for CCR5 in the function of donor CD4+CD25+ regulatory T cells during acute graft-versus-host disease. Blood. 2005 Nov 1; 106(9):3300–7.

    Article  PubMed  CAS  Google Scholar 

  84. Kleinewietfeld M, Puentes F, Borsellino G, Battistini L, Rotzschke O, Falk K. CCR6 expression defines regulatory effector/memory-like cells within the CD25(+)CD4+ T-cell subset. Blood. 2005 Apr 1; 105(7):2877–86.

    Article  PubMed  CAS  Google Scholar 

  85. Garin MI, Chu CC, Golshayan D, Cernuda-Morollon E, Wait R, Lechler RI. Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells. Blood. 2007 Mar 1; 109(5):2058–65.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Game, D.S., Lechler, R.I., Jiang, S. (2008). CD4+CD25+ Regulatory T Cell Therapy for the Induction of Clinical Transplantation Tolerance. In: Jiang, S. (eds) Regulatory T Cells and Clinical Application. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77909-6_18

Download citation

Publish with us

Policies and ethics