Skip to main content

Induction of Adaptive CD4+CD25+Foxp3+ Regulatory T Cell Response in Autoimmune Disease

  • Chapter
  • First Online:
Regulatory T Cells and Clinical Application

Abstract

CD4+CD25+Foxp3+ regulatory T cells (Tregs) represent one of the most critical regulatory components of the immune system. They are vitally important for homeostasis of the immune system and adequate immune responses. Tregs contain heterogeneous populations that share common markers and regulatory function but differ in the origin of differentiation or conversion. Deficiencies either in the number of Tregs or the expression of Foxp3 lead to various autoimmune pathologies in both humans and experimental animals. Here the role of adaptive Tregs that are converted from CD4+CD25– T cells in the periphery is reviewed in relationship to their induction by cytokines, such as gamma-interferon, and therapeutic modalities, including T cell vaccination and Copolymer-I currently being used or tested in multiple sclerosis. In particular, important issues related to the potential therapeutic application of adaptive Tregs in autoimmune disease are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sakaguchi, S. Regulatory T cells: Meden Agan. Immunol Rev, 2006 Aug, 212, 5–7.

    Google Scholar 

  2. Sakaguchi, S; Ono, M; Setoguchi, R; Yagi, H; Hori, S; Fehervari, Z; Shimizu, J; Takahashi, T; Nomura, T. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev, 2006 Aug, 212, 8–27.

    Article  PubMed  CAS  Google Scholar 

  3. Wang, Z; Hong, J; Sun, W; Xu, G; Li, N; Chen, X; Liu, A; Xu, L; Sun, B; Zhang, JZ. Role of IFN-gamma in induction of Foxp3 and conversion of CD4+ CD25- T cells to CD4+ Tregs. J Clin Invest, 2006 Sep, 116(9), 2434–41.

    PubMed  CAS  Google Scholar 

  4. Bornstein, MB; Miller, A; Slagle, S; Weitzman, M; Crystal, H; Drexler, E; Keilson, M; Merriam, A; Wassertheil-Smoller, S; Spada, V. A pilot trial of Cop 1 in exacerbating-remitting multiple sclerosis. N Engl J Med, 1987 Aug 13, 317(7), 408–14.

    Article  PubMed  CAS  Google Scholar 

  5. Gran, B; Tranquill, LR; Chen, M; Bielekova, B; Zhou, W; Dhib-Jalbut, S; Martin, R. Mechanisms of immunomodulation by glatiramer acetate. Neurology, 2000 Dec 12, 55(11), 1704–14.

    PubMed  CAS  Google Scholar 

  6. Teitelbaum, D; Milo, R; Arnon, R; Sela, M. Synthetic copolymer 1 inhibits human T-cell lines specific for myelin basic protein. Proc Natl Acad Sci USA, 1992 Jan 1, 89(1), 137–41.

    Article  PubMed  CAS  Google Scholar 

  7. Zhang, J; Hutton, G. Role of magnetic resonance imaging and immunotherapy in treating multiple sclerosis. Annu Rev Med, 2005, 56, 237–302.

    Article  Google Scholar 

  8. Miller, A; Shapiro, S; Gershtein, R; Kinarty, A; Rawashdeh, H; Honigman, S; Lahat, N. Treatment of multiple sclerosis with copolymer-1 (Copaxone): implicating mechanisms of Th1 to Th2/Th3 immune-deviation. J Neuroimmunol, 1998 Dec 1, 92(1–2), 113–21.

    Article  PubMed  CAS  Google Scholar 

  9. Dhib-Jalbut, S; Chen, M; Said, A; Zhan, M; Johnson, KP; Martin, R. Glatiramer acetate-reactive peripheral blood mononuclear cells respond to multiple myelin antigens with a Th2-biased phenotype. J Neuroimmunol, 2003 Jul, 140(1–2), 163–71.

    Article  PubMed  CAS  Google Scholar 

  10. Chen, M; Gran, B; Costello, K; Johnson, K; Martin, R; Dhib-Jalbut, S. Glatiramer acetate induces a Th2-biased response and crossreactivity with myelin basic protein in patients with MS. Mult Scler, 2001 Aug, 7(4), 209–19.

    PubMed  CAS  Google Scholar 

  11. Aharoni, R; Teitelbaum, D; Sela, M; Arnon, R. Bystander suppression of experimental autoimmune encephalomyelitis by T cell lines and clones of the Th2 type induced by copolymer 1. J Neuroimmunol, 1998 Nov 2, 91(1–2), 135–46.

    Article  PubMed  CAS  Google Scholar 

  12. Duda, PW; Schmied, MC; Cook, SL; Krieger, JI; Hafler, DA. Glatiramer acetate (Copaxone) induces degenerate, Th2-polarized immune responses in patients with multiple sclerosis. J Clin Invest, 2000 Apr, 105(7), 967–76.

    Article  PubMed  CAS  Google Scholar 

  13. Neuhaus, O; Farina, C; Yassouridis, A; Wiendl, H; Then Bergh, F; Dose, T; Wekerle, H; Hohlfeld, R. Multiple sclerosis: comparison of copolymer-1- reactive T cell lines from treated and untreated subjects reveals cytokine shift from T helper 1 to T helper 2 cells. Proc Natl Acad Sci USA, 2000 Jun 20, 97(13), 7452–7.

    Article  PubMed  CAS  Google Scholar 

  14. Musette, P; Benveniste, O; Lim, A; Bequet, D; Kourilsky, P; Dormont, D; Gachelin, G. The pattern of production of cytokine mRNAs is markedly altered at the onset of multiple sclerosis. Res Immunol, 1996 Sep, 147(7), 435–41.

    Article  PubMed  CAS  Google Scholar 

  15. Brod, SA; Nelson, LD; Khan, M; Wolinsky, JS. Increased in vitro induced CD4+ and CD8+ T cell IFN-gamma and CD4+ T cell IL-10 production in stable relapsing multiple sclerosis. Int J Neurosci, 1997 Aug, 90(3–4), 187–202.

    Article  PubMed  CAS  Google Scholar 

  16. Ziemssen, T; Kumpfel, T; Klinkert, WE; Neuhaus, O; Hohlfeld, R. Glatiramer acetate-specific T-helper 1- and 2-type cell lines produce BDNF: implications for multiple sclerosis therapy. Brain-derived neurotrophic factor. Brain, 2002 Nov, 125(Pt 11), 2381–91.

    Google Scholar 

  17. Hong, J; Li, N; Zhang, X; Zheng, B; Zhang, JZ. Induction of CD4+CD25+ regulatory T cells by copolymer-I through activation of transcription factor Foxp3. Proc Natl Acad Sci U S A, 2005 May 3, 102(18), 6449–54.

    Article  PubMed  CAS  Google Scholar 

  18. Ben-Nun, A; Wekerle, H; Cohen, IR. Vaccination against autoimmune encephalomyelitis with T-lymphocyte line cells reactive against myelin basic protein. Nature, 1981 Jul 2, 292(5818), 60–1.

    Article  PubMed  CAS  Google Scholar 

  19. Lider, O; Beraud, E; Reshef, T; Friedman, A; Cohen, IR. Vaccination against experimental autoimmune encephalomyelitis using a subencephalitogenic dose of autoimmune effector T cells. (2). Induction of a protective anti-idiotypic response. J Autoimmun, 1989 Feb, 2(1), 87–99.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang, J; Medaer, R; Stinissen, P; Hafler, D; Raus, J. MHC-restricted depletion of human myelin basic protein-reactive T cells by T cell vaccination. Science, 1993 Sep 10, 261(5127), 1451–4.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang, J; Vandevyver, C; Stinissen, P; Raus, J. In vivo clonotypic regulation of human myelin basic protein-reactive T cells by T cell vaccination. J Immunol, 1995 Dec 15, 155(12), 5868–77.

    PubMed  CAS  Google Scholar 

  22. Correale, J; Lund, B; McMillan, M; Ko, DY; McCarthy, K; Weiner, LP. cell vaccination in secondary progressive multiple sclerosis. J Neuroimmunol, 2000 Jul 24, 107(2), 130–9.

    Article  PubMed  CAS  Google Scholar 

  23. Zang, YC; Hong, J; Rivera, VM; Killian, J; Zhang, JZ. Preferential recognition of TCR hypervariable regions by human anti-idiotypic T cells induced by T cell vaccination. J Immunol, 2000 Apr 15, 164(8), 4011–7.

    PubMed  CAS  Google Scholar 

  24. Lohse, AW; Mor, F; Karin, N; Cohen, IR. Control of experimental autoimmune encephalo-myelitis by T cells responding to activated T cells. Science, 1989 May 19, 244(4906), 820–2.

    Article  PubMed  CAS  Google Scholar 

  25. Zang, YC; Hong, J; Rivera, VM; Killian, J; Zhang, JZ. Human anti-idiotypic T cells induced by TCR peptides corresponding to a common CDR3 sequence motif in myelin basic protein-reactive T cells. Int Immunol, 2003 Sep, 15(9), 1073–80.

    Article  PubMed  CAS  Google Scholar 

  26. Zhang, J. T-cell vaccination for autoimmune diseases: immunologic lessons and clinical experience in multiple sclerosis. Expert Rev Vaccines, 2002 Oct, 1(3), 285–92.

    Article  PubMed  CAS  Google Scholar 

  27. Zang, YC; Hong, J; Tejada-Simon, MV; Li, S; Rivera, VM; Killian, JM; Zhang, JZ. Th2 immune regulation induced by T cell vaccination in patients with multiple sclerosis. Eur J Immunol, 2000 Mar, 30(3), 908–13.

    Article  PubMed  CAS  Google Scholar 

  28. Mimran, A; Mor, F; Carmi, P; Quintana, FJ; Rotter, V; Cohen, IR. DNA vaccination with CD25 protects rats from adjuvant arthritis and induces an antiergotypic response. J Clin Invest, 2004 Mar, 113(6), 924–32.

    PubMed  CAS  Google Scholar 

  29. Cohen, IR; Quintana, FJ; Mimran, A. Tregs in T cell vaccination: exploring the regulation of regulation. J Clin Invest, 2004 Nov, 114(9), 1227–32.

    PubMed  CAS  Google Scholar 

  30. Mor, F; Reizis, B; Cohen, IR; Steinman, L. IL-2 and TNF receptors as targets of regulatory T-T interactions: isolation and characterization of cytokine receptor-reactive T cell lines in the Lewis rat. J Immunol, 1996 Dec 1, 157(11), 4855–61.

    PubMed  CAS  Google Scholar 

  31. Quintana, FJ; Carmi, P; Mor, F; Cohen, IR. DNA fragments of the human 60-kDa heat shock protein (HSP60) vaccinate against adjuvant arthritis: identification of a regulatory HSP60 peptide. J Immunol, 2003 Oct 1, 171(7), 3533–41.

    PubMed  CAS  Google Scholar 

  32. Viglietta, V; Baecher-Allan, C; Weiner, HL; Hafler, DA. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med, 2004 Apr 5, 199(7), 971–9.

    Article  PubMed  CAS  Google Scholar 

  33. Chen, G; Li, N; Zang, YC; Zhang, D; He, D; Feng, G; Ni, L; Xu, R; Wang, L; Shen, B; Zhang, JZ. Vaccination with selected synovial T cells in rheumatoid arthritis. Arthritis Rheum, 2007 Feb, 56(2), 453–63.

    Article  PubMed  CAS  Google Scholar 

  34. Tang, Q; Bluestone, JA. Regulatory T-cell physiology and application to treat autoimmunity. Immunol Rev, 2006 Aug, 212, 217–37.

    Article  PubMed  CAS  Google Scholar 

  35. Mason, D; Powrie, F. Control of immune pathology by regulatory T cells. Curr Opin Immunol, 1998 Dec, 10(6), 649–55.

    Article  PubMed  CAS  Google Scholar 

  36. Turley, S; Poirot, L; Hattori, M; Benoist, C; Mathis, D. Physiological beta cell death triggers priming of self-reactive T cells by dendritic cells in a type-1 diabetes model. J Exp Med, 2003 Nov 17, 198(10), 1527–37.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingwu Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hong, J., Skinner, S., Zhang, J. (2008). Induction of Adaptive CD4+CD25+Foxp3+ Regulatory T Cell Response in Autoimmune Disease. In: Jiang, S. (eds) Regulatory T Cells and Clinical Application. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77909-6_15

Download citation

Publish with us

Policies and ethics