Skip to main content

Zinc-Binding Proteins and Immunosenescence: Implications as Biological and Genetic Markers

  • Chapter
Immunosenescence

Part of the book series: Medical Intelligence Unit ((MIUN))

  • 527 Accesses

Abstract

The ageing process is defined as a decline in performance and fitness with advancing age. The progressive decrease in physiological capacity and the reduced ability to respond to environmental stress leads to increased vulnerability to disease. Consequently, the incidence of many diseases and the mortality rate increases with ageing. Conversely, human centenarians escape many age-related diseases with subsequent healthy ageing and longevity. In order to explain increased mortality with advancing age and at the same time the reasons of an exceptional longevity of centenarians, many theories have been proposed. Among them, “Antagonistic Pleiotropy” seems to fit best with one of the causes of immunosenescence, such as chronic inflammatory status, because some genes related to the inflammatory response, from useful mediators devoted to the neutralization of dangerous/harmful agents early in life and in adulthood, become detrimental in aging where the antigenic load is chronic, resulting in a dangerous self-destructive response. As an example in this context, we discuss here two zinc-binding stress-related proteins, Metallothioneins (MT) and alpha-2 macroglobulin (α2-M). We propose that these alter function from a role in protection against oxidative stress and inflammation in young-adult age, to become harmful agents in ageing, mainly due to their continuous sequestration of zinc allowing low zinc ion bioavailability for a satisfactory inflammatory/immune response. Some MT genetic polymorphisms are related to low zinc status and innate immune dysfunction and with the appearance of cardiovascular diseases and type II diabetes, whereas α-2M polymorphisms are associated with the appearance of Alzheimer’s disease and myocardial infarction. Therefore MT and α-2M may be considered as biological and genetic markers of ageing. Their association with zinc transporters (ZnT and Zip family), which are in turn involved in the correct maintenance of intracellular zinc homeostasis, is crucial in order to better understand the genes and the mechanisms involved in longevity and immunosenescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Finch CE. Mechanisms in senescence: some thoughts in April 1990. Exp Gerontol 1992; 27:7–16.

    Article  PubMed  CAS  Google Scholar 

  2. Troen BR. The biology of aging. The Mont Sinai J Med 2001; 70:3–22.

    Google Scholar 

  3. Hitt R, young-xu Y, silver M et al. Centenarians: the older you get, the healtheir you have been. Lancet 1999; 354:652.

    Article  PubMed  CAS  Google Scholar 

  4. Mocchegiani E, Costarelli L, Giacconi R et al. Nutrient-gene interaction in ageing and successful ageing. A single nutrient (zinc) and some target genes related to inflammatory/immune response. Mech Ageing Dev 2006; 127:517–525.

    Article  PubMed  CAS  Google Scholar 

  5. Kirkwood TB. Human senescence. Bioessays 1996; 18: 1009–1016.

    Article  PubMed  CAS  Google Scholar 

  6. Franceschi C, Bonafe M, Valensin S et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 2000; 908: 244–254.

    Article  PubMed  CAS  Google Scholar 

  7. Candore G, Colonna-Romano G, Balistreri CR et al. Biology of longevity: role of the innate immune system. Rejuvenation Res 2006; 9:143–148.

    Article  PubMed  CAS  Google Scholar 

  8. Pawelec G, Ouyang Q, Wagner W et al. Pathways to a robust immune response in the elderly. Immunol Allergy Clin North Am 2003; 23:1–13.

    Article  PubMed  Google Scholar 

  9. Eide DJ. Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta 2006, [in press].

    Google Scholar 

  10. Mocchegiani E, Bertoni-Freddari C, Marcellini F et al. Brain, aging and neurodegeneration: role of zinc ion availability. Prog Neurobiol 2005; 75:367–390.

    Article  PubMed  CAS  Google Scholar 

  11. Kagi JH, Schaffer A. Biochemistry of metallothionein. Biochemistry 1988; 27:8509–8515.

    Article  PubMed  CAS  Google Scholar 

  12. West AK, Stallings R, Hildebrand CE et al. Human metallothionein genes: structure of the functional locus at 16q13. Genomics 1990; 8:513–518.

    Article  PubMed  CAS  Google Scholar 

  13. Maret W, Vallee BL. Thiolate ligands in metallothionein confer redox activity on zinc clusters. Proc Natl Acad Sci 1998; 95: 3478–3482.

    Article  PubMed  CAS  Google Scholar 

  14. Sato M, Kondoh M. Recent studies on metallothionein: protection against toxicity of heavy metals and oxygen free radicals. Tohoku J Exp Med 2002; 196:9–22.

    Article  PubMed  CAS  Google Scholar 

  15. Cui L, Takagi Y, Wasa M et al. Zinc deficiency enhances interleukin-1alpha-induced metallothionein-1 expression in rats. J Nutr 1998; 128:1092–1098.

    PubMed  CAS  Google Scholar 

  16. Bui LM, Dressendorfer RH, Keen CL et al. Zinc status and interleukin-1 beta-induced alterations in mineral metabolism in rats. Proc Soc Exp Biol Med 1994; 206:438–444.

    PubMed  CAS  Google Scholar 

  17. Coto JA, Hadden EM, Sauro M et al. Interleukin 1 regulates secretion of zinc-thymulin by human thymic epithelial cells and its action on T-lymphocyte proliferation and nuclear protein kinase C. Proc Natl Acad Sci 1992; 89:7752–7756.

    Article  PubMed  CAS  Google Scholar 

  18. Kelly EJ, Quaife CJ, Froelick GJ et al. Metallothionein I and II protect against zinc deficiency and zinc toxicity in mice. J Nutr 1996; 126: 1782–1790.

    PubMed  CAS  Google Scholar 

  19. Yin X, Knecht DA, Lynes MA. Metallothionein mediates leukocyte chemotaxis. BMC Immunol 2005; 6:21–31.

    Article  PubMed  CAS  Google Scholar 

  20. Hujanen ES, Seppa ST, Virtanen K. Polymorphonuclear leukocyte chemotaxis induced by zinc, copper and nickel in vitro. Biochim Biophys Acta 1995; 1245:145–152.

    PubMed  Google Scholar 

  21. Mocchegiani E, Giacconi R, Cipriano C et al. Are zinc-bound metallothionein isoforms (I+II and III) involved in impaired thymulin production and thymic involution during ageing? Immun Ageing 2004; 1:5–10.

    Article  PubMed  CAS  Google Scholar 

  22. Mocchegiani E, Giacconi R, Cipriano C et al. Metallothioneins (I+II) and thyroid-thymus axis efficiency in old mice: role of corticosterone and zinc supply. Mech Ageing Dev 2002; 123:675–694.

    Article  PubMed  CAS  Google Scholar 

  23. Mocchegiani E, Giacconi R, Cipriano C et al. MTmRNA gene expression, via IL-6 and glucocorticoids, as potential genetic marker of immunosenescence: lessons from very old mice and humans. Exp Gerontol 2002; 37:349–357.

    Article  PubMed  CAS  Google Scholar 

  24. Youn J, Lynes MA. Metallothionein-induced suppression of cytotoxic T-lymphocyte function: an important immunoregulatory control. Toxicol Sci 1999; 52:199–208.

    Article  PubMed  CAS  Google Scholar 

  25. Feng W, Benz FW, Cai J et al. Metallothionein disulfides are present in metallothionein-overexpressing transgenic mouse heart and increase under conditions of oxidative stress. J Biol Chem 2006; 281:681–687.

    Article  PubMed  CAS  Google Scholar 

  26. Zangger K, Oz G, Haslinger E et al. Nitric oxide selectively releases metals from the amino-terminal domain of metallothioneins: potential role at inflammatory sites. FASEB J 2001; 15:1303–1305.

    PubMed  CAS  Google Scholar 

  27. Mocchegiani E, Muzzioli M, Giacconi R. Zinc and immunoresistance to infection in aging: new biological tools. Trends Pharmacol Sci 2000; 21:205–208.

    Article  PubMed  CAS  Google Scholar 

  28. Haase H, Hebel S, Engelhardt G et al. Flow cytometric measurement of labile zinc in peripheral blood mononuclear cells. Anal Biochem 2006; 352:222–230.

    Article  PubMed  CAS  Google Scholar 

  29. Giacconi R, Cipriano C, Muti E et al. Novel-209A/G MT2A Polymorphism in Old Patients with Type 2 Diabetes and Atherosclerosis: Relationship with Inflammation (IL-6) and Zinc. Biogerontology 2005; 6:407–413.

    Article  PubMed  CAS  Google Scholar 

  30. Williams PD, Day T. Antagonistic pleiotropy, mortality source interactions and the evolutionary theory of senescence. Evolution Int J Org Evolution 2003; 57:1478–1488.

    Google Scholar 

  31. Sottrup-Jensen L. Alpha-macroglobulins: structure, shape and mechanism of proteinase complex formation. J Biol Chem 1989; 264:11539–11542.

    PubMed  CAS  Google Scholar 

  32. Lysiak JJ, Hussaini IM, Gonias SL. alpha 2-Macroglobulin synthesis by the human monocytic cell line THP-1 is differentiation state-dependent. J Cell Biochem 1997; 67:492–497.

    Article  PubMed  CAS  Google Scholar 

  33. Heumann D, Vischer TL. Immunomodulation by alpha 2-macroglobulin and alpha 2-macroglobulin-proteinase complexes: the effect on the human T-lymphocyte response. Eur J Immunol 1988; 18:755–760.

    Article  PubMed  CAS  Google Scholar 

  34. Hoffman MR, Pizzo SV, Weinberg JB. Modulation of mouse peritoneal macrophage Ia and human peritoneal macrophage HLA-DR expression by alpha 2-macroglobulin “fast” forms. J Immunol 1987; 139:1885–1890.

    PubMed  CAS  Google Scholar 

  35. Borth W. Alpha 2-macroglobulin. A multifunctional binding and targeting protein with possible roles in immunity and autoimmunity. Ann NY Acad Sci 1994; 737:267–272.

    Article  PubMed  CAS  Google Scholar 

  36. Kahari VM, Saarialho-Kere U. Matrix metalloproteinases and their inhibitors in tumour growth and invasion. Ann Med 1999; 31:34–45.

    Article  PubMed  CAS  Google Scholar 

  37. James K. Interactions between cytokines and alpha 2-macroglobulin. Immunol Today 1990; 11:163–166.

    Article  PubMed  CAS  Google Scholar 

  38. Gonias SL, LaMarre J, Crookston KP et al. Alpha 2-macroglobulin and the alpha 2-macroglobulin receptor/LRP. A growth regulatory axis. Ann NY Acad Sci 1994; 737:273–290.

    Article  PubMed  CAS  Google Scholar 

  39. Dinarello CA. Reduction of inflammation by decreasing production of interleukin-1 or by specific receptor antagonism. Int J Tissue React 1992; 14:65–75.

    PubMed  CAS  Google Scholar 

  40. Horn F, Wegenka UM, Lutticken C et al. Regulation of alpha 2-macroglobulin gene expression by interleukin-6. Ann N Y Acad Sci 1994; 737:308–323.

    Article  PubMed  CAS  Google Scholar 

  41. Gettins PG, Crews BC. Binding of epidermal growth factor to human alpha 2-macroglobulin. Significance for cytokine alpha 2-macroglobulin interactions. Ann NY Acad Sci 1994; 737:383–398.

    Article  PubMed  CAS  Google Scholar 

  42. Rink L, Seyfarth M. Characteristics of immunologic test values in the elderly. Z Gerontol Geriatr 1997; 30:220–225.

    PubMed  CAS  Google Scholar 

  43. Mocchegiani E, Ciavattini A, Santarelli L et al. Role of zinc and alpha2 macroglobulin on thymic endocrine activity and on peripheral immune efficiency (natural killer activity and interleukin 2) in cervical carcinoma. Br J Cancer 1999; 79:244–250.

    Article  PubMed  CAS  Google Scholar 

  44. Moroni F, Di Paolo ML, Rigo A et al. Interrelationship among neutrophil efficiency, inflammation, antioxidant activity and zinc pool in very old age. Biogerontology 2005; 6:271–281.

    Article  PubMed  CAS  Google Scholar 

  45. Matoska J, Wahlstrom T, Vaheri A et al. Tumor-associated alpha-2-macroglobulin in human melanomas. Int J Cancer 1988; 41:359–363.

    Article  PubMed  CAS  Google Scholar 

  46. Gonzales P, Alvarez R, Reguero JR et al. Variation in the lipoprotein receptor related protein, alpha2-macroglobulin and lipoprotein receptor-associated protein genes in relation to plasma lipid levels and risk of early myocardial infarction. Coron Artery Dis 2002; 13:251–254.

    Article  Google Scholar 

  47. Kovacs DM. alpha 2-macroglobulin in late-onset Alzheimer’s disease. Exp Gerontol 2000; 35:473–479.

    Article  PubMed  CAS  Google Scholar 

  48. Fabris N, Mocchegiani E. Zinc, human diseases and aging. Aging 1995; 7:77–93.

    PubMed  CAS  Google Scholar 

  49. Liuzzi JP, Cousins RJ. Mammalian zinc transporters. Annu Rev Nutr 2004; 24:151–172.

    Article  PubMed  CAS  Google Scholar 

  50. Kambe T, Yamaguchi-Iwai Y, Sasaki R et al. Overview of mammalian zinc transporters. Cell Mol Life Sci 2004; 61:49–68.

    Article  PubMed  CAS  Google Scholar 

  51. Teillet, L, Tacnet F, Ripoche P et al. Effect of aging on zinc and histidine transport across rat intestinal brush-border membranes. Mech Ageing Dev 1995; 79:151–167.

    Article  PubMed  CAS  Google Scholar 

  52. Mooradian AD, Song MK. The intestinal zinc transport in aged rats. Mech Ageing Dev 1987; 41:189–197.

    Article  PubMed  CAS  Google Scholar 

  53. Cragg RA, Phillips SR, Piper JM et al. Homeostatic regulation of zinc transporters in the human small intestine by dietary zinc supplementation. Gut 2005; 54:469–478.

    Article  PubMed  CAS  Google Scholar 

  54. Dufner-Beattie J, Kuo YM, Gitschier J et al. The adaptive response to dietary zinc in mice involves the differential cellular localization and zinc regulation of the zinc transporters ZIP4 and ZIP5. J Biol Chem 2004; 279:49082–49090.

    Article  PubMed  CAS  Google Scholar 

  55. Wang F, Kim BE, Dufner-Beattie J et al. Acrodermatitis enteropathica mutations affect transport activity, localization and zinc-responsive trafficking of the mouse ZIP4 zinc transporter. Hum Mol Genet 2004; 13:563–571.

    Article  PubMed  CAS  Google Scholar 

  56. Liuzzi JP, Lichten LA, Rivera S et al. Interleukin-6 regulates the zinc transporter Zip 14 in liver and contributes to the hypozincemia of the acute-phase response. Proc Natl Acad Sci 2005; 102:6843–6848.

    Article  PubMed  CAS  Google Scholar 

  57. Andree KB, Kim J, Kirschke CP et al. Investigation of lymphocyte gene expression for use as biomarkers for zinc status in humans. J Nutr 2004; 134:1716–1723.

    PubMed  CAS  Google Scholar 

  58. Maret W, Cellular zinc and redox states converge in the metallothionein/thionein pair. J Nutr 2003; 133:1460S–1462S.

    PubMed  CAS  Google Scholar 

  59. Description of Zincage project. Available at: www.zincage.org. Accessed, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Mocchegiani, E., Malavolta, M. (2007). Zinc-Binding Proteins and Immunosenescence: Implications as Biological and Genetic Markers. In: Immunosenescence. Medical Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76842-7_12

Download citation

Publish with us

Policies and ethics