Skip to main content

Glaucoma Risk Factors: Family History – The Genetics of Glaucoma

  • Chapter
  • First Online:
The Glaucoma Book

Abstract

Who goes blind with glaucoma? People with a family history of blindness go blind with glaucoma. The association of open angle glaucoma and family history has been known for years; the lifetime risk for first-degree relatives of affected individuals to develop open angle glaucoma is 22% when compared with a 2% risk in controls, but clinicians routinely overlook this fact when interviewing and evaluating patients. Patients are rarely accurate in reporting family history. Three genetic loci for glaucoma were first found in a single glaucoma practice in Portland, Oregon - GLC1C, GLC1F, and GLC1G - because of repeated and persistent inquiries about affected relatives. Asking a patient only once about his or her family history is rarely effective; patients tend to confuse macular degeneration, cataracts, and glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kass MA, Becker B. Genetics of primary open-angle glaucoma. Sight Sav Rev. 1978;48:21–28.

    CAS  PubMed  Google Scholar 

  2. Wolfs RC, Klaver CC, Ramrattan RS, Van Duijn CM, Hofman A, De Jong PT. Genetic risk of primary open-angle glaucoma. Population-based familial aggregation study. Arch Ophthalmol. 1998;116:1640–1645.

    CAS  PubMed  Google Scholar 

  3. Stone MA, Fingert JH, Alward WL, et al. Identification of a gene that causes primary open angle glaucoma. Science. 1997;275:668–670.

    Article  CAS  PubMed  Google Scholar 

  4. Sheffield VC, Stone EM, Alward WL, et al. Genetic linkage of familial open angle glaucoma to chromosome 1q21-q31. Nat Genet. 1993;4:668–670.

    Article  Google Scholar 

  5. Stoilova D, Child A, Trifan OC, Crick RP, Coakes RL, Sarfarazi M. Localization of a second locus (GLC1B) for adult-onset primary open angle glaucoma to the 2cen-q13 region. Genomics. 1996;36:142–150.

    Article  CAS  PubMed  Google Scholar 

  6. Wirtz MK, Samples JR, Kramer PL, et al. Mapping a gene for adult-onset primary open-angle glaucoma to chromosome 3q. Am J Hum Genet. 1997;60:296–304.

    CAS  PubMed  Google Scholar 

  7. Trifan OC, Traboulsi EI, Stoilova D, et al. A third locus (GLC1D) for adult-onset primary open-angle glaucoma maps to the 8q23 region. Am J Ophthalmol. 1998;126(1998):17–28.

    Article  CAS  PubMed  Google Scholar 

  8. Rezaie T, Child A, Hitchings R, et al. Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science. 2002;295:1077–1079.

    Article  CAS  PubMed  Google Scholar 

  9. Sarfarazi M, Stoilov I, Schenkman JB. Genetics and biochemistry of primary congenital glaucoma. Ophthalmol Clin North America. 2003;16:543–544.

    Article  Google Scholar 

  10. Wirtz MK, Samples JR, Rust K, et al. GLC1F, a new primary open-angle glaucoma locus, maps to 7q35-q36. Arch Ophthalmol. 1999;117:237–241.

    CAS  PubMed  Google Scholar 

  11. Monemi S, Spaeth G, DaSilva A, et al. Identification of a novel adult-onset primary open-angle glaucoma (POAG) gene on 5q22.1 the 1p36 region. Hum Mol Genet. 2005;14:725–733.

    Article  CAS  PubMed  Google Scholar 

  12. Kramer PL, Samples JR, Monemi S, Sykes R, Sarfarazi M, Wirtz MK. The role of the WDR36 gene on chromosome 5q22.1 in a large family with primary open-angle glaucoma mapped to this region. Arch Ophthalmol. 2006;124:1328–1331.

    Article  CAS  PubMed  Google Scholar 

  13. Lin Y, Liu T, Li J, et al. A genome-wide scan maps a novel autosomal dominant juvenile-onset open-angle glaucoma locus to 2p15-16. Mol Vis. 2008;14:739–744.

    CAS  PubMed  Google Scholar 

  14. Liu Y, Schmidt S, Qin X, et al. No association between OPA1 polymorphisms and primary open-angle glaucoma in three different populations. Mol Vis. 2007;13:2137–2141.

    PubMed  Google Scholar 

  15. Suriyapperuma SP, Child A, Desai T, et al. A new locus (GLC1H) for adult-onset primary open-angle glaucoma maps to the 2p15-p16 region. Arch Ophthalmol. 2007;125:86–925.

    Article  CAS  PubMed  Google Scholar 

  16. Allingham RR, Wiggs JL, Hauser ER, et al. Early adult-onset POAG linked to 15q11-13 using ordered subset analysis. Invest Ophthalmol Vis Sci. 2005;46:2002–2005.

    Article  PubMed  Google Scholar 

  17. Wiggs JL, Lynch S, Ynagi G, et al. A genomewide scan identifies novel early-onset primary open-angle glaucoma loci on 9q22 and 20p12. Am J Hum Genet. 2004;74(6):1314–1320.

    Article  CAS  PubMed  Google Scholar 

  18. Baird PN, Richardson AJ, Craig JE, Mackey DA, Rochtchina E, Mitchell P. Analysis of optineurin (OPTN) gene mutations in subjects with and without glaucoma: the Blue Mountains Eye Study. Graefes Arch Clin Exp Ophthalmol. 2004;32:518–522.

    Google Scholar 

  19. Pang CP, Fan BJ, Canlas O, et al. A genome-wide scan maps a novel juvenile-onset primary open angle glaucoma locus to chromosome 5q. Mol Vis. 2006;12:85–92.

    CAS  PubMed  Google Scholar 

  20. Wang DY, Fan BJ, Chua JKH, et al. A genome-wide scan maps a novel juvenile-onset primary open-angle glaucoma locus to 15q. Invest Ophthalmol Vis Sci. 2006;47:5315–5321.

    Article  PubMed  Google Scholar 

  21. Sarfarazi M, Akarsu AN, Hossain A, et al. Assignment of a locus (GLC3AGLC3B) for primary congenital glaucoma (Buphthalmos ) to 2p21 and evidence for genetic heterogeneity. Genomics. 1995;30:171–177.

    Article  CAS  PubMed  Google Scholar 

  22. Akarsu AN, Turacli ME, Aktan SG, et al. A second locus (GLC3B) for primary congenital glaucoma (Buphthalmos) maps to the 1p36 region. Hum Mol Genet. 1996;5:1199–1203.

    Article  CAS  PubMed  Google Scholar 

  23. Stoilov IR, Safarazi M. The Third Genetic Locus (GLC3C) for primary congential glaucoma (PCG) maps to chromosome 14q24.3. Invest Ophthalmol Vis Sci. 2002. Available at: http://abstracts.iovs.org/cgi/content/abstract/43/12/3015. Accessed May 15, 2009.

  24. Kulak SC, Kozlowski K, Semina EV, Pearce WG, Walter MA. Mutation in the RIEG1 gene in patients with iridogoniodysgenesis syndrome. Hum Mol Genet. 1998;7:1113–1117.

    Article  CAS  PubMed  Google Scholar 

  25. Raymond V, Dubois S, Rodrigue MA, et al. Chromosomal duplication at the IRID1 locus on 6p25 associated with wide variability of the glaucoma phenotypes. Invest Ophthalmol Vis Sci. 2002. Available at: http://abstracts.iovs.org/cgi/content/abstract/43/12/3016. Accessed May 15, 2009.

  26. Hanson IM, Fletcher JM, Jordan T, et al. Mutations at the PAX 6 locus are found in heterogenous anterior segment malformations including Peters’ anomal. Nat Genet. 1994;6:163–173.

    Article  Google Scholar 

  27. Thorleifsson G, Magnusson KP, Sulem P, et al. Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science. 2007;317:1397–1400.

    Article  CAS  PubMed  Google Scholar 

  28. Beckman L. ABO bloodtypes reported racial & ethnic distribution sorted by population groups. ABO Blook. July 13, 2008. Available at: http://www.aboblood.com/. Accessed May 20, 2009.

  29. Carlson B. SNPs - a shortcut to personalized medicine; medical applications are where the market’s growth is expected. Genetic Engineering & Biotechnology News. June 15, 2008. Available at: http://www.genengnews.com/articles/chitem.aspx?aid=2507. Accessed May 10, 2009.

  30. Armaly MF. Inheritance of dexamethasone hypertension and glaucoma. Arch Ophthalmol. 1967;77:747–751.

    CAS  PubMed  Google Scholar 

  31. Nguyen TD, Chen P, Huang WD, Chen H, Johnson D, Polansky JR. Gene structure and proteins of TIGR, an olfactomedin-related glycoprotein cloned from glycocortiocid-induced trabecular meshwork cells. J Biol Chem. 1998;273:6341–6350.

    Article  CAS  PubMed  Google Scholar 

  32. Quigley HA. Number of people with glaucoma worldwide. Br J Ophthalmol. 1996;80:389–393.

    Article  CAS  PubMed  Google Scholar 

  33. Tunny TJ, Xu L, Richardson KA, Stowasser M, Gartside M, Gordon RD. Insertion/deletion polymorphism of the angiotensin-converting enzyme gene and loss of the insertion allele in aldosterone-producing adenoma. J Hum Hypertens. 1996;10(12):827–830.

    CAS  PubMed  Google Scholar 

  34. Lin HJ, Tsai FJ, Hung P, et al. Association of E-cadherin gene 3′-UTR C/T polymorphism with primary open angle glaucoma. Ophthalmic Res. 2006;38(1):44–48.

    Article  CAS  PubMed  Google Scholar 

  35. Bhattacharjee A, Banerjee D, Mookherjee S, et al. Variation Consortium. Leu432Val polymorphism in CYP1B1 as a susceptible factor towards predisposition to primary open-angle glaucoma. Mol Vis. 2008;14:841–850.

    CAS  PubMed  Google Scholar 

  36. Melki R, Colomb E, Lefort N, Brézin AP, Garchon HJ. CYP1B1 mutations in French patients with early-onset primary open-angle glaucoma. J Med Genet. 2004;41(9):647–651.

    Article  CAS  PubMed  Google Scholar 

  37. Tosaka K, Mashima Y, Funayama T, Ohtake Y, Kimura I, Glaucoma Gene Research Group. Association between open-angle glaucoma and gene polymorphism for heat-shock protein 70-1. Jpn J Ophthalmol. 2007;51(6):417–423.

    Article  CAS  PubMed  Google Scholar 

  38. Wang CY, Shen YC, Lo FY, et al. Polymorphism in the IL-1alpha (-889) locus associated with elevated risk of primary open angle glaucoma. Mol Vis. 2006;12:1380–1385.

    CAS  PubMed  Google Scholar 

  39. Lin HJ, Tsai CH, Tsai FJ, Chen WC, Chen HY, Fan SS. Transporter associated with antigen processing gene 1 codon 333 and codon 637 polymorphisms are associated with primary open-angle glaucoma. Mol Diagn. 2004;8(4):245–252.

    Article  PubMed  Google Scholar 

  40. Jünemann AG, von Ahsen N, Reulbach U, et al. C677T variant in the methylentetrahydrofolate reductase gene is a genetic risk factor for primary open-angle glaucoma. Am J Ophthalmol. 2005;139(4):721–723.

    Article  PubMed  Google Scholar 

  41. Tunny TJ, Richardson KA, Clark CV. Association study of the 5′ flanking regions of endothelial-nitric oxide synthase and endothelin-1 genes in familial primary open-angle glaucoma. Clin Exp Pharmacol Physiol. 1998;25(1):26–29.

    Article  CAS  PubMed  Google Scholar 

  42. Funayama T, Mashima Y, Ohtake Y, et al, Glaucoma Gene Research Group. SNPs and interaction analyses of noelin 2, myocilin, and optineurin genes in Japanese patients with open-angle glaucoma. Invest Ophthalmol Vis Sci. 2006;47(12):5368–5375.

    Article  PubMed  Google Scholar 

  43. Inagaki Y, Mashima Y, Funayama T, et al. Paraoxonase 1 gene polymorphisms influence clinical features of open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol. 2006;244(8):984–990.

    Article  CAS  PubMed  Google Scholar 

  44. Lin HJ, Tsai FJ, Chen WC, Shi YR, Hsu Y, Tsai SW. Association of tumour necrosis factor alpha-308 gene polymorphism with primary open-angle glaucoma in Chinese. Eye. 2003;17(1):31–34.

    Article  CAS  PubMed  Google Scholar 

  45. Stone EM, Fingert JH, Alward WL, et al. Identification of a gene that causes primary open angle glaucoma. Science. 1997;275(5300):668–670.

    Article  CAS  PubMed  Google Scholar 

  46. Ortego J, Escribano J, Coca-Pardos M. Cloning and characterization of subtracted cDNAs from a human ciliary body library encoding TIGR, a protein involved in juvenile open angle glaucoma with homology to myosin and olfactomedin. FEBS Lett. 1997;413(2):349–35.

    Article  CAS  PubMed  Google Scholar 

  47. Fingert JH, Stone EM, Sheffield VC, Alward WL. Myocilin glaucoma. Surv Ophthalmol. 2002;147:547–561.

    Article  Google Scholar 

  48. Alward WL, Fingert JH, Coote MA, et al. Clinical features associated with mutations in the chromosome 1 open-angle glaucoma gene (GLC1A). N Engl J Med. 1998;338(15):1022–1027.

    Article  CAS  PubMed  Google Scholar 

  49. Hewitt AW, Bennett SL, Dimasi DP, Craig JE, Mackey DA. A myocilin Gln368STOP homozygote does not exhibit a more severe glaucoma phenotype than heterozygous cases. Am J Ophthalmol. 2006;141:402–403.

    Article  CAS  PubMed  Google Scholar 

  50. Fautsch MP, Bahler CK, Jewison DJ, Johnson DH. Recombinant TIGR/MYOC increases outflow resistance in the human anterior segment. Invest Ophthalmol Vis Sci. 2000;41:4163–4168.

    CAS  PubMed  Google Scholar 

  51. Fautsch MP, Bahler CK, Vrabel AM, et al. Perfusion of his-tagged eukaryotic myocilin increases outflow resistance in human anterior segments in the presence of aqueous humor. Invest Ophthalmol Vis Sci. 2006;47:213–221.

    Article  PubMed  Google Scholar 

  52. Caballero LL, Rowlette T, Borras T. Altered secretion of a TIGR/MYOC mutant lacking the olfactomedin domain. Biochim Biophys Acta. 2000;1502:447–460.

    CAS  PubMed  Google Scholar 

  53. Hardy KM, Hoffman EA, Gonzalez P, McKay BS, Stamer WD. Extracellular trafficking of myocilin in human trabecular meshwork cells. J Biol Chem. 2005;280:28917–28926.

    Article  CAS  PubMed  Google Scholar 

  54. Faucher M, Anctil JL, Rodrigue MA, et al. Founder TIGR/myocilin mutations for glaucoma in the Quebec population. Hum Mol Genet. 2002;11: 2077–2090.

    Article  CAS  PubMed  Google Scholar 

  55. Vincent AL, Billingsley G, Buys Y, et al. Digenic inheritance of early-onset glaucoma: CYP1B1, a potential modifier gene. Am J Hum Genet. 2002;70(2):448–460.

    Article  CAS  PubMed  Google Scholar 

  56. Polansky JR, Juster RP, Spaeth GL. Association of the myocilin mt.1 promoter variant with the worsening of glaucomatous disease over time. Clin Genet. 2003;64(1):18–27.

    Article  CAS  PubMed  Google Scholar 

  57. Hauser MA, Sena DF, Flor J, et al. Distribution of optineurin sequence variations in an ethnically diverse population of low-tension glaucoma patients from the United States. J Glaucoma. 2006;15:358–363.

    Article  PubMed  Google Scholar 

  58. Ayala-Lugo RM, Pawar H, Reed DM, et al. Variation in optineurin (OPTN) allele frequencies between and within populations. Mol Vis. 2007;13:151–163.

    CAS  PubMed  Google Scholar 

  59. Aung T, Rezaie T, Okada K, et al. Clinical features and course of patients with glaucoma with the E50K mutation in the optineurin gene. Invest Ophthalmol Vis Sci. 2005;46:2816–2822.

    Article  PubMed  Google Scholar 

  60. Funayama K, Ishikawa K, Ohtake Y, et al. Variants in optineurin gene and their association with tumor necrosis factor-alpha polymorphisms in Japanese patients with glaucoma. Invest Ophtalmol Vis Sci. 2004;45:4359–4367.

    Article  Google Scholar 

  61. Chakrabarti S, Kaur K, Komatireddy S, et al. Gln48H is the prevalent myocilin mutation in primary open angle and primary congenital glaucoma phenotypes in India. Mol Vis. 2005;11:111–113.

    CAS  PubMed  Google Scholar 

  62. Chakrabarti S, Kaur K, Kaur I, et al. Globally, CYP1B1 mutations in primary congenital glaucoma are strongly structured by geographic and haplotype backgrounds. Invest Ophthalmol Vis Sci. 2006;47:43–47.

    Article  PubMed  Google Scholar 

  63. Semina EV, Reiter R, Leysens NJ, et al. Cloning and characterization of a novol biocoid related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nat Genet. 1996;14:392–399.

    Article  CAS  PubMed  Google Scholar 

  64. Mears AJ, Jordan T, Mirzzayans F, et al. Mutations of the forkhead/winged-helix gene FKHL7 in patients with Axenfeld Rieger anomaly. Am J Hum Genet. 1998;63:1316–1328.

    Article  CAS  PubMed  Google Scholar 

  65. Wang IJ, Chiang TH, Shih YF, et al. The association of single nucleotide polymorphisms in the MMP-9 gene with susceptibility to acute primary angle closure glaucoma in Taiwanese patients. Mol Vis. 2006;12:1223–1232.

    CAS  PubMed  Google Scholar 

  66. Aung T, Yong VH, Lim MC, et al. Lack of association between the rs2664538 polymorphism in the MMP-9 gene and primary angle closure glaucoma in Singaporean subjects. J Glaucoma. 2008;17:257–258.

    Article  PubMed  Google Scholar 

  67. Othman MI, Sullivan SA, Skuta GL, et al. Autosomal dominant nanophthalmos (NNO1) with high hyperopia and angle-closure glaucoma maps to chromosome 11. Am J Hum Genet. 1998;63(5):1411–1418.

    Article  CAS  PubMed  Google Scholar 

  68. Filla MS, Liu X, Nguyen TD, et al. In vitro localization of TIGR/MYOC in trabecular meshwork extracellular matrix and binding to fibronectin. IOVS. 2002;43:151–161.

    Google Scholar 

  69. th Congress. H.R. 493 Genetic Information Nondiscrimi­nation Act of 2008. Available at: http://www.govtrack.us/congress/bill.xpd?bill=h110-493&tab=summary. Accessed May 15, 2009.

  70. Knepper PA, Nolan MJ, Wirtz MK, et al. Regulation of ABC transporters and glaucoma: new ideas. ARVO 2006; poster.

    Google Scholar 

  71. Wiggs JL, Allingham RR, Hossain A, et al. Genome-wide scan for adult onset primary open angle glaucoma. Hum Mol Genet. 2000;9(7):1109–1117.

    Article  CAS  PubMed  Google Scholar 

  72. Lin HJ, Tsai SC, Tsai FJ, Chen WC, Tsai JJ, Hsu CD. Association of interleukin 1beta and receptor antagonist gene polymorphisms with primary open-angle glaucoma. Ophthalmologica. 2003;217(5):358–64.

    Article  CAS  PubMed  Google Scholar 

  73. Azzedine H, Bolino A, Taïeb T, et al. Mutations in MTMR13, a new pseudophosphatase homologue of MTMR2 and Sbf1, in two families with an autosomal recessive demyelinating form of Charcot-Marie-Tooth disease associated with early-onset glaucoma. Am J Hum Genet. 2003;72(5):1141–1153.

    Article  CAS  PubMed  Google Scholar 

  74. Knepper PA, Nolan MJ, Wirtz MK, Samples JR, Allingham RR, Wiggs JL, and Yue BYJT. Regulation of ABC Transporters and Glaucoma: New Ideas invest. Ophthalmol Vis. Sci. 2006;47: E-Abstract 174.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Samples, J.R. (2010). Glaucoma Risk Factors: Family History – The Genetics of Glaucoma. In: Schacknow, P., Samples, J. (eds) The Glaucoma Book. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76700-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-76700-0_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-76699-7

  • Online ISBN: 978-0-387-76700-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics