Skip to main content

CDR Repair: A Novel Approach to Antibody Humanization

  • Chapter
  • First Online:
Current Trends in Monoclonal Antibody Development and Manufacturing

Part of the book series: Biotechnology: Pharmaceutical Aspects ((PHARMASP,volume XI))

Abstract

Hybridoma technology has enabled the rapid production of a large number of monoclonal antibodies with interesting biological properties. Their use in a therapeutic setting, however, can lead to the generation of a human anti-mouse antibody (HAMA) response in patients despite the high degree of sequence similarity shared between human and mouse antibodies. This has prompted efforts to make hybridoma antibodies appear more human through the construction of chimeras, (Morrison et al. 1984) and through a process known as antibody humanization (Riechmann et al. 1988; Verhoeyen et al. 1988).

The modular nature of antibodies makes the swapping of domains a relatively simple process. A chimera consisting of the mouse variable heavy (VH) and variable light (VL) domains recombinantly fused to human heavy and light constant domains is a simple way to reduce HAMA response. Yet, despite 60–75% homology to human, murine variable domains may still elicit a HAMA response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Kabat numbering system for positions in the variable domain is used throughout (Kabat et al. 1991).

Abbreviations

CDRs:

Complementarity determining regions

Fab:

Antigen binding fragment consisting of the light chain and the variable and first constant domains of the heavy chain

HAMA:

Human anti-mouse antibodies

VH:

Variable heavy domain

VL:

Variable light domain

References

  • Adams CW, Allison DE, Flagella K, Presta L, Clarke J, Dybdal N, McKeever K, Sliwkowski MX (2006) Humanization of a recombinant monoclonal antibody to produce a therapeutic HER dimerization inhibitor, pertuzumab. Cancer Immunol Immunother 55:717–727

    Article  PubMed  CAS  Google Scholar 

  • Andrew DP, Berlin C, Honda S, Yoshino T, Harnann A, HoIzmann B, Kilshaw PJ, Butcher EC (1994) Distinct but overlapping epitopes are involved in α4b7-mediated adhesion to vascular cell adhesion molecule-1, mucosal addressin-1, fibronectin, and lymphocyte aggregation. J Immunol 153:3847–3861

    PubMed  CAS  Google Scholar 

  • Baca M, Presta LG, O’Connor SJ, Wells JA (1997) Antibody humanization using monovalent phage display. J Biol Chem 272:10678–10684

    Article  PubMed  CAS  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  • Carter P, Presta LG, Gorman CM, Ridgway JBB, Henner D, Wong WLT, Rowland AM, Kotts C, Carver ME, Shepard MH (1992) Humanization of an anti-P185HER2 antibody for human cancer therapy. Proc Natl Acad Sci U S A 89:4285

    Article  PubMed  CAS  Google Scholar 

  • Chothia C, Lesk AM (1987) Canonical structures for the hypervariable regions of immunoglobulins. J Mol Biol 196:901–917

    Article  PubMed  CAS  Google Scholar 

  • Chothia C, Lesk AM, Tramontano A, Levitt M, Smith-Gill SJ, Air G, Sheriff S, Padlan EA, Davies D, Tulip WR, Colman PM, Spinelli S, Alzari PM, Poljak RJ (1989) Conformations of immunoglobulin hypervariable regions. Nature 342:877

    Article  PubMed  CAS  Google Scholar 

  • Clark LA, Ganesan S, Papp S, van Vlijmen HWT (2006) Trends in antibody sequence changes during the somatic hypermutation process. J Immunol 177:333–340

    PubMed  CAS  Google Scholar 

  • Eigenbrot C, Randal M, Presta LG, Carter P, Kossiakoff AA (1993) X-ray structures of the antigen-binding domains from three variants of humanized anti-P185HER2 antibody 4d5 and comparison with molecular modeling. J Mol Biol 229:969–995

    Article  PubMed  CAS  Google Scholar 

  • Foote J, Winter G (1992) Antibody framework residues affecting the conformation of hypervariable loops. J Mol Biol 224:487–499

    Article  PubMed  CAS  Google Scholar 

  • Gallop MA, Barrett RW, Dower WJ, Fodor SPA, Gordon EM (1994) Applications of combinatorial technologies to drug discovery. 1. Background and peptide combinatorial libraries. J Med Chem 37:1233–1251

    Article  PubMed  CAS  Google Scholar 

  • Honegger A (2007) AHo’s amazing atlas of antibody anatomy. http://www.bioc.unizh.ch/antibody. Assessed June 2007

  • Hwang WYK, Almagro JC, Buss TN, Tan P, Foote J (2005) Use of human germline genes in a CDR homology-based approach to antibody humanization. Methods 36:35–42

    Article  PubMed  CAS  Google Scholar 

  • Johnson G, Wu TT (2001) Kabat database and its applications: future directions. Nucleic Acids Res 29:205–206

    Article  PubMed  CAS  Google Scholar 

  • Jones PT, Dear PH, Foote J, Neuberger MS, Winter G (1986) Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321:522–525

    Article  PubMed  CAS  Google Scholar 

  • Kabat EA, Wu TT (1971) Attempts to locate complementarity determining residues in the variable positions of light and heavy chains. Ann N Y Acad Sci 190:382–393

    Article  PubMed  CAS  Google Scholar 

  • Kabat EA, Wu TT, Perry HM, Gottesman KS, Foeller C (1991) Sequences of proteins of immunological interest. Public Health Service, National Institutes of Health, Bethesda

    Google Scholar 

  • Kashmiri SVS, Pascalis RD, Gonzales NR, Schlom J (2005) SDR grafting – a new approach to antibody humanization. Methods 36:25–34

    Article  PubMed  CAS  Google Scholar 

  • Kelsen J, Agnholt J, Falborg L, Nieslen JT, Romer JL, Hoffmann HJ, Dahlerup JF (2004) 111Indium-labelled human gut-derived T cells from healthy subjects with strong in vitro adhesion to MAdCAM-1 show no detectable homing to the gut in vivo. Clin Exp Immunol 138:66–74

    Article  PubMed  CAS  Google Scholar 

  • Kettleborough CA, Saldanha J, Heath VJ, Morrison CJ, Bendig MM (1991) Humanization of a mouse monoclonal antibody by CDR-grafting: the importance of framework residues on loop conformation. Protein Eng 4:773

    Article  PubMed  CAS  Google Scholar 

  • Knappik A, Ge L, Honegger A, Pack P, Fischer M, Wellnhofer G, Hoess A, Wolle J, Pluckthun A, Virnekas B (2000) Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J Mol Biol 296:57–86

    Article  PubMed  CAS  Google Scholar 

  • Lee UH, Son JH, Lee JJ, Kwon B, Park JW, Kwon BS (2004) Humanization of antagonistic anti-human 4-1bb monoclonal antibody using a phage-displayed combinatorial library. J Immunother 27:201–210

    Article  PubMed  CAS  Google Scholar 

  • Li B, Fuh G, Meng G, Xin X, Gerritsen ME, Cunningham B, de Vos AM (2000) Receptor-selective variants of human vascular endothelial growth factor. J Biol Chem 275:29823–29828

    Article  PubMed  CAS  Google Scholar 

  • MacCallum RM, Martin ACR, Thornton JT (1996) Antibody–antigen interactions: contact analysis and binding site topography. J Mol Biol 262:732–745

    Article  PubMed  CAS  Google Scholar 

  • Maynard JA, Maassen CBM, Leppla SH, Brasky K, Patterson JL, Iversone BL, Georgiou G (2002) Protection against anthrax toxin by recombinant antibody fragments correlates with antigen affinity. Nat Biotechnol 20:597–601

    Article  PubMed  CAS  Google Scholar 

  • Morrison SL, Johnson MJ, Herzenberg LA, Oi VT (1984) Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci U S A 81:6851–6855

    Article  PubMed  CAS  Google Scholar 

  • Oliphant T, Engle M, Nybakken GE, Doane C, Johnson S, Huang LH, Gorlatov S, Mehlhop E, Marri A, Chung KM, Ebel GD, Kramer LD, Fremont DHF, Diamond MS (2005) Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat Med 11:522–530

    Article  PubMed  CAS  Google Scholar 

  • Padlan EA (1994) Anatomy of the antibody molecule. Mol Immunol 31:169–217

    Article  PubMed  CAS  Google Scholar 

  • Presta LG, Lahr SJ, Shields RL, Porter JP, Gorman CM, Fendly BM, Jardieu PM (1993) Humanization of an antibody directed against IgE. J Immunol 151:2623–2632

    PubMed  CAS  Google Scholar 

  • Presta LG, Chen H, O’Connor SJ, Chisholm V, Meng YG, Krummen L, Winkler M, Ferrara N (1997) Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res 57:4593–4599

    PubMed  CAS  Google Scholar 

  • Presta LG, Sims P, Meng YG, Moran P, Bullens S, Bunting S, Schoenfeld J, Lowe D, Lai J, Rancatore P, Iverson M, Lim M, Chisholm V, Kelley RF, Riederer M, Kirchhofer D (2001) Generation of a humanized, high affinity anti-tissue factor antibody for use as a novel antithrombotic therapeutic. Thromb Haemost 85:379–389

    PubMed  CAS  Google Scholar 

  • Queen C, Schneider WP, Selick HE, Payne PW, Landolfi NF, Duncan JF, Avdalovic NM, Levitt M, Junghans RP, Waldmann TA (1989) A humanized antibody that binds to the interleukin 2 receptor. Proc Natl Acad Sci U S A 86:10029–10033

    Article  PubMed  CAS  Google Scholar 

  • Rader C, Ritter G, Nathan S, Elia M, Gout I, Jungbluth AA, Cohen LS, Welt S, Old LJ, Barbas CF III (2000) The rabbit antibody repertoire as a novel source for the generation of therapeutic human antibodies. J Biol Chem 275:13668–13676

    Article  PubMed  CAS  Google Scholar 

  • Riechmann L, Clark M, Waldmann H, Winter G (1988) Reshaping human antibodies for therapy. Nature 332:323–327

    Article  PubMed  CAS  Google Scholar 

  • Schlapschy M, Gruber H, Gresch O, Schafer C, Renner C, Pfreundschuh M, Skerra A (2004) Functional humanization of an anti-CD30 Fab fragment for the immunotherapy of Hodgkin’s lymphoma using an in vitro evolution approach. Protein Eng Des Sel 17:847–860

    Article  PubMed  CAS  Google Scholar 

  • Sidhu SS, Li B, Chen Y, Fellouse FA, Eigenbrot C, Fuh G (2004) Phage-displayed antibody libraries of synthetic heavy chain complementarity determining regions. J Mol Biol 338:229–310

    Article  Google Scholar 

  • Tan P, Mitchell DA, Buss TN, Holmes MA, Anasetti C, Foote J (2002) “Superhumanized” antibodies: reduction of immunogenic potential by complementarity-determining region grafting with human germline sequences: application to an anti-CD28. J Immunol 169:1119–1125

    PubMed  CAS  Google Scholar 

  • Tsurushita N, Hinton PR, Kumar S (2005) Design of humanized antibodies: from anti-Tac to Zenapax. Methods 36:69–83

    Article  PubMed  CAS  Google Scholar 

  • Verhoeyen M, Milstein C, Winter G (1988) Reshaping human antibodies: grafting an antilysozyme activity. Science 239:1534–1536

    Article  PubMed  CAS  Google Scholar 

  • Wang X-BW, Zhou B, Yin C-C, Lin Q, Huang H-L (2004) A new approach for rapidly reshaping single-chain antibody in vitro by combining DNA shuffling with ribosome display. J Biochem 136:19–28

    Article  PubMed  CAS  Google Scholar 

  • Werther WA, Gonzalez TN, O’Connor SJ, McCabe S, Chan B, Hotaling T, Champe M, Fox JA, Jardieu PM, Berman PW, Presta LG (1996) Humanization of an anti-lymphocyte function-associated antigen (LFA-1) monoclonal antibody and reengineering of the humanized antibody for binding to rhesus LFA-1. J Immunol 157:4986–4995

    PubMed  CAS  Google Scholar 

  • Wu TT, Kabat EA (1970) An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J Exp Med 132:211–250

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Nie Y, Huse WD, Watkins JD (1999) Humanization of a murine monoclonal antibody by simultaneous optimization of framework and CDR residues. J Mol Biol 294:151–162

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment.

I gratefully recognize the contributions made by the oligonucleotide synthesis and DNA sequencing groups at Genentech who have made this work possible. I also thank all current and former members of the Protein Engineering and Antibody Engineering Departments at Genentech for discussions and their contributions to the development of phage display methods, and antibody humanization technologies and especially, Henry Lowman for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Dennis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Dennis, M.S. (2010). CDR Repair: A Novel Approach to Antibody Humanization. In: Shire, S., Gombotz, W., Bechtold-Peters, K., Andya, J. (eds) Current Trends in Monoclonal Antibody Development and Manufacturing. Biotechnology: Pharmaceutical Aspects, vol XI. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76643-0_2

Download citation

Publish with us

Policies and ethics