Skip to main content

Introduction

  • Chapter
  • First Online:
Sensors Based on Nanostructured Materials
  • 1095 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. R.P. Feynman (1992). “There’s plenty of room at the bottom”, J Microelectromech Syst 1, 60–66.

    Article  Google Scholar 

  2. Zheng Wei Pan, Zu Rong Dai, and Zhong Lin Wang (2001). “Nanobelts of semiconducting oxides”, Science 291, 1947–1949.

    Article  Google Scholar 

  3. R.H. Baughman, A.A. Zakhidov, and W.A. De Heer (2002). “Carbon nanotubes – the route toward applications”, Science 297, 787–792.

    Article  CAS  Google Scholar 

  4. J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, and H. Dai (2000). “Nanotube molecular wires as chemical sensors”, Science 287, 622–625.

    Article  CAS  Google Scholar 

  5. C.A. Mirkin, R.L. Letsinger, R.C. Mucic, and J.J. Storhoff (1996). “A DNA-based method for rationally assembling nanoparticles into macroscopic materials”, Nature 382, 607–609.

    Article  CAS  Google Scholar 

  6. Y. Cui, Q. Wei, H. Park, and C.M. Lieber (2001). “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species”, Science 293, 1289–1292.

    Article  CAS  Google Scholar 

  7. A. Zettl (2000). “Extreme oxygen sensitivity of electronic properties of carbon nanotubes”, Science 287, 1801–1804.

    Article  Google Scholar 

  8. M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, and C.M. Lieber (2002). “Growth of nanowire superlattice structures for nanoscale photonics and electronics”, Nature 415, 617–620.

    Article  CAS  Google Scholar 

  9. A.N. Shipway, E. Katz, and I. Willner (2000). “Nanoparticle arrays on surfaces for electronic, optical, and sensor applications”, ChemPhysChem 1, 18–52, 2000.

    Article  CAS  Google Scholar 

  10. M.A. Burns, B.N. Johnson, S.N. Brahmasandra, K. Handique, J.R. Webster, M. Krishnan, T.S. Sammarco, P.M. Man, D. Jones, D. Heldsinger, C.H. Mastrangelo, and D.T. Burke (1998). “An integrated nanoliter DNA analysis device”, Science 282, 484–487.

    Article  CAS  Google Scholar 

  11. M.R. Falvo, G.J. Clary, R.M. Taylor II, V. Chi, F.P. Brooks Jr., S. Washburn, and R. Superfine (1997). “Bending and buckling of carbon nanotubes under large strain”, Nature 389, 582–584.

    Article  CAS  Google Scholar 

  12. P. Alivisatos (2004). “The use of nanocrystals in biological detection”, Nat Biotechnol 22, 47–52.

    Article  CAS  Google Scholar 

  13. C.L. Haynes and R.P. Van Duyne (2001). “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics”, J Phys Chem B 105, 5599–5611.

    Article  CAS  Google Scholar 

  14. A.C. Comely and S.E. Gibson (2001). “Self-assembling organic nanotubes”, Angew Chem Int Ed 40, 988–1011.

    Article  Google Scholar 

  15. H.G. Craighead (2000). “Nanoelectromechanical systems”, Science 290, 1532–1535.

    Article  CAS  Google Scholar 

  16. I. Willner and E. Katz (2000). “Integration of layered redox proteins and conductive supports for bioelectronic applications”, Angew Chem Int Ed 39, 1181–1218.

    CAS  Google Scholar 

  17. J.W. Perry, K. Mansour, I.-S. Lee, X. Wu, P.V. Bedworth, C. Chen, D. Ng, S.R. Marder, P. Miles, T. Wada, M. Tian, and H. Sasabe (1996). “Organic optical limiter with a strong nonlinear absorptive response”, Science 273, 1533–1536.

    Article  CAS  Google Scholar 

  18. R.J. Chen, S. Bangsaruntip, K.A. Drouvalakis, N. Wong Shi Kam, M. Shim, Y. Li, W. Kim, P.J. Utz, and H. Dai (2003). “Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors”, Proc Natl Acad Sci USA 100, 4984–4989.

    Google Scholar 

  19. F. Favier, E.C. Walter, M.P. Zach, T. Benter, and R.M. Penner (2001). “Hydrogen sensors and switches from electrodeposited palladium mesowire arrays”, Science 293, 2227–2231.

    Article  CAS  Google Scholar 

  20. E. Comini, G. Faglia, G. Sberveglieri, Z. Pan and Z.L. Wang (2002). “Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts”, Appl Phys Lett 81, 1869.

    Article  CAS  Google Scholar 

  21. H. Dai (2002). “Carbon nanotubes: Synthesis, integration, and properties”, Acc Chem Res 35, 1035–1044.

    Article  CAS  Google Scholar 

  22. J. Huang, S. Virji, B.H. Weiller, and R.B. Kaner (2003). “Polyaniline nanofibers: Facile synthesis and chemical sensors”, J Am Chem Soc 125, 314–315.

    Article  CAS  Google Scholar 

  23. R.A. Wolkow (1999). “Controlled molecular adsorption on silicon: Laying a foundation for molecular devices”, Annu Rev Phys Chem 50, 413–441.

    Article  CAS  Google Scholar 

  24. T.G. Drummond, M.G. Hill, and J.K. Barton (2003). “Electrochemical DNA sensors”, Nat Biotechnol 21, 1192–1199.

    Article  CAS  Google Scholar 

  25. X.Y. Kong and Z.L. Wang (2003). “Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts”, Nano Lett 3, 1625–1631.

    Article  CAS  Google Scholar 

  26. Z.R. Dai, Z.W. Pan, and Z.L. Wang (2003). “Novel nanostructures of functional oxides synthesized by thermal evaporation”, Adv Funct Mater 13, 9–24.

    Article  Google Scholar 

  27. M.S. Arnold, P. Avouris, Z.W. Pan, and Z.L. Wang (2003). “Field-effect transistors based on single semiconducting oxide nanobelts”, J Phys Chem B 107, 659–663.

    Article  CAS  Google Scholar 

  28. I.L. Medintz, A.R. Clapp, H. Mattoussi, E.R. Goldman, B. Fisher, and J.M. Mauro (2003). “Self-assembled nanoscale biosensors based on quantum dot FRET donors”, Nat Mater 2, 630–638.

    Article  CAS  Google Scholar 

  29. J.G.G. Borst and B. Sakmann (1996). “Calcium influx and transmitter release in a fast CNS synapse”, Nature 383, 431–434.

    Article  CAS  Google Scholar 

  30. X. Wang, C.J. Summers, and Z.L. Wang (2004). “Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays”, Nano Lett 4, 423–426.

    Article  CAS  Google Scholar 

  31. K. Kalyanasundaram and M. Grätzel (1998). “Applications of functionalized transition metal complexes in photonic and optoelectronic devices”, Coord Chem Rev 177, 347–414.

    Article  CAS  Google Scholar 

  32. T. Bein (1996). “Synthesis and applications of molecular sieve layers and membranes”, Chem Mater 8, 1636–1653.

    Article  CAS  Google Scholar 

  33. H. Zheng, J. Wang, S.E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S.R. Shinde, S.B. Ogale, F. Bai, D. Viehland, Y. Jia, D.G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh (2004). “Multiferroic BaTiO3-CoFe2O4 Nanostructures”, Science 303, 661–663.

    Article  CAS  Google Scholar 

  34. J. Wang and M. Musameh (2003). “Carbon nanotube/Teflon composite electrochemical sensors and biosensors”, Anal Chem 75, 2075–2079.

    Article  CAS  Google Scholar 

  35. K. Besteman, J. Lee, F.G.M. Wiertz, H.A. Heering, and C. Dekker (2003). “Enzyme-coated carbon nanotubes as single-molecule biosensors”, Nano Lett 3, 727–730.

    Article  CAS  Google Scholar 

  36. R. Cush, J.M. Cronin, W.J. Stewart, C.H. Maule, J. Molloy, and N.J. Goddard (1993). “The resonant mirror: A novel optical biosensor for direct sensing of biomolecular interactions. Part I: Principle of operation and associated instrumentation”, Biosens Bioelectron 8, 347–353.

    Article  CAS  Google Scholar 

  37. N. Nath and A. Chilkoti (2002). “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface”, Anal Chem 74, 504–509.

    Article  CAS  Google Scholar 

  38. M. Law, H. Kind, B. Messer, F. Kim, and P. Yang (2002). “Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature”, Angew Chem Int Ed 41, 2405–2408.

    Article  CAS  Google Scholar 

  39. R. Skomski (2003). “Nanomagnetics”, J Phys Condens Matter 15.

    Google Scholar 

  40. M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Greiner, and J.H. Wendorff (2001). “Nanostructured fibers via electrospinning”, Adv Mater 13, 70–72.

    Article  CAS  Google Scholar 

  41. M. Trau, N. Yao, E. Kim, Y. Xia, G.M. Whitesides, and I.A. Aksay (1997). “Microscopic patterning of orientated mesoscopic silica through guided growth”, Nature 390, 674–676.

    CAS  Google Scholar 

  42. A.D. McFarland and R.P. Van Duyne (2003). “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity”, Nano Lett 3, 1057–1062.

    Article  CAS  Google Scholar 

  43. B. Mayers, B. Gates, Y. Yin, and Y. Xia (2001). “Functionalized carbon nanotubes for molecular hydrogen sensors”, Adv Mater 13, 1384–1386.

    Article  Google Scholar 

  44. J. Hahm and C.M. Lieber (2004). “Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors”, Nano Lett 4, 51–54.

    Article  CAS  Google Scholar 

  45. J.R. Grider, A.E. Foxx-Orenstein, and J. Jin (1998). “5-Hydroxytryptamine4 receptor agonists initiate the peristaltic reflex in human, rat, and guinea pig intestine”, Gastroenterology 115, 370–380.

    Article  CAS  Google Scholar 

  46. Z.L. Wang (2004). “Zinc oxide nanostructures: Growth, properties and applications”, J Phys Condens Matter 16.

    Google Scholar 

  47. Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, and C.L. Lin (2004). “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors”, Appl Phys Lett 84, 3654–3656.

    Article  CAS  Google Scholar 

  48. S.F. Bent (2002). “Organic functionalization of group IV semiconductor surfaces: Principles, examples, applications, and prospects”, Surf Sci 500, 879–903.

    Article  CAS  Google Scholar 

  49. S.Y. Chou (1997). “Patterned magnetic nanostructures and quantized magnetic disks”, Proc IEEE 85, 652–671.

    Google Scholar 

  50. D. Routkevitch, A.A. Tager, J. Haruyama, D. Almawlawi, M. Moskovits, and J.M. Xu (1996). “Nonlithographic nano-wire arrays: Fabrication, physics, and device applications”, IEEE Trans Electron Devices 43, 1646–1658.

    Article  CAS  Google Scholar 

  51. P. Gomez-Romero (2001). “Hybrid organic-inorganic materials – in search of synergic activity”, Adv Mater 13, 163–174.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Arregui, F.J. (2009). Introduction. In: Arregui, F. (eds) Sensors Based on Nanostructured Materials. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77753-5_1

Download citation

Publish with us

Policies and ethics