Skip to main content

Cognition is a loosely defined term with divergent meanings in different disciplines and species. In human psychology, ‘cognition’ is often used in reference to concepts such as ‘mind’ or ‘higher mental functions’. However, in more general terms, ‘cognition’ is regularly used to refer to all manner of information organization by the brain: from collection, to processing, to storage and recognition or recall. Whereas ‘cognition’ would seem to permeate all mental functions, including subjective perception and innate responses, ‘cognitive ability’ has a slightly more specific connotation – something more akin to intelligence or information-processing ability. Thus, ‘cognition’ deals with mental process structure and ‘cognitive abilities’ with natural variations impinging upon functioning at the higher end of that structure. Although the term ‘cognition’ sometimes subsumes or substitutes ‘cognitive ability’ in the literature, understanding this methodological distinction allows us to read across the two fields without the misunderstandings that classical cognitive psychologists have sometimes shown for cognitive ability research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiba, A., Chen, C., Herrup, K., Rosenmund, C., Stevens, C. F., & Tonegawa, S. (1994a). Reduced hippocampal long-term potentiation and context-specific deficit in associative learning in mGluR1 mutant mice. Cell, 79, 365–375.

    PubMed  CAS  Google Scholar 

  • Aiba, A., Kano, M., Chen, C., Stanton, M. E., Fox, G. D., Herrup, K., et al. (1994b). Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell, 79, 377–388.

    PubMed  CAS  Google Scholar 

  • Albert, M. S. (1996). Cognitive and neurobiological markers of early Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 93, 13547–13551.

    PubMed  CAS  Google Scholar 

  • Anderson, B. (1993). Evidence from the rat for a general factor that underlies cognitive performance and that relates to brain size: Intelligence? Neuroscience Letters, 153, 98–102.

    PubMed  CAS  Google Scholar 

  • Andra, K., Abramowski, D., Duke, M., Probst, A., Wiederhold, K. H., Burki, K., et al. (1996). Expression of APP in transgenic mice: A comparison of neuron-specific promoters. Neurobiology of Aging, 17, 183–190.

    PubMed  CAS  Google Scholar 

  • Arnold, S. E., Hyman, B. T., Flory, J., Damasio, A. R., & Van Hoesen, G. W. (1991). The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cerebral Cortex, 1, 103–116.

    PubMed  CAS  Google Scholar 

  • Ashe, K. (2001). Learning and memory in transgenic mice modelling Alzheimer’s disease. Learning & Memory, 8, 301–308.

    CAS  Google Scholar 

  • Austin, L., Arendash, G. W., Gordon, M. N., Diamond, D. M., DiCarlo, G., Dickey, C., et al. (2003). Short-term ß-amyloid vaccinations do not improve cognitive performance in cognitively impaired APP+PS1 mice. Behavioral Neuroscience, 117, 478–84.

    PubMed  CAS  Google Scholar 

  • Bailey, C. H., & Kandel, E. R. (1993). Structural changes accompanying memory storage. Annual Review of Physiology, 55, 397–426.

    PubMed  CAS  Google Scholar 

  • Bakker, C. R., & Oostra, B. A. (2003). Understanding fragile X syndrome: Insights from animal models. Cytogenet. Genome Research, 100, 111–123.

    CAS  Google Scholar 

  • Balschun, D., Wolfer, D. P., Gass, P., Mantamadiotis, T., Welzl, H., Schutz, G., et al. (2003). Does cAMP response element-binding protein have a pivotal role in hippocampal synaptic plasticity and hippocampus-dependent memory? The Journal of Neuroscience, 23, 6304–6314.

    PubMed  CAS  Google Scholar 

  • Berger, S., Wolfer, D. P., Selbach, O., Alter, H., Erdmann, G., Reichardt, H. M., et al. (2006). Loss of the limbic mineralocorticoid receptor impairs behavioral plasticity. Proceedings of the National Academy of Sciences of the United States of America, 103, 195–200.

    PubMed  CAS  Google Scholar 

  • Billings, L. M., Oddo, S., Green, K. N., McGaugh, J. L., & LaFerla, F. M. (2005). Intraneuronal Abeta causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron, 45, 675–688.

    PubMed  CAS  Google Scholar 

  • Blendy, J. A., Kaestner, K. H., Schmid, W., Gass, P., & Schütz, G. (1996). Targeting of the CREB gene leads to up-regulation of a novel CREB mRNA isoform. EMBO Journal, 15, 1098–1106.

    PubMed  CAS  Google Scholar 

  • Bolivar, V., Cook, M., & Flaherty, L. (2000). List of transgenic and knockout mice: Behavioral profiles. Mammalian Genome, 11, 260–274.

    PubMed  CAS  Google Scholar 

  • Bontekoe, C. J., Bakker, C. E., Nieuwenhuizen, I. M., van der Linde, H., Lans, H., de Lange, D., et al. (2001). Instability of a (CGG)98 repeat in the Fmr1 promotor. Human Molecular Genetics, 10, 1693–1699.

    Google Scholar 

  • Borchelt, D. R., Thinakaran, G., Eckman, C. B., Lee, M. K., Davenport, F., Ratovitsky, T., et al. (1996). Familial Alzheimer’s disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo. Neuron, 17, 1005–1013.

    PubMed  CAS  Google Scholar 

  • Bourtchuladze, R., Frenguelli, B., Blendy, J., Cioffi, D., Schutz, G., & Silva, A. J. (1994). Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell, 79, 59–68.

    PubMed  CAS  Google Scholar 

  • Braak, H., & Braak, E. (1994). Pathology of Alzheimer’s disease. In D. B. Calne (Ed.), Neurodegenerative Diseases (pp. 585–613). Philadelphia: Saunders.

    Google Scholar 

  • Brambilla, R., Gnesutta, N., Minichiello, L., White, G., Roylance, A. J., Herron, C. E., et al. (1997). A role for the Ras signalling pathway in synaptic transmission and long-term memory. Nature, 390, 281–286.

    PubMed  CAS  Google Scholar 

  • Branchi, I., Bichler, Z., Berger-Sweeney, J., & Ricceri, L. (2003). Animal models of mental retardation: From gene to cognitive function. Neuroscience & Biobehavioral Reviews, 27, 141–153.

    CAS  Google Scholar 

  • Brooks, S. P., Pask, T., Jones, L., & Dunnett, S. B. (2005). Behavioral profiles of inbred mouse strains used as transgenic backgrounds. II: Cognitive tests. Genes, Brain and Behavior, 4, 307–17.

    CAS  Google Scholar 

  • Buhot, M.-C., Wolff, M., Benhassine, N., Costet, P., Hen, R., & Segu, L. (2003). Spatial learning in the 5-HT1B receptor knockout mouse: Selective facilitation/impairment depending on the cognitive demand. Learning & Memory, 10, 466–477.

    Google Scholar 

  • Bush, A. I. (2001). Therapeutic targets in the biology of Alzheimer’s disease. Current Opinion in Psychiatry, 14, 341–348.

    Google Scholar 

  • Butcher, L. M., Kennedy, J. K. J., & Plomin, R. (2006). Generalist genes and cognitive neuroscience. Current Opinion in Neurobiology, 16, 145–151.

    PubMed  CAS  Google Scholar 

  • Carlezon, W. A., Jr., Duman, R. S., & Nestler, E. J. (2005). The many faces of CREB. Trends in Neurosciences, 28, 436–445.

    PubMed  CAS  Google Scholar 

  • Cavallaro, S., D’Agata, V., Manickam, P., & Alkon, D. L. (2002). Memory-specific temporal profiles of gene expression in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 99, 16279–16284.

    PubMed  CAS  Google Scholar 

  • Chen, C., & Tonegawa, S. (1997). Molecular genetic analysis of synaptic plasticity, activity-dependent neural development, learning, and memory in the mammalian brain. Annual Review of Neuroscience, 20, 157–184.

    PubMed  CAS  Google Scholar 

  • Chishti, M. A., Yang, D. S., Janus, C., Phinney, A. L., Horne, P., Pearson, J., et al. (2001). Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. The Journal of Biological Chemistry, 276, 21562–21570.

    PubMed  CAS  Google Scholar 

  • Citron, M., Westaway, D., Xia, W., Carlson, G., Diehl, T., Levesque, G., et al. (1997). Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid ß-protein in both transfected cells and transgenic mice. Nature Medicine, 3, 67–72.

    PubMed  CAS  Google Scholar 

  • Conquet, F., Bashir, Z. I., Davies, C. H., Daniel, H., Ferraguti, F., Bordi, F., et al. (1994). Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1. Nature, 372, 237–243.

    PubMed  CAS  Google Scholar 

  • Costa, R. M., & Silva, A. J. (2003). Mouse models of neurofibromatosis type I: Bridging the GAP. Trends in Molecular Medicine, 9, 19–23.

    PubMed  CAS  Google Scholar 

  • Cremer, H., Lange, R., Christoph, A., Plomann, M., Vopper, G., Roes, J., et al. (1994). Inactivation of the NCAM gene in mice results in size-reduction of the olfactory bulb and deficits in spatial learning. Nature, 367, 455–459.

    PubMed  CAS  Google Scholar 

  • Crestani, F., Keist, R., Fritschy, J. M., Benke, D., Vogt, K., Prut, L., et al. (2002). Trace fear conditioning involves hippocampal alpha5 GABA(A) receptors. Proceedings of the National Academy of Sciences of the United States of America, 99, 8980–8985.

    PubMed  CAS  Google Scholar 

  • Crestani, F., Lorez, M., Baer, K., Essrich, C., Benke, D., Laurent, J. P., et al. (1999). Decreased GABAA-receptor clustering results in enhanced anxiety and a bias for threat cues. Nature Neuroscience, 2, 833–839.

    PubMed  CAS  Google Scholar 

  • Crow, T. (2004). Pavlovian conditioning of Hermissenda: Current cellular, molecular, and circuit perspectives. Learning & Memory, 11, 229–38.

    Google Scholar 

  • Cryan, J. F., Kelly, P. H., Neijt, H. C., Sansig, G., Flor, P. J., & van der Putten, H. (2003). Antidepressant and anxiolytic-like effects in mice lacking the group III metabotropic glutamate receptor mGluR7. European Journal of Neuroscience, 17, 2409–2417.

    PubMed  Google Scholar 

  • Cui, Z., Lindl, K. A., Mei, B., Zhang, S., & Tsien, J. Z. (2005). Requirement of NMDA receptor reactivation for consolidation and storage of nondeclarative taste memory revealed by inducible NR1 knockout. European Journal of Neuroscience, 22, 755–763.

    PubMed  Google Scholar 

  • Cui, Z., Wang, H., Tan, Y., Zaia, K. A., Zhang, S., & Tsien, J. Z. (2004). Inducible and reversible NR1 knockout reveals crucial role of the NMDA receptor in preserving remote memories in the brain. Neuron, 41, 781–793.

    PubMed  CAS  Google Scholar 

  • D’Adamo, P., Welzl, H., Papadimitriou, S., Raffaele di Barletta, M., Tiveron, C., Tatangelo, L., et al. (2002). Deletion of the mental retardation gene Gdi1 impairs associative memory and alters social behavior in mice. Human Molecular Genetics, 11, 2567–2580.

    PubMed  CAS  Google Scholar 

  • D’Agata, V., & Cavallaro, S. (2003) Hippocampal gene expression profiles in passive avoidance conditioning. European Journal of Neuroscience, 18, 2835–2841.

    PubMed  Google Scholar 

  • Davis, H. P., & Squire, L. R. (1984). Protein synthesis and memory: A review. Psychological Bulletin, 96, 518–559.

    PubMed  CAS  Google Scholar 

  • Day, M., & Morris, R. G. M. (2001). Memory consolidation and NMDA receptors: Discrepancy between genetic and pharmacological approaches. Science, 293, 755a.

    Google Scholar 

  • Deutsch, J. A. (1993). Spatial learning in mutant mice. Science, 262, 760–761.

    PubMed  CAS  Google Scholar 

  • Dineley, K. T., Xia, X., Bui, D., Sweatt, J. D., & Zheng, H. (2002). Accelerated plaque accumulation, associative learning deficits, and up-regulation of alpha 7 nicotinic receptor protein in transgenic mice co-expressing mutant human presenilin 1 and amyloid precursor proteins. The Journal of Biological Chemistry, 277, 22768–22780.

    PubMed  CAS  Google Scholar 

  • Dluzen, D. E., Gao, X., Story, G. M., Anderson, L. I., Kucera, J., & Walro, J. M. (2001). Evaluation of nigrostriatal dopaminergic function in adult +/+ and +/- BDNF mutant mice. Experimental Neurology, 170, 121–8.

    PubMed  CAS  Google Scholar 

  • Dodart, J. C., Bales, K. R., Gannon, K. S., Greene, S. J., DeMattos, R. B., Mathis, C., et al. (2002a). Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model. Nature Neuroscience, 5, 452–457.

    PubMed  CAS  Google Scholar 

  • Dodart, J.-C., Marr, R. A., Koistinaho, M., Gregersen, B. M., Malkani, S., Verma, I. M., et al. (2005). Gene delivery of human apolipoprotein E alters brain A β burden in a mouse model of Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 102, 1211–1216.

    PubMed  CAS  Google Scholar 

  • Dodart, J. C., Mathis, C., Bales, K. R., & Paul, S. M. (2002b). Does my mouse have Alzheimer’s disease? Genes, Brain and Behavior, 1, 142–155.

    CAS  Google Scholar 

  • Drago, J., McColl, C. D., Horne, M. K., Finkelstein, D. I., & Ross, S. A. (2003). Neuronal nicotinic receptors: Insights gained from gene knockout and knockin mutant mice. Cellular and Molecular Life Sciences, 60, 1267–1280.

    PubMed  CAS  Google Scholar 

  • Duff, K. (1999). Curing amyloidosis: Will it work in humans? Trends in Neurosciences, 22, 485–486.

    PubMed  CAS  Google Scholar 

  • Duff, K., Eckman, C., Zehr, C., Yu, X., Prada, C.-M., Pereztur, J., et al. (1996). Increased amyloid-ß42(43) in brains of mice expressing mutant presenilin 1. Nature, 383, 710–713.

    PubMed  CAS  Google Scholar 

  • Elgersma, Y., Sweatt, J. D., & Giese, K. P. (2004). Mouse Genetic Approaches to Investigating Calcium/Calmodulin-Dependent Protein Kinase II Function in Plasticity and Cognition The Journal of Neurosciences, 24, 8410–8415.

    CAS  Google Scholar 

  • Frankland, P. W., Cestari, V., Filipkowski, R. K., McDonald, R. J., & Silva, A. J. (1998). The dorsal hippocampus is essential for context discrimination but not for contextual conditioning. Behavioral Neuroscience, 112, 863–874.

    PubMed  CAS  Google Scholar 

  • Fransen, E., D’Hooge, R., Van Camp, G., Verhoye, M., Sijbers, J., Reyniers, E., et al. (1998). L1 knockout mice show dilated ventricles, vermis hypoplasia and impaired exploration patterns. Human Molecular Genetetics, 7, 999–1009.

    CAS  Google Scholar 

  • Fratiglioni, L., Small, B. J., Winblad, B., & Bäckman, L. (2001). The Transition from Normal Functioning to Dementia in the Aging Population. In K. Iqbal, S. Sisodia, & B. Winblad (Eds.), Alzheimer’s disease: Advances in etiology, pathogenesis and therapeutics (pp. 3–10). Chichester: John Wiley & Sons. Ltd.

    Google Scholar 

  • Galsworthy, M. J., Paya-Cano, J. L., Liu, L., Monleòn, S., Gregoryan, G., Fernandes, C., et al. (2005). Assessing reliability, heritability and general cognitive ability in a battery of cognitive tasks for laboratory mice. Behavior Genetics, 35, 675–692.

    PubMed  Google Scholar 

  • Galsworthy, M. J., Paya-Cano, J. L., Monleòn, S., & Plomin, R. (2002). Evidence for general cognitive ability (g) in heterogeneous stock (HS) mice and an analysis of potential confounds. Genes, Brain and Behavior, 1, 88–95.

    CAS  Google Scholar 

  • Games, D., Adams, D., Alessandrini, R., Barbour, R., Berthelette, P., Blackwell, C., et al. (1995). Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature, 373, 523–527.

    PubMed  CAS  Google Scholar 

  • Gardner, H. (1983) Frames of Mind: The theory of multiple intelligences. New York: Basic Books.

    Google Scholar 

  • Gass, P., Wolfer, D. P., Balschun, D., Rudolph, D., Frey, U., Lipp, H. P., et al. (1998). Deficits in memory tasks of mice with CREB mutations depend on gene dosage. Learning & Memory, 5, 274–288.

    CAS  Google Scholar 

  • Genoux, D., Haditsch, U., Knobloch, M., Michalon, A., Storm, D., & Mansuy, I. M. (2002). Protein phosphatase 1 is a molecular constraint on learning and memory. Nature, 418, 929–930.

    Google Scholar 

  • Gerlai, R., McNamara, A., Choi-Lundberg, D. L., Armanini, M., Ross, J., Powell-Braxton, L., et al. (2001). Impaired water maze learning performance without altered dopaminergic function in mice heterozygous for the GDNF mutation. European Journal of Neuroscience, 14, 1153–63.

    PubMed  CAS  Google Scholar 

  • Giese, K. P., Friedman, E., Telliez, J. B., Fedorov, N. B., Wines, M., Feig, L. A., et al. (2001). Hippocampus-dependent learning and memory is impaired in mice lacking the Ras-guanine-nucleotide releasing factor 1 (Ras-GRF1). Neuropharmacology, 41, 791–800.

    PubMed  CAS  Google Scholar 

  • Gilman, S., Koller, M., Black, R. S., Jenkins, L., Griffith, S. G., Fox, N. C., et al. (2005). Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology, 64, 1553–1562.

    PubMed  CAS  Google Scholar 

  • Grant, S. G., O’Dell, T. J., Karl, K. A., Stein, P. L., Soriano, P., & Kandel, E. R. (1992). Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science, 258, 1903–10.

    PubMed  CAS  Google Scholar 

  • Greenberg, B. D., Savage, M. J., Howland, D. S., Ali, S. M., Siedlak, S. L., Perry, G., et al. (1996). APP transgenesis: Approaches toward the development of animal models for Alzheimer disease neuropathology. Neurobiology of Aging, 17, 153–171.

    PubMed  CAS  Google Scholar 

  • Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science, 297, 353–356.

    PubMed  CAS  Google Scholar 

  • Higgins, G. A., & Jacobsen, H. (2003). Transgenic mouse models of Alzheimer’s disease: Phenotype and application. Behavioural Pharmacology, 14, 419–438.

    PubMed  CAS  Google Scholar 

  • Hock, C., Konietzko, U., Papassotiropoulos, A., Wollmer, A., Streffer, J., von Rotz, R., et al. (2002). Generation of antibodies specific for ß-amyloid by vaccination of patients with Alzheimer disease. Nature Medicine, 8, 1270–1275.

    PubMed  CAS  Google Scholar 

  • Hock, C., Konietzko, U., Streffer, J. R., Tracy, J., Signorell, A., Muller-Tillmanns, B., et al. (2003). Antibodies against beta-amyloid slow cognitive decline in Alzheimer’s disease. Neuron, 38, 547–554.

    PubMed  CAS  Google Scholar 

  • Holcomb, L. A., Gordon, M. N., Jantzen, P., Hsiao, K., Duff, K., & Morgan, D. (1999). Behavioral changes in transgenic mice expressing both amyloid precursor protein and presenilin-1 mutations: Lack of association with amyloid deposits. Behavior Genetics, 29, 177–185.

    PubMed  CAS  Google Scholar 

  • Holcomb, L., Gordon, M. N., McGowan, E., Yu, X., Benkovic, S., Jantzen, P., et al. (1998). Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nature Medicine, 4, 97–100.

    PubMed  CAS  Google Scholar 

  • Hölscher, C., Schmid, S., Pilz, P. K. D., Sansig, G., van der Putten, H., & Plappert, C. F. (2004). Lack of the metabotropic glutamate receptor subtype 7 selectively impairs short-term working memory but not long-term memory. Behavioural Brain Research, 154, 473–481.

    PubMed  Google Scholar 

  • Horn, R., Ostertun, B., Fric, M., Solymosi, L., Steudel, A., & Möller, H.-J. (1996). Atrophy of hippocampus in patients with Alzheimer’s Disease and other diseases with memory impairment. Dementia, 7, 182–186.

    PubMed  CAS  Google Scholar 

  • Hsiao, K. K., Borchelt, D. R., Olson, K., Johannsdottir, R., Kitt, C., Yunis, W., et al. (1995). Age-related CNS disorder and early death in transgenic FVB/N mice overexpressing Alzheimer amyloid precursor proteins. Neuron, 15, 1203–1218.

    PubMed  CAS  Google Scholar 

  • Hsiao, K., Chapman, P., Nilsen, S., Eckman, C., Harigaya, Y., Younkin, S., et al. (1996). Correlative memory deficits, a-beta elevation, and amyloid plaques in transgenic mice. Science, 274, 99–102.

    PubMed  CAS  Google Scholar 

  • Huerta, P. T., Sun, L. D., Wilson, M. A., & Tonegawa, S. (2000). Formation of temporal memory requires NMDA receptors within CA1 pyramidal neurons. Neuron, 25, 473–80.

    PubMed  CAS  Google Scholar 

  • Hyman, B. T., Van Hoesen, G. W., Damasio, A. R., & Barnes, C. L. (1984). Alzheimer’s Disease: Cell-specific pathology isolates the hippocampus formation. Science, 225, 1168–1170.

    PubMed  CAS  Google Scholar 

  • Inlow, J. K., & Restifo, L. L. (2004). Molecular and comparative genetics of mental retardation. Genetics, 166, 835–881.

    PubMed  CAS  Google Scholar 

  • Janus, C. (2003). Vaccines for Alzheimer’s disease: how close are we? CNS Drugs, 17, 457–538.

    PubMed  CAS  Google Scholar 

  • Janus, C., D’Amelio, S., Amitay, O., Chishti, M. A., Strome, R., Fraser, P., et al. (2000a). Spatial learning in transgenic mice expressing human presenilin 1 (PS1) transgenes. Neurobiology of Aging, 21, 541–549.

    PubMed  CAS  Google Scholar 

  • Janus, C., Pearson, J., McLaurin, J., Mathews, P. M., Jiang, Y., Schmidt, S. D., et al. (2000b). A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature, 408, 979–982.

    PubMed  CAS  Google Scholar 

  • Janus, C., Phinney, A. L., Chishti, M. A., & Westaway, D. (2001). New developments in animal models of Alzheimer’s disease. Current Neurology and Neuroscience Reports, 1, 451–457.

    PubMed  CAS  Google Scholar 

  • Janus, C., & Westaway, D. (2001). Transgenic mouse models of Alzheimer’s disease. Physiology & Behavior, 73, 873–886.

    CAS  Google Scholar 

  • Jope, R. S., Song, L., & Powers, R. E. (1997). Cholinergic activation of phosphoinositide signaling is impaired in Alzheimer’s disease brain. Neurobiology of Aging, 18, 111–120.

    PubMed  CAS  Google Scholar 

  • Jin, P., & Warren, S. T. (2003). New insights into fragile X syndrome: From molecules to neurobehaviors. Trends in Biochemical Sciences, 28, 152–158.

    PubMed  CAS  Google Scholar 

  • Kandel, E. R. (2001). The molecular biology of memory storage: A dialogue between genes and synapses. Science, 294, 1030–1038.

    PubMed  CAS  Google Scholar 

  • Kew, J. N.-C., Koester, A., Moreau, J.-L., Jenck, F., Ouagazzal, A.-M., Mutel, V., et al. (2000). Functional consequences of reduction in NMDA receptor glycine affinity in mice carrying targeted point mutations in the glycine binding site. The Journal of Neuroscience, 20, 4037–4049.

    PubMed  CAS  Google Scholar 

  • Kim, D., Chae, S., Lee, J., Yang, H., & Shin, H. S. (2005). Variations in the behaviors to novel objects among five inbred strains of mice. Genes, Brain and Behavior, 4, 302–6.

    CAS  Google Scholar 

  • Kishimoto, Y., Kawahara, S., Kirino, Y., Kadotani, H., Nakamura, Y., Ikeda, M., et al. (1997). Conditioned eyeblink response is impaired in mutant mice lacking NMDA receptor subunit NR2A. Neuroreport, 8, 3717–3721.

    PubMed  CAS  Google Scholar 

  • Kishimoto, Y., Kawahara, S., Mori, H., Mishina, M., & Kirino, Y. (2001a). Long-trace interval eyeblink conditioning is impaired in mutant mice lacking the NMDA receptor subunit ε1. European Journal of Neuroscience, 13, 1221–1227.

    PubMed  CAS  Google Scholar 

  • Kishimoto, Y., Kawahara, S., Suzuki, M., Mori, H., Mishina, M., & Kirino, Y. (2001b). Classical eyeblink conditioning in glutamate receptor subunit delta 2 mutant mice is impaired in the delay paradigm but not in the trace paradigm. European Journal of Neuroscience, 13, 1249–53.

    PubMed  CAS  Google Scholar 

  • Kobayashi, K., & Kobayashi, T. (2001). Genetic evidence for noradrenergic control of long-term memory consolidation. Brain and Development, 23, S16–S23.

    PubMed  Google Scholar 

  • Kogan, J. H., Frankland, P. W., Blendy, J. A., Coblentz, J., Marowitz, Z., Schutz, G., et al. (1996). Spaced training induces normal long-term memory in CREB mutant mice. Current Biology, 7, 1–11.

    Google Scholar 

  • Kooy, R. F. (2003). Of mice and the fragile X syndrome. Trends in Genetics, 19, 148–154.

    PubMed  Google Scholar 

  • Kotilinek, L. A., Bacskai, B., Westerman, M., Kawarabayashi, T., Younkin, L., Hyman, B. T., et al. (2002). Reversible memory loss in a mouse transgenic model of Alzheimer’s disease. The Journal of Neuroscience, 22, 6331–6335.

    PubMed  CAS  Google Scholar 

  • Lamb, B. T., Sisodia, S. S., Lawler, A. M., Slunt, H. H., Kitt, C. A., Kearns, W. G., et al. (1993). Introduction and expression of the 400 kilobase amyloid precursor protein gene in transgenic mice. Nature Genetics, 5, 22–30.

    PubMed  CAS  Google Scholar 

  • Law, J. W. S., Lee, A. Y. W., Sun, M., Nikonenko, A. G., Chung, S. K., Dityatev, A., et al. (2003). Decreased anxiety, altered place learning, and increased CA1 basal excitatory synaptic transmission in mice with conditional ablation of the neural cell adhesion molecule L1. The Journal of Neuroscience, 23, 10419–10432.

    PubMed  CAS  Google Scholar 

  • Lee, V. M., Goedert, M., & Trojanowski, J. Q. (2001). Neurodegenerative tauopathies. Annual Review of Neuroscience, 24, 1121–1159.

    PubMed  CAS  Google Scholar 

  • Leil, T. A., Ossadtchi, A., Cortes, J. S., Leahy, R. M., & Smith, D. J. (2002). Finding new candidate for learning and memory. Journal of Neuroscience Research, 68, 127–137.

    PubMed  CAS  Google Scholar 

  • Leil, T. A., Ossadtchi, A., Nichols, T. E., Leahy, R. M., & Smith, D. J. (2003). Genes regulated by learning in the hippocampus. Journal of Neuroscience Research, 71, 763–768.

    PubMed  CAS  Google Scholar 

  • Letwin, N. E., Kafkafi, N., Benjamini, Y., Mayo, C., Frank, B. C., Luu, T., et al. (2006). Combined application of behavior genetics and microarray analysis to identify regional expression themes and gene–behavior associations. The Journal of Neuroscience, 26, 5277–87.

    PubMed  CAS  Google Scholar 

  • Li, F., Calingasan, N. Y., Yu, F., Mauck, W. M., Toidze, M., Almeida, C. G., et al. (2004). Increased plaque burden in brains of APP mutant MnSOD heterozygous knockout mice. Journal of Neurochemistry, 89, 1308–1312.

    PubMed  CAS  Google Scholar 

  • Linnarsson, S., Bjorklund, A., & Ernfors, P. (1997). Learning deficit in BDNF mutant mice. European Journal of Neuroscience, 9, 2581–7.

    PubMed  CAS  Google Scholar 

  • Locurto, C., Fortin, E., & Sullivan, R. (2003). The structure of individual differences in Heterogeneous Stock mice across problem types and motivational systems. Genes, Brain and Behavior, 2, 40–55.

    CAS  Google Scholar 

  • Lonze, B. E., & Ginty, D. D. (2002). Function and regulation of CREB family transcription factors in the nervous system. Neuron, 35, 605–623.

    PubMed  CAS  Google Scholar 

  • Lu, Y.-M., Jia, Z., Janus, C., Henderson, J. T., Gerlai, R., Wojtowicz, J. M., et al. (1997). Mice lacking metabotropic glutamate receptor 5 show impaired learning and reduced CA1 long-term potentiation (LTP) but normal CA3 LTP. The Journal of Neuroscience, 17, 5196–5205.

    PubMed  CAS  Google Scholar 

  • Malinow, R., & Malenka, R. C. (2002). AMPA receptor trafficking and synaptic plasticity. Annual Review of Neuroscience, 25, 103–126.

    PubMed  CAS  Google Scholar 

  • Masugi, M., Yokoi, M., Shigemoto, R., Muguruma, K., Watanabe, Y., Sansig, G., et al. (1999). Metabotropic glutamate receptor subtype 7 ablation causes deficit in fear response and conditioned taste aversion. The Journal of Neuroscience, 19, 955–963.

    PubMed  CAS  Google Scholar 

  • Matsui, M., Yamada, S., Oki, T., Manabe, T., Taketo, M. M., & Ehlert, F. J. (2004). Functional analysis of muscarinic acetylcholine receptors using knockout mice. Life Sciences, 75, 2971–2981.

    PubMed  CAS  Google Scholar 

  • Mattson, M. P., & Pedersen, W. A. (1998). Effects of amyloid precursor protein derivatives and oxidative stress on basal forebrain cholinergic systems in Alzheimer’s disease. International Journal of Developmental Neuroscience, 16, 737–753.

    PubMed  CAS  Google Scholar 

  • Matzel, L. D., Han, Y. R., Grossman, H., Karnik, M. S., Patel, D., Scott, N., et al. (2003). Individual differences in the expression of a ‘general’ learning ability in mice. The Journal of Neuroscience, 23, 6423–6433.

    PubMed  CAS  Google Scholar 

  • Mazzucchelli, C., Vantaggiato, C., Ciamei, A., Fasano, S., Pakhotin, P., Krezel, W., et al. (2002). Knockout of ERK1 MAP kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory. Neuron, 34, 807–820.

    PubMed  CAS  Google Scholar 

  • McManus, M. T., & Sharp, P. A. (2002). Gene silencing in mammals by small interfering RNAs. Nature Reviews Genetics, 3, 737–747.

    PubMed  CAS  Google Scholar 

  • Michalon, A., Koshibu, K., Baumgartel, K., Spirig, D. H., & Mansuy, I. M. (2005). Inducible and neuron-specific gene expression in the adult mouse brain with the rtTA2S-M2 system. Genesis, 43, 205–12.

    PubMed  CAS  Google Scholar 

  • Minichiello, L., Korte, M., Wolfer, D., Kuhn, R., Unsicker, K., Cestari, V., et al. (1999). Essential role for TrkB receptors in hippocampus-mediated learning. Neuron, 24, 401–14.

    PubMed  CAS  Google Scholar 

  • Miyamoto, Y., Yamada, K., Noda, Y., Mori, H., Mishina, M., & Nabeshima, T. (2001). Hyperfunction of dopaminergic and serotonergic neuronal systems in mice lacking the NMDA receptor 1 subunit. The Journal of Neuroscience, 21, 750–757.

    PubMed  CAS  Google Scholar 

  • Moechars, D., Dewachter, I., Lorent, K., Reverse, D., Baekelandt, V., Naidu, A., et al. (1999). Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. Journal of Biological Chemistry, 274, 6483–6492.

    PubMed  CAS  Google Scholar 

  • Moran, J. L., Bolton, A. D., Tran, P. V., Brown, A., Dwyer, N. D., Manning, D. K., et al. (2006). Utilization of a whole genome SNP panel for efficient genetic mapping in the mouse. Genome Research, 16, 436–440.

    PubMed  CAS  Google Scholar 

  • Moriya, T., Kouzu, Y., Shibata, S., Kadotani, H., Fukunaga, K., Miyamoto, E., et al. (2000). Close linkage between calcium/calmodulin kinase II ±/β and NMDA-2A receptors in the lateral amygdala and significance for retrieval of auditory fear conditioning. European Journal of Neuroscience, 12, 3307–14.

    PubMed  CAS  Google Scholar 

  • Morley, K. I., & Montgomery, G. W. (2001). The genetics of cognitive processes: Candidate genes in humans and animals. Behavior Genetics, 31, 511–531.

    PubMed  CAS  Google Scholar 

  • Morris, R. G., Anderson, E., Lynch, G. S., & Baudry, M. (1986). Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature, 319, 774–776.

    PubMed  CAS  Google Scholar 

  • Morrison, J. H., & Hof, P. R. (1997). Life and death of neurons in the aging brain. Science, 278, 412–419.

    PubMed  CAS  Google Scholar 

  • Mucke, L., Masliah, E., Yu, G. Q., Mallory, M., Rockenstein, E. M., Tatsuno, G., et al. (2000). High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: Synaptotoxicity without plaque formation. The Journal of Neuroscience, 20, 4050–4058.

    PubMed  CAS  Google Scholar 

  • Müller, U. (1999). Ten years of gene targeting: Targeted mouse mutants, from vector design to phenotype analysis. Mechanisms of Development, 82, 3–21.

    PubMed  Google Scholar 

  • Nakazawa, K., McHugh, T. J., Wilson, M. A., & Tonegawa, S. (2004). NMDA receptors, place cells and hippocampal spatial memory. Nature Review Neuroscience, 5, 361–372.

    CAS  Google Scholar 

  • Nimchinsky, E. A., Sabatini, B. L., & Svoboda, K. (2002). Structure and function of dendritic spines. Annual Review of Physiology, 64, 313–53.

    PubMed  CAS  Google Scholar 

  • Novina, C. D., & Sharp, P. A. (2004). The RNAi revolution. Nature, 430, 161–164.

    PubMed  CAS  Google Scholar 

  • Oddo, S., Caccamo, A., Kitazawa, M., Tseng, B. P., & LaFerla, F. M. (2003a). Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiology of Aging, 24, 1063–1070.

    PubMed  CAS  Google Scholar 

  • Oddo, S., Caccamo, A., Shepherd, J. D., Murphy, M. P., Golde, T. E., Kayed, R., et al. (2003b). Triple-transgenic model of Alzheimer’s disease with plaques and tangles: Intracellular Abeta and synaptic dysfunction. Neuron, 39, 409–421.

    PubMed  CAS  Google Scholar 

  • Oitzl, M. S., de Kloet, E. R., Joels, M., Schmid, W., & Cole, T. J. (1997). Spatial learning deficits in mice with a targeted glucocorticoid receptor gene disruption. European Journal of Neuroscience, 9, 2284–96.

    PubMed  CAS  Google Scholar 

  • Oitzl, M. S., Reichardt, H. M., Joels, M., & de Kloet, E. R. (2000). Point mutation in the mouse glucocorticoid receptor preventing DNA binding impairs spatial memory. Proceedings of the National Academy of Sciences of the United States of America, 98, 12790–12795.

    Google Scholar 

  • Orgogozo, J. M., Gilman, S., Dartigues, J. F., Laurent, B., Puel, M., Kirby, L. C., et al. (2003). Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology, 61, 46–54.

    PubMed  CAS  Google Scholar 

  • Paratore, S., Alessi, E., Coffa, S., Torrisi, A., Mastrobuono, F., & Cavallaro, S. (2006). Early genomics of learning and memory: A review. Genes, Brain and Behavior, 5, 209–221.

    CAS  Google Scholar 

  • Parish, C. L., Nunan, J., Finkelstein, D. I., McNamara, F. N., Wong, J. Y., Waddington, J. L., et al. (2005). Mice Lacking the 4 Nicotinic Receptor Subunit Fail to Modulate Dopaminergic Neuronal Arbors and Possess Impaired Dopamine Transporter Function. Molecular Pharmacology, 68, 1376–1386.

    PubMed  CAS  Google Scholar 

  • Petkov, P. M., Cassell, M. A., Sargent, E. E., Donnelly, C. J., Robinson, P., Crew, V., et al. (2004). Development of a SNP genotyping panel for genetic monitoring of the laboratory mouse. Genomics, 83, 902–911.

    PubMed  CAS  Google Scholar 

  • Pittenger, C., Huang, Y. Y., Paletzki, R. F., Bourtchouladze, R., Scanlin, H., Vronskaya, S., et al. (2002). Reversible inhibition of CREB/ATF transcription factors in region CA1 of the dorsal hippocampus disrupts hippocampus-dependent spatial memory. Neuron, 34, 447–462.

    PubMed  CAS  Google Scholar 

  • Plomin, R. (2001). The genetics of g in human and mouse. Nature Review Neuroscience, 2, 136–141.

    CAS  Google Scholar 

  • Plomin, R., DeFries, J. C., McClearn, G. E., & McGuffin, P. (2001). Behavioral genetics (4th ed.). New York: Worth Publishers.

    Google Scholar 

  • Plomin, R., & Kosslyn, S. M. (2001). Genes, brain and cognition. Nature Neuroscience, 4, 1153–55.

    PubMed  CAS  Google Scholar 

  • Plomin, R., & Galsworthy, M.J. (2003). Intelligence and Cognition. In D. N. Cooper (Ed.), Nature Encyclopedia of the Human Genome (Vol. 3, pp. 508–514). London: Nature Publishing Group.

    Google Scholar 

  • Poirier, R., Jacquot, S., Vaillend, C., Soutthiphong, A. A., Libbey, M., Davis, S., et al. (2006). Deletion of the Coffin–Lowry syndrome gene Rsk2 in mice is associated with impaired spatial learning and reduced control of exploratory behavior. Behavior Genetics, 37, 31–50.

    PubMed  Google Scholar 

  • Powell, C. M. (2006). Gene targeting of presynaptic proteins in synaptic plasticity and memory: Across the great divide. Neurobiology of Learning and Memory, 85, 2–15.

    PubMed  CAS  Google Scholar 

  • Price, J. L., Davies, P. B., Morris, J. C., & White, D. L. (1991). The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer’s disease. Neurobiology of Aging, 12, 295–312.

    PubMed  CAS  Google Scholar 

  • Rabenstein, R. L., Addy, N. A., Caldarone, B. J., Asaka, Y., Gruenbaum, L. M., Peters, L. L., et al. (2005). Impaired synaptic plasticity and learning in mice lacking β-adducin, an actin-regulating protein. The Journal of Neuroscience, 25, 2138–2145.

    PubMed  CAS  Google Scholar 

  • Rammes, G., Steckler, T., Kresse, A., Schutz, G., Zieglgansberger, W., & Lutz, B. (2000). Synaptic plasticity in the basolateral amygdala in transgenic mice expressing dominant-negative cAMP response element-binding protein (CREB) in forebrain. European Journal of Neuroscience, 12, 2534–2546.

    PubMed  CAS  Google Scholar 

  • Rampon, C., Tang, Y. P., Goodhouse, J., Shimizu, E., Kyin, M., & Tsien, J. Z. (2000). Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nature Neuroscience, 3, 238–244.

    PubMed  CAS  Google Scholar 

  • Reisel, D., Bannerman, D. M., Schmitt, W. B., Deacon, R. M. J., Flint, J., Borchardt, T., et al. (2002). Spatial memory dissociations in mice lacking GluR1 Nature Neuroscience, 5, 868–873.

    PubMed  CAS  Google Scholar 

  • Riedel, G., Platt, B., & Micheau, J. (2003). Glutamate receptor function in learning and memory. Behavioural Brain Research, 140, 1–47.

    PubMed  CAS  Google Scholar 

  • Robbins, T. W., & Murphy, E. R. (2006). Behavioral pharmacology: 40+ years of progress, with a focus on glutamate receptors and cognition. Trends in Pharmacological Sciences, 27, 141–148.

    PubMed  CAS  Google Scholar 

  • Robles, Y., Vivas-Mejìa, P. E., Ortiz-Zuazaga, H. G., Fèlix, J., Ramos, X., & Peña de Ortiz, S. (2003). Hippocampal gene expression profiling in spatial discrimination learning. Neurobiology of Learning and Memory, 80, 80–95.

    PubMed  CAS  Google Scholar 

  • Rondi-Reig, L., Petit, G. H., Tobin, C., Tonegawa, S., Mariani, J., & Berthoz, A. (2001). Impaired Sequential Egocentric and Allocentric Memories in Forebrain-Specific-NMDA Receptor Knock-Out Mice during a New Task Dissociating Strategies of Navigation. The Journal of Neuroscience, 26, 4071–4081.

    Google Scholar 

  • Rousse, I., Beaulieu, S., Rowe, W., Meaney, M. J., Barden, N., & Rochford, J. (1997). Spatial memory in transgenic mice with impaired glucocorticoid receptor function. Neuroreport, 8, 841–845.

    PubMed  CAS  Google Scholar 

  • Sakagawa, T., Okuyama, S., Kawashima, N., Hozumi, S., Nakagawasai, O., Tadano, T., et al. (2000). Pain threshold, learning and formation of brain edema in mice lacking the angiotensin II type 2 receptor. Life Sciences, 67, 2577–2585.

    PubMed  CAS  Google Scholar 

  • Sakimura, K., Kutsuwada, T., Ito, I., Manabe, T., Takayama, C., Kushiya, E., et al. (1995). Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor 1 subunit. Nature, 373, 151–155.

    PubMed  CAS  Google Scholar 

  • Samuel, W., Terry, R. D., Deteresa, R., Butters, N., & Masliah, E. (1994). Clinical Correlates of Cortical and Nucleus Basalis Pathology in Alzheimer Dementia. Archives of Neurology, 51, 772–778.

    PubMed  CAS  Google Scholar 

  • Sapolsky, R. M. (2003). Altering behavior with gene transfer in the limbic system. Physiology & Behavior, 79, 479–486.

    CAS  Google Scholar 

  • Savitz, J., Solms, M., & Ramesar, R. (2006). The molecular genetics of cognition: Dopamine, COMT and BDNF. Genes, Brain and Behavior, 5, 311–328.

    CAS  Google Scholar 

  • Schmitt, W. B., Deacon, R. M. J., Seeburg, P. H., Rawlins, J. N. P., & Bannerman, D. M. (2003). A within-subjects, within-task demonstration of intact spatial reference memory and impaired spatial working memory in glutamate receptor-A-deficient mice. The Journal of Neuroscience, 23, 3953–3959.

    PubMed  CAS  Google Scholar 

  • Seabrook G. R., & Rosahl, T. W. (1999). Transgenic animals relevant to Alzheimer’s disease. Neuropharmacology, 38, 1–17.

    PubMed  CAS  Google Scholar 

  • Selcher, J. C., Nekrasova, T., Paylor, R., Landreth, G. E., & Sweatt, J. D. (2001). Mice lacking the ERK1 isoform of MAP kinase are unimpaired in emotional learning. Learning & Memory, 8, 11–19.

    CAS  Google Scholar 

  • Selkoe, D. J. (1997). Alzheimer’s Disease: Genotypes, phenotypes, and treatments. Science, 275, 630–631.

    PubMed  CAS  Google Scholar 

  • Shahbazian, M. D., Young, J. I., Yuva-Paylor, L. A., Spencer, C. M., Antalffy, B. A., Noebels, J. L., et al. (2002). Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron, 35, 243–254.

    PubMed  CAS  Google Scholar 

  • Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., et al. (2006). Intellectual ability and cortical development in children and adolescents. Nature, 440, 676–679.

    PubMed  CAS  Google Scholar 

  • Shimizu, E., Tang, Y. P., Rampon, C., & Tsien, J. Z. (2000). NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation. Science, 290, 1170–1174.

    PubMed  CAS  Google Scholar 

  • Shors, T. J., & Matzel, L. D. (1997). Long-term potentiation: What’s learning got to do with it? Behavioral and Brain Sciences, 20, 597–655.

    PubMed  CAS  Google Scholar 

  • Sigurdsson, E. M., Scholtzova, H., Mehta, P. D., Frangione, B., & Wisniewski, T. (2001). Immunization with a nontoxic/nonfibrillar amyloid-beta homologous peptide reduces Alzheimer’s disease-associated pathology in transgenic mice. American Journal of Pathology, 159, 439–447.

    PubMed  CAS  Google Scholar 

  • Silva, A. J., Paylor, R., Wehner, J. M., & Tonegawa, S. (1992). Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science, 257, 206–211.

    PubMed  CAS  Google Scholar 

  • Spearman, C. (1904). ‘General intelligence’ objectively determined and measured. American Journal of Psychology, 15, 201–293

    Google Scholar 

  • Spreng, M., Cotecchia, S., & Schenk, F. (2001). A behavioral study of alpha-1b adrenergic receptor knockout mice: Increased reaction to novelty and selectively reduced learning capacities. Neurobiology of Learning and Memory, 75, 214–229.

    PubMed  CAS  Google Scholar 

  • Sprengel, R., Suchanek, B., Amico, C., Brusa, R., Burnashev, N., Rozov, A., et al. (1998). Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell, 92, 279–289.

    PubMed  CAS  Google Scholar 

  • Steckler, T., Weis, C., Sauvage, M., Mederer, A., & Holsboer, F. (1999). Disrupted allocentric but preserved egocentric spatial learning in transgenic mice with impaired glucocorticoid receptor function. Behavioural Brain Research, 100, 77–89.

    PubMed  CAS  Google Scholar 

  • Stork, O., & Welzl, H. (1999). Memory formation and the regulation of gene expression. Cellular and Molecular Life Sciences, 55, 575–592.

    PubMed  CAS  Google Scholar 

  • Stork, O., Welzl, H., Wolfer, D., Schuster, T., Mantei, N., Stork, S., et al. (2000). Recovery of emotional behavior in neural cell adhesion molecule. (NCAM) null mutant mice through transgenic expression of NCAM180. European Journal of Neuroscience, 12, 3291–3306.

    PubMed  CAS  Google Scholar 

  • Sturchler-Pierrat, C., Abramowski, D., Duke, M., Wiederhold, K.-H., Mistl, C., Rothacher, S., et al. (1997). Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proceedings of the National Academy of Sciences of the United States of America, 94, 13287–13292.

    PubMed  CAS  Google Scholar 

  • Sweatt, J. D. (2004). Mitogen-activated protein kinases in synaptic plasticity and memory. Current Opinion in Neurobiology, 14, 311–317.

    PubMed  CAS  Google Scholar 

  • Tang, Y. P., Shimizu, E., Dube, G. R., Rampon, C., Kerchner, G. A., Zhuo, M., et al. (1999). Genetic enhancement of learning and memory in mice. Nature, 401, 63–69.

    PubMed  CAS  Google Scholar 

  • Tang, Y. P., Wang, H., Feng, R., Kyin, M., & Tsien, J. Z. (2001). Differential effects of enrichment on learning and memory function in NR2B transgenic mice. Neuropharmacology, 41, 779–790.

    PubMed  CAS  Google Scholar 

  • Thomas, G. M., & Huganir, R. L. (2004). MAPK cascade signalling and synaptic plasticity. Nature Reviews Neuroscience, 5, 173–83.

    PubMed  CAS  Google Scholar 

  • Thorndike, R. L. (1935). Organization of behavior in the albino rat. Genetic Psychology Monographs, 17, 1–70.

    Google Scholar 

  • Toga, A. W., & Thompson, P. M. (2005). Genetics of brain structure and intelligence. Annual Review of Neuroscience, 28, 1–23.

    PubMed  CAS  Google Scholar 

  • Tong, X. K., & Hamel, E. (1999). Regional cholinergic denervation of cortical microvessels and nitric oxide synthase-containing neurons in Alzheimer’s disease. Neuroscience, 92, 163–175.

    PubMed  CAS  Google Scholar 

  • Tsang, S., Sun, Z., Luke, B., Stewart, C., Lum, N., Gregory, M., et al. (2005). A comprehensive SNP-based genetic analysis of inbred mouse strains. Mammalian Genome, 16, 476–80.

    PubMed  CAS  Google Scholar 

  • Tsien, J. Z., Huerta, P. T., & Tonegawa, S. (1996). The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell, 87, 1327–1338.

    PubMed  CAS  Google Scholar 

  • Uchida, S., Sakai, S., Furuichi, T., Hosoda, H., Toyota, K., Ishii, T., et al. (2006). Tight regulation of transgene expression by tetracycline-dependent activator and repressor in brain. Genes, Brain and Behavior, 5, 96–106.

    CAS  Google Scholar 

  • van Leuven, F. (2000). Single and multiple transgenic mice as models for Alzheimer’s disease. Progress in Neurobiology, 61, 305–312.

    PubMed  Google Scholar 

  • Victoroff, J., Zarow, C., Mack, W. J., Hsu, E., & Chui, H. C. (1996). Physical aggression is associated with preservation of substantia nigra pars compacta in Alzheimer disease. Archives of Neurology, 53, 428–434.

    PubMed  CAS  Google Scholar 

  • Waddell, S., & Quinn, W. G. (2001). Flies, genes, and learning. Annual Review of Neuroscience, 24, 1283–1309.

    PubMed  CAS  Google Scholar 

  • Waltereit, R., & Weller, M. (2003). Signaling from cAMP/PKAto MAPK and synaptic plasticity. Molecular Neurobiology, 27, 99–106.

    PubMed  CAS  Google Scholar 

  • Weeber, E. J., Levenson, J. M., & Sweatt, J. D. (2002). Molecular genetics of human cognition. Molecular Interventions, 2, 376–391.

    PubMed  CAS  Google Scholar 

  • Welzl, H., D’Adamo, P., Wolfer, D. P., & Lipp, H. P. (2006). Mouse models of hereditary mental retardation. In G. S. Fisch & J. Flint (Eds.), Transgenic and knockout models of neuropsychiatric disorders. R. Lydic & H. A. Baghdoyan (Series Eds.), Contemporary clinical neuroscience (pp. 101–125). Totowa, New Jersey USA: Humana Press.

    Google Scholar 

  • Whitehouse, P. J., Price, D. L., Struble, R. G., Clark, A. W., Coyle, J. T., & Delon, M. R. (1982). Alzheimer’s disease and senile dementia: Loss of neurons in the basal forebrain. Science, 215, 1237–1239.

    PubMed  CAS  Google Scholar 

  • Wolfer, D. P., Mohajeri, H. M., Lipp, H. P., & Schachner, M. (1998). Increased flexibility and selectivity in spatial learning of transgenic mice ectopically expressing the neural cell adhesion molecule L1 in astrocytes. European Journal of Neuroscience, 10, 708–717.

    PubMed  CAS  Google Scholar 

  • Yan, Y., Wang, M., Lemon, W. J., & You, M. (2004). Single nucleotide polymorphism (SNP) analysis of mouse quantitative trait loci for identification of candidate genes. Journal of Medical Genetetics, 41, e111.

    Google Scholar 

  • Zamanillo, D., Sprengel, R., Hvalby, Ø., Jensen, V., Burnashev, N., Rozov, A., et al. (1999). Importance of AMPA Receptors for Hippocampal Synaptic Plasticity But Not for Spatial Learning. Science, 284, 1805–1811.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Janus, C., Galsworthy, M.J., Wolfer, D.P., Welzl, H. (2009). Cognition in Rodents. In: Kim, YK. (eds) Handbook of Behavior Genetics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76727-7_11

Download citation

Publish with us

Policies and ethics