Skip to main content

Clinical Cupping: Laminar and Prelaminar Components

  • Chapter
  • First Online:
The Glaucoma Book

Abstract

While glaucomatous damage to the visual system likely includes important pathophysiologies within the retinal ganglion cell (RGC) body, photoreceptors, lateral geniculate body, and visual cortex, strong evidence suggests that damage to the retinal ganglion cell axons within the lamina cribrosa of the optic nerve head (ONH) is the central pathophysiology underlying glaucomatous vision loss. Recent studies in the monkey and rat support the importance of the ONH, by describing profound alterations within the prelaminar, laminar, and peripapillary scleral tissues of the ONH at the earliest detectable stage of experimental glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asai T, Katsumori N, Mizokami K. Retinal ganglion cell damage in human glaucoma. 2. Studies on damage pattern. Nippon Ganka Gakkai Zasshi. 1987;91:1204–1213.

    CAS  PubMed  Google Scholar 

  2. Garcia-Valenzuela E, Shareef S, Walsh J, Sharma SC. Programmed cell death of retinal ganglion cells during experimental glaucoma. Exp Eye Res. 1995;61:33–44.

    Article  CAS  PubMed  Google Scholar 

  3. Quigley HA, Nickells RW, Kerrigan LA, et al. Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci. 1995;36:774–786.

    CAS  PubMed  Google Scholar 

  4. Weber AJ, Kaufman PL, Hubbard WC. Morphology of single ganglion cells in the glaucomatous primate retina. Invest Ophthalmol Vis Sci. 1998;39:2304–2320.

    CAS  PubMed  Google Scholar 

  5. Quigley HA, McKinnon SJ, Zack DJ, et al. Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats. Invest Ophthalmol Vis Sci. 2000;41:3460–3466.

    CAS  PubMed  Google Scholar 

  6. Quigley HA. Ganglion cell death in glaucoma: pathology recapitulates ontogeny. Aust NZ J Ophthalmol. 1995;23:85–91.

    Article  CAS  Google Scholar 

  7. Wygnanski T, Desatnik H, Quigley HA, Glovinsky Y. Comparison of ganglion cell loss and cone loss in experimental glaucoma. Am J Ophthalmol. 1995;120:184–189.

    CAS  PubMed  Google Scholar 

  8. Panda S, Jonas JB. Decreased photoreceptor count in human eyes with secondary angle-closure glaucoma. Invest Ophthalmol Vis Sci. 1992;33:2532–2536.

    CAS  PubMed  Google Scholar 

  9. Kendell KR, Quigley HA, Kerrigan LA, Pease ME, Quigley EN. Primary open-angle glaucoma is not associated with photoreceptor loss. Invest Ophthalmol Vis Sci. 1995;36:200–205.

    CAS  PubMed  Google Scholar 

  10. Nork TM, Ver Hoeve JN, Poulsen GL, et al. Swelling and loss of photoreceptors in chronic human and experimental glaucomas. Arch Ophthalmol. 2000;118:235–245.

    CAS  PubMed  Google Scholar 

  11. Janssen P, Naskar R, Moore S, Thanos S, Thiel HJ. Evidence for glaucoma-induced horizontal cell alterations in the human retina. Ger J Ophthalmol. 1996;5:378–385.

    CAS  PubMed  Google Scholar 

  12. Yucel YH, Zhang Q, Gupta N, Kaufman PL, Weinreb RN. Loss of neurons in magnocellular and parvocellular layers of the lateral geniculate nucleus in glaucoma. Arch Ophthalmol. 2000;118:378–384.

    CAS  PubMed  Google Scholar 

  13. Yucel YH, Zhang Q, Weinreb RN, Kaufman PL, Gupta N. Atrophy of relay neurons in magno- and parvocellular layers in the lateral geniculate nucleus in experimental glaucoma. Invest Ophthalmol Vis Sci. 2001;42:3216–3222.

    CAS  PubMed  Google Scholar 

  14. Yucel YH, Zhang Q, Weinreb RN, Kaufman PL, Gupta N. Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog Retin Eye Res. 2003;22:465–481.

    Article  PubMed  Google Scholar 

  15. Gaasterland D, Tanishima T, Kuwabara T. Axoplasmic flow during chronic experimental glaucoma. 1. Light and electron microscopic studies of the monkey optic nervehead during development of glaucomatous cupping. Invest Ophthalmol Vis Sci. 1978;17:838–846.

    CAS  PubMed  Google Scholar 

  16. Minckler DS, Bunt AH, Johanson GW. Orthograde and retrograde axoplasmic transport during acute ocular hypertension in the monkey. Invest Ophthalmol Vis Sci. 1977;16:426–441.

    CAS  PubMed  Google Scholar 

  17. Quigley HA, Addicks EM, Green WR, Maumenee AE. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol. 1981;99:635–649.

    CAS  PubMed  Google Scholar 

  18. Quigley HA, Green WR. The histology of human glaucoma cupping and optic nerve damage: clinicopathologic correlation in 21 eyes. Ophthalmology. 1979;86:1803–1830.

    CAS  PubMed  Google Scholar 

  19. Bellezza AJ, Rintalan CJ, Thompson HW, et al. Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma. Invest Ophthalmol Vis Sci. 2003;44:623–637.

    Article  PubMed  Google Scholar 

  20. Burgoyne CF, Downs JC, Bellezza AJ, Hart RT. Three-dimensional reconstruction of normal and early glaucoma monkey optic nerve head connective tissues. Invest Ophthalmol Vis Sci. 2004;45:4388–4399.

    Article  PubMed  Google Scholar 

  21. Downs JC, Suh JK, Thomas KA, et al. Viscoelastic material properties of the peripapillary sclera in normal and early-glaucoma monkey eyes. Invest Ophthalmol Vis Sci. 2005;46:540–546.

    Article  PubMed  Google Scholar 

  22. Downs JC, Yang H, Girkin C, et al. Three dimensional histomorphometry of the normal and early glaucomatous monkey optic nerve head: neural canal and subarachnoid space architecture. Invest Ophthalmol Vis Sci. 2007;48:3195–3208.

    Article  PubMed  Google Scholar 

  23. Yang H, Downs JC, Girkin C, et al. 3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: lamina cribrosa and peripapillary scleral position and thickness. Invest Ophthalmol Vis Sci. 2007;48(10):4597–4607.

    Article  PubMed  Google Scholar 

  24. Yang H, Downs JC, Bellezza AJ, Thompson H, Burgoyne CF. 3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: prelaminar neural tissues and cupping. Invest Ophthalmol Vis Sci. 2007;48:5068–5084.

    Article  PubMed  Google Scholar 

  25. Yang H, Downs JC, Burgoyne CF. Physiologic inter-eye differences in monkey optic nerve head architecture and their relation to changes in early experimental glaucoma. Invest Ophthalmol Vis Sci. 2009;50:224–234.

    Article  PubMed  Google Scholar 

  26. Roberts MD, Grau V, Grimm J, et al. Remodeling of the connective tissue microarchitecture of the lamina cribrosa occurs early in experimental glaucoma in the monkey eye. Invest Ophthalmol Vis Sci. 2009;50:681–690.

    Article  PubMed  Google Scholar 

  27. Johnson EC, Morrison JC, Farrell S, et al. The effect of chronically elevated intraocular pressure on the rat optic nerve head extracellular matrix. Exp Eye Res. 1996;62:663–674.

    Article  CAS  PubMed  Google Scholar 

  28. Johnson EC, Deppmeier LM, Wentzien SK, Hsu I, Morrison JC. Chronology of optic nerve head and retinal responses to elevated intraocular pressure. Invest Ophthalmol Vis Sci. 2000;41:431–442.

    CAS  PubMed  Google Scholar 

  29. Cepurna WO, Kayton RJ, Johnson EC, Morrison JC. Age related optic nerve axonal loss in adult Brown Norway rats. Exp Eye Res. 2005;80:877–884.

    Article  CAS  PubMed  Google Scholar 

  30. Anderson DR. Ultrastructure of human and monkey lamina cribrosa and optic nerve head. Arch Ophthalmol. 1969;82:800–814.

    CAS  PubMed  Google Scholar 

  31. Morrison JC, Jerdan JA, L’Hernault NL, Quigley HA. The extracellular matrix composition of the monkey optic nerve head. Invest Ophthalmol Vis Sci. 1988;29:1141–1150.

    CAS  PubMed  Google Scholar 

  32. Quigley HA, Dorman-Pease ME, Brown AE. Quantitative study of collagen and elastin of the optic nerve head and sclera in human and experimental monkey glaucoma. Curr Eye Res. 1991;10:877–888.

    Article  CAS  PubMed  Google Scholar 

  33. Hernandez MR. Ultrastructural immunocytochemical analysis of elastin in the human lamina cribrosa. Changes in elastic fibers in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 1992;33:2891–2903.

    CAS  PubMed  Google Scholar 

  34. Investigators A: The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. Am J Ophthalmol. 2000;130:429–440.

    Article  Google Scholar 

  35. Kass MA, Heuer DK, Higginbotham EJM, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120:701–713.

    PubMed  Google Scholar 

  36. Leske MC, Heijl A, Hussein M, et al. Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol. 2003;121:48–56.

    PubMed  Google Scholar 

  37. Anderson DR, Drance SM, Schulzer M. Factors that predict the benefit of lowering intraocular pressure in normal tension glaucoma. Am J Ophthalmol. 2003;136:820–829.

    Article  PubMed  Google Scholar 

  38. Nicolela MT, Drance SM. Various glaucomatous optic nerve appearances: clinical correlations. Ophthalmology. 1996;103:640–649.

    CAS  PubMed  Google Scholar 

  39. Pederson JE, Anderson DR. The mode of progressive disc cupping in ocular hypertension and glaucoma. Arch Ophthalmol. 1980;98:490–495.

    CAS  PubMed  Google Scholar 

  40. Pederson JE, Gaasterland DE. Laser-induced primate glaucoma. I. Progression of cupping. Arch Ophthalmol. 1984;102:1689–1692.

    CAS  PubMed  Google Scholar 

  41. Johns KJ, Leonard-Martin T, Feman SS. The effect of panretinal photocoagulation on optic nerve cupping. Ophthalmology. 1989;96:211–216.

    CAS  PubMed  Google Scholar 

  42. Klein BE, Klein R, Lee KE, Hoyer CJ. Does the intraocular pressure effect on optic disc cupping differ by age? Trans Am Ophthalmol Soc. 2006;104:143–148.

    PubMed  Google Scholar 

  43. Sponsel WE, Shoemaker J, Trigo Y, et al. Frequency of sustained glaucomatous-type visual field loss and associated optic nerve cupping in Beaver Dam, Wisconsin. Clin Exp Ophthalmol. 2001;29:352–358.

    Article  CAS  Google Scholar 

  44. Greenfield DS, Siatkowski RM, Glaser JS, Schatz NJ, Parrish RK II. The cupped disc. Who needs neuroimaging? Ophthalmology. 1998;105:1866–1874.

    Article  CAS  PubMed  Google Scholar 

  45. Bianchi-Marzoli S, Rizzo JF III, Brancato R, Lessell S. Quantitative analysis of optic disc cupping in compressive optic neuropathy. Ophthalmology. 1995;102:436–440.

    CAS  PubMed  Google Scholar 

  46. Schwartz JT, Reuling FH, Garrison RJ. Acquired cupping of the optic nerve head in normotensive eyes. Br J Ophthalmol. 1975;59:216–222.

    Article  CAS  PubMed  Google Scholar 

  47. Kalvin NH, Hamasaki DI, Gass JD. Experimental glaucoma in monkeys. I. Relationship between intraocular pressure and cupping of the optic disc and cavernous atrophy of the optic nerve. Arch Ophthalmol. 1966;76:82–93.

    CAS  PubMed  Google Scholar 

  48. Vrabec F. Glaucomatous cupping of the human optic disk: a neuro-histologic study. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1976;198:223–234.

    Article  CAS  PubMed  Google Scholar 

  49. Anderson DR, Cynader MS. Glaucomatous optic nerve cupping as an optic neuropathy. Clin Neurosci. 1997;4:274–278.

    CAS  PubMed  Google Scholar 

  50. Quigley H, Anderson DR. Cupping of the optic disc in ischemic optic neuropathy. Trans Am Acad Ophthalmol Otolaryngol. 1977;83:755–762.

    CAS  Google Scholar 

  51. Trobe JD, Glaser JS, Cassady J, Herschler J, Anderson DR. Nonglaucomatous excavation of the optic disc. Arch Ophthalmol. 1980;98:1046–1050.

    CAS  PubMed  Google Scholar 

  52. Hayreh SS, Jonas JB. Optic disc morphology after arteritic anterior ischemic optic neuropathy. Ophthalmology. 2001;108:1586–1594.

    Article  CAS  PubMed  Google Scholar 

  53. Jonas JB, Grundler A. Optic disc morphology in “age-related atrophic glaucoma”. Graefes Arch Clin Exp Ophthalmol. 1996;234:744–749.

    Article  CAS  PubMed  Google Scholar 

  54. Hall ER, Klein BE, Knudtson MD, Meuer SM, Klein R. Age-related macular degeneration and optic disk cupping: the Beaver Dam Eye Study. Am J Ophthalmol. 2006;141:494–497.

    Article  PubMed  Google Scholar 

  55. Piette SD, Sergott RC. Pathological optic-disc cupping. Curr Opin Ophthalmol. 2006;17:1–6.

    Article  PubMed  Google Scholar 

  56. Alward WL. Macular degeneration and glaucoma-like optic nerve head cupping. Am J Ophthalmol. 2004;138:135–136.

    Article  PubMed  Google Scholar 

  57. Danesh-Meyer HV, Savino PJ, Sergott RC. The prevalence of cupping in end-stage arteritic and nonarteritic anterior ischemic optic neuropathy. Ophthalmology. 2001;108:593–598.

    Article  CAS  PubMed  Google Scholar 

  58. Ambati BK, Rizzo JF III. Nonglaucomatous cupping of the optic disc. Int Ophthalmol Clin. 2001;41:139–149.

    Article  CAS  PubMed  Google Scholar 

  59. Greenfield DS. Glaucomatous versus nonglaucomatous optic disc cupping: clinical differentiation. Semin Ophthalmol. 1999;14:95–108.

    Article  CAS  PubMed  Google Scholar 

  60. Sharma M, Volpe NJ, Dreyer EB. Methanol-induced optic nerve cupping. Arch Ophthalmol. 1999;117:286.

    CAS  PubMed  Google Scholar 

  61. Manor RS. Documented optic disc cupping in compressive optic neuropathy. Ophthalmology. 1995;102:1577–1578.

    CAS  PubMed  Google Scholar 

  62. Orgul S, Gass A, Flammer J. Optic disc cupping in arteritic anterior ischemic optic neuropathy. Ophthalmologica. 1994;208:336–338.

    Article  CAS  PubMed  Google Scholar 

  63. Sonty S, Schwartz B. Development of cupping and pallor in posterior ischemic optic neuropathy. Int Ophthalmol. 1983;6:213–220.

    Article  CAS  PubMed  Google Scholar 

  64. Votruba M, Thiselton D, Bhattacharya SS. Optic disc morphology of patients with OPA1 autosomal dominant optic atrophy. Br J Ophthalmol. 2003;87:48–53.

    Article  CAS  PubMed  Google Scholar 

  65. Fechtner RD, Weinreb RN. Mechanisms of optic nerve damage in primary open angle glaucoma. Surv Ophthalmol. 1994;39:23–42.

    Article  CAS  PubMed  Google Scholar 

  66. Burgoyne CF, Morrison JC. The anatomy and pathophysiology of the optic nerve head in glaucoma. J Glaucoma. 2001;10:S16-S18.

    Article  CAS  PubMed  Google Scholar 

  67. Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res. 2005;24:39–73.

    Article  PubMed  Google Scholar 

  68. Downs JC, Burgoyne CF. Mechanical strain and restructuring of the optic nerve head. In: Shaarawy T, Sherwood MB, Hitchings RA, et al., eds. Glaucoma. 1st ed. London: W. B. Saunders; 2009.

    Google Scholar 

  69. Burgoyne CF, Downs JC. Premise and prediction - how optic nerve head biomechanics underlies the susceptibility and clinical behavior of the aged optic nerve head. J Glaucoma. 2008;17:318–328.

    Article  PubMed  Google Scholar 

  70. Sigal IA, Roberts MD, Girard M, Burgoyne CF, Downs JC. Biomechanical changes of the optic disc. In: Levin LA, Albert DM, ed. Ocular Disease: Mechanisms and Management. New York: Elsevier; 2009.

    Google Scholar 

  71. Downs JC, Roberts MD, Burgoyne CF. Mechanical environment of the optic nerve head in glaucoma. Optom Vis Sci. 2008;85:425–435.

    Article  PubMed  Google Scholar 

  72. Quigley HA, Addicks EM. Chronic experimental glaucoma in primates. II. Effect of extended intraocular pressure elevation on optic nerve head and axonal transport. Invest Ophthalmol Vis Sci. 1980;19:137–152.

    CAS  PubMed  Google Scholar 

  73. Hernandez MR. The optic nerve head in glaucoma: role of astrocytes in tissue remodeling. Prog Retin Eye Res. 2000;19:297–321.

    Article  CAS  PubMed  Google Scholar 

  74. Agapova OA, Kaufman PL, Lucarelli MJ, Gabelt BT, Hernandez MR. Differential expression of matrix metalloproteinases in monkey eyes with experimental glaucoma or optic nerve transection. Brain Res. 2003;967:132–143.

    Article  CAS  PubMed  Google Scholar 

  75. Johnson EC, Jia L, Cepurna WO, Doser TA, Morrison JC. Global changes in optic nerve head gene expression after exposure to elevated intraocular pressure in a rat glaucoma model. Invest Ophthalmol Vis Sci. 2007;48:3161–3177.

    Article  PubMed  Google Scholar 

  76. Jonas JB, Dichtl A. Optic disc morphology in myopic primary open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol. 1997;235:627–633.

    Article  CAS  PubMed  Google Scholar 

  77. Fernandez MC, Jonas JB, Naumann GO. Para-papillary chorioretinal atrophy in eyes with shallow glaucomatous optic disk cupping. Fortschr Ophthalmol. 1990;87:457–460.

    CAS  PubMed  Google Scholar 

  78. Hayreh SS. Pathogenesis of cupping of the optic disc. Br J Ophthalmol. 1974;58:863–876.

    Article  CAS  PubMed  Google Scholar 

  79. Hayreh SS, Pe’er J, Zimmerman MB. Morphologic changes in chronic high-pressure experimental glaucoma in rhesus monkeys. J Glaucoma. 1999;8:56–71.

    Article  CAS  PubMed  Google Scholar 

  80. Emery JM, Landis D, Paton D, Boniuk M, Craig JM. The lamina cribrosa in normal and glaucomatous human eyes. Trans Am Acad Ophthalmol Otolaryngol. 1974;78:OP290-OP297.

    Google Scholar 

  81. Quigley HA, Hohman RM, Addicks EM, Massof RW, Green WR. Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma. Am J Ophthalmol. 1983;95:673–691.

    CAS  PubMed  Google Scholar 

  82. Jonas JB, Grundler A. Optic disc morphology in juvenile primary open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol. 1996;234:750–754.

    Article  CAS  PubMed  Google Scholar 

  83. Albon J, Purslow PP, Karwatowski WS, Easty DL. Age related compliance of the lamina cribrosa in human eyes. Br J Ophthalmol. 2000;84:318–323.

    Article  CAS  PubMed  Google Scholar 

  84. Morrison JC, Jerdan JA, Dorman ME, Quigley HA. Structural proteins of the neonatal and adult lamina cribrosa. Arch Ophthalmol. 1989;107:1220–1224.

    CAS  PubMed  Google Scholar 

  85. Pena JD, Roy S, Hernandez MR. Tropoelastin gene expression in optic nerve heads of normal and glaucomatous subjects. Matrix Biol. 1996;15:323–330.

    Article  CAS  PubMed  Google Scholar 

  86. Quigley HA. Childhood glaucoma: results with trabeculotomy and study of reversible cupping. Ophthalmology. 1982;89:219–226.

    CAS  PubMed  Google Scholar 

  87. Hernandez MR, Luo XX, Andrzejewska W, Neufeld AH. Age-related changes in the extracellular matrix of the human optic nerve head. Am J Ophthalmol. 1989;107:476–484.

    CAS  PubMed  Google Scholar 

  88. Jeffery G, Evans A, Albon J, et al. The human optic nerve: fascicular organisation and connective tissue types along the extra-fascicular matrix. Anat Embryol (Berl). 1995;191:491–502.

    CAS  Google Scholar 

  89. Albon J, Karwatowski WS, Easty DL, Sims TJ, Duance VC. Age related changes in the non-collagenous components of the extracellular matrix of the human lamina cribrosa. Br J Ophthalmol. 2000;84:311–317.

    Article  CAS  PubMed  Google Scholar 

  90. Bailey AJ, Paul RG, Knott L. Mechanisms of maturation and ageing of collagen. Mech Ageing Dev. 1998;106:1–56.

    Article  CAS  PubMed  Google Scholar 

  91. Brown CT, Vural M, Johnson M, Trinkaus-Randall V. Age-related changes of scleral hydration and sulfated glycosaminoglycans. Mech Ageing Dev. 1994;77:97–107.

    Article  CAS  PubMed  Google Scholar 

  92. Albon J, Karwatowski WS, Avery N, Easty DL, Duance VC. Changes in the collagenous matrix of the aging human lamina cribrosa. Br J Ophthalmol. 1995;79:368–375.

    Article  CAS  PubMed  Google Scholar 

  93. Friedenwald J. Contribution to the theory and practice of tonometry. Am J Ophthalmol. 1937;20:985–1024.

    Google Scholar 

  94. Kotecha A, Izadi S, Jeffrey G. Age related changes in the thickness of the human lamina cribrosa. Br J Ophthalmol. 2006;90:1531–1534.

    Article  CAS  PubMed  Google Scholar 

  95. Albon J, Farrant S, Akhtar S, et al. Connective tissue structure of the tree shrew optic nerve and associated ageing changes. Invest Ophthalmol Vis Sci. 2007;48:2134–2144.

    Article  PubMed  Google Scholar 

  96. Rochtchina E, Mitchell P, Wang JJ. Relationship between age and intraocular pressure: the Blue Mountains Eye Study. Clin Exp Ophthalmol. 2002;30:173–175.

    Article  Google Scholar 

  97. Nomura H, Ando F, Niino N, Shimokata H, Miyake Y. The relationship between age and intraocular pressure in a Japanese population: the influence of central corneal thickness. Curr Eye Res. 2002;24:81–85.

    Article  PubMed  Google Scholar 

  98. Nomura H, Shimokata H, Ando F, Miyake Y, Kuzuya F. Age-related changes in intraocular pressure in a large Japanese population: a cross-sectional and longitudinal study. Ophthalmology. 1999;106:2016–2022.

    Article  CAS  PubMed  Google Scholar 

  99. Klein BE, Klein R, Linton KL. Intraocular pressure in an American community. The Beaver Dam Eye Study. Invest Ophthalmol Vis Sci. 1992;33:2224–2228.

    CAS  PubMed  Google Scholar 

  100. Weih LM, Mukesh BN, McCarty CA, Taylor HR. Association of demographic, familial, medical, and ocular factors with intraocular pressure. Arch Ophthalmol. 2001;119:875–880.

    CAS  PubMed  Google Scholar 

  101. Leske MC, Connell AM, Wu SY, Hyman L, Schachat AP. Distribution of intraocular pressure. The Barbados Eye Study. Arch Ophthalmol. 1997;115:1051–1057.

    CAS  PubMed  Google Scholar 

  102. Wu SY, Leske MC. Associations with intraocular pressure in the Barbados Eye Study. Arch Ophthalmol. 1997;115:1572–1576.

    CAS  PubMed  Google Scholar 

  103. Suzuki Y, Iwase A, Araie M, et al. Risk factors for open-angle glaucoma in a Japanese population: the Tajimi Study. Ophthalmology. 2006;113:1613–1617.

    Article  PubMed  Google Scholar 

  104. Geijssen HC. Studies on Normal Pressure Glaucoma. Kugler: Amstelveen; 1991.

    Google Scholar 

  105. Drance SM, Sweeney VP, Morgan RW, Feldman F. Studies of factors involved in the production of low tension glaucoma. Arch Ophthalmol. 1973;89:457–465.

    CAS  PubMed  Google Scholar 

  106. Levene RZ. Low tension glaucoma: a critical review and new material. Surv Ophthalmol. 1980;24:621–664.

    Article  CAS  PubMed  Google Scholar 

  107. Chumbley LC, Brubaker RF. Low-tension glaucoma. Am J Ophthalmol. 1976;81:761–767.

    CAS  PubMed  Google Scholar 

  108. Goldberg I, Hollows FC, Kass MA, Becker B. Systemic factors in patients with low-tension glaucoma. Br J Ophthalmol. 1981;65:56–62.

    Article  CAS  PubMed  Google Scholar 

  109. Klein BE, Klein R, Sponsel WE, et al. Prevalence of glaucoma. The Beaver Dam Eye Study. Ophthalmology. 1992;99:1499–1504.

    CAS  PubMed  Google Scholar 

  110. Shiose Y. Prevalence and clinical aspects of low-tension glaucoma. In: Henkind P, ed. Acta 24th International Congress of Opthalmology. Philadelphia: Lippincott; 1983.

    Google Scholar 

  111. Tielsch JM, Sommer A, Katz J, et al. Racial variations in the prevalence of primary open-angle glaucoma. The Baltimore Eye Survey [see comments]. JAMA. 1991;266:369–374.

    Article  CAS  PubMed  Google Scholar 

  112. Gordon MO, Beiser JA, Brandt JD, et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120:714-720. discussion 829–830.

    PubMed  Google Scholar 

  113. Nouri-Mahdavi K, Hoffman D, Coleman AL, et al. Predictive factors for glaucomatous visual field progression in the Advanced Glaucoma Intervention Study. Ophthalmology. 2004;111:1627–1635.

    Article  PubMed  Google Scholar 

  114. Heijl A, Leske MC, Bengtsson B, Hussein M. Measuring visual field progression in the Early Manifest Glaucoma Trial. Acta Ophthalmol Scand. 2003;81:286–293.

    Article  PubMed  Google Scholar 

  115. Broadway DC, Nicolela MT, Drance SM. Optic disk appearances in primary open-angle glaucoma. Surv Ophthalmol. 1999;43(Suppl 1):S223-S243.

    Article  PubMed  Google Scholar 

  116. Nicolela MT, Drance SM, Broadway DC, et al. Agreement among clinicians in the recognition of patterns of optic disk damage in glaucoma. Am J Ophthalmol. 2001;132:836–844.

    Article  CAS  PubMed  Google Scholar 

  117. Nicolela MT, McCormick TA, Drance SM, et al. Visual field and optic disc progression in patients with different types of optic disc damage: a longitudinal prospective study. Ophthalmology. 2003;110:2178–2184.

    Article  PubMed  Google Scholar 

  118. May CA. The optic nerve head region of the aged rat: an immunohistochemical investigation. Curr Eye Res. 2003;26:347–354.

    Article  PubMed  Google Scholar 

  119. Nicolela MT, Walman BE, Buckley AR, Drance SM. Various glaucomatous optic nerve appearances. A color Doppler imaging study of retrobulbar circulation. Ophthalmology. 1996;103:1670–1679.

    CAS  PubMed  Google Scholar 

  120. Burgoyne CF, Yang H, Reynaud J, et al. New optical coherence tomography (OCT) targets for optic nerve head imaging in glaucoma. In: Green A, ed. US Ophthalmic Review. vol 3. London: Touch Briefings; 2008.

    Google Scholar 

  121. Guo L, Tsatourian V, Luong V, et al. En face optical coherence tomography: a new method to analyse structural changes of the optic nerve head in rat glaucoma. Br J Ophthalmol. 2005;89:1210–1216.

    Article  CAS  PubMed  Google Scholar 

  122. Van Velthoven ME, Faber DJ, Verbraak FD, van Leeuwen TG, de Smet MD. Recent developments in optical coherence tomography for imaging the retina. Prog Retin Eye Res. 2007;26:57–77.

    Article  PubMed  Google Scholar 

  123. Srinivasan VJ, Adler DC, Chen Y, et al. Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head. Invest Ophthalmol Vis Sci. 2008;49(11):5103–5110.

    Article  PubMed  Google Scholar 

  124. Strouthidis NG, Yang H, Fortune B, Downs JC, Burgoyne CF. Detection of the optic nerve head neural canal opening within three-dimensional histomorphometric and spectral domain optical coherence tomography data sets. Invest Ophthalmol Vis Sci. 2009;50(1):214–223.

    Article  PubMed  Google Scholar 

  125. Langham M. The temporal relation between intraocular pressure and loss of vision in chronic simple glaucoma. Glaucoma. 1980;2:427–435.

    Google Scholar 

Download references

Acknowledgement

Portions of this chapter have appeared previously in two publications.24,69

Supported in part by USPHS grant R01EY011610 (CFB) from the National Eye Institute, National Institutes of Health, Bethesda, Maryland; unrestricted research support from Heidelberg Engineering; a grant from the American Health Assistance Foundation, Rockville, Maryland (CFB); a grant from The Whitaker Foundation, Arlington, Virginia (CFB); a Career Development Award (CFB) from Research to Prevent Blindness, Inc., New York, New York and unrestricted support from The Sears Trust, Mexico MO.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Burgoyne, C.F., Yang, H., Downs, J.C. (2010). Clinical Cupping: Laminar and Prelaminar Components. In: Schacknow, P., Samples, J. (eds) The Glaucoma Book. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76700-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-76700-0_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-76699-7

  • Online ISBN: 978-0-387-76700-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics