Skip to main content

Analysis of Irreversible Aggregation, Reversible Self-association and Fragmentation of Monoclonal Antibodies by Analytical Ultracentrifugation

  • Chapter
  • First Online:
Current Trends in Monoclonal Antibody Development and Manufacturing

Part of the book series: Biotechnology: Pharmaceutical Aspects ((PHARMASP,volume XI))

Abstract

Since the emergence of recombinant DNA technology from the lab to commercialization, biotechnology protein drugs have garnered an increased share of new molecular entities (NMEs) in development pipelines (Mullin 2004). Monoclonal antibodies have rapidly become one of the major shares of this market with about 25% of biotech products in development. As with any other protein pharmaceutical monoclonal antibodies can degrade both by chemical and physical pathways. One of the most important pathways for protein physical degradation is the generation of protein aggregates. The ability of proteins to aggregate has been recognized from the early beginnings in protein biochemistry, and has become an important degradation pathway that can have a major impact on the safety and efficacy of protein drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arthur KK, Babrielson JP, Kendrick BS, Stone MR (2006) Detection of protein aggregates by sedimentation velocity analytical ultracentrifugation (SV-AUC): sources of variability and their relative importance. Presented at workshop on protein aggregation, Breckenridge, CO, 26–27 Sept 2006

    Google Scholar 

  • Berkowitz SA (2006) Role of analytical ultracentrifugation in assessing the aggregation of protein biopharmaceuticals. AAPS J 8:E590–E605

    Article  PubMed  CAS  Google Scholar 

  • Byron O (1997) Construction of hydrodynamic bead models from high-resolution X-ray crystallographic or nuclear magnetic resonance data. Biophys J 72:408–415

    Article  PubMed  CAS  Google Scholar 

  • Cantor CR, Schimmel PR (1980) Describing transport in the ultracentrifuge: the Lamm equation. In: Bartlett AC (ed) Biophysical chemistry, Part II techniques for the study of biological structure and function. W.H. Freeman and Company, San Francisco, CA, pp 596–603

    Google Scholar 

  • Demeler B, Saber H, Hansen JC (1997) Identification and interpretation of complexity in sedimentation velocity boundaries. Biophys J 72:397–407

    Article  PubMed  CAS  Google Scholar 

  • Dintzis RZ, Okajima M, Middleton MH, Greene G, Dintzis HM (1989) The immunogenicity of soluble haptenated polymers is determined by molecular mass and hapten valence. J Immunol 143:1239–1244

    PubMed  CAS  Google Scholar 

  • Furst A (1997) The XL-I analytical ultracentrifuge with Rayleigh interference optics. Eur Biophys J 35:307–310

    Article  Google Scholar 

  • Gabrielson J, Randilph T, Kendrick B, Stoner M (2007) Sedimentation velocity analytical ultracentrifugation and SEDFIT/c(s): limits of quantitation for a monoclonal antibody system. Anal Biochem 361:24–30

    Article  PubMed  CAS  Google Scholar 

  • Giebler RA (1992) New analytical ultracentrifuge with a novel precision absorption optical system. In: Harding SE, Rowe AJ, Horton JC (eds) Analytical ultracentrifugation in biochemistry and polymer science. Royal Society of Chemistry, Cambridge, England, pp 16–25

    Google Scholar 

  • Hermeling S, Schellekens H, Maas C, Gebbink MFBG, Crommelin DJA, Jiskoot W (2006) Antibody response to aggregated human interferon alpha2b in wild-type and transgenic immune tolerant mice depends on type and level of aggregation. J Pharm Sci 5:1084–1096

    Article  Google Scholar 

  • Lamm O (1929) Die differentialgleichung der ultazentrifugierung. Ark Mat Astr Fys Part B 21B:1–4

    Google Scholar 

  • Laue TM (1997) Advances in sedimentation velocity analysis. Biophys J 72:395–396

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Andya JD, Shire SJ (2006) A critical review of analytical ultracentrifugation and field flow fractionation methods for measuring protein aggregation. AAPS J 8:E580–E589

    Article  PubMed  CAS  Google Scholar 

  • McRorie DK, Voelker PJ (1993) Self-associating systems in the analytical ultracentrifuge. Beckman Instruments, Inc., Fullerton, CA 100 pp

    Google Scholar 

  • Meselson M, Stahl FW (1958) The Replication of DNA in Escherichia coli. Proc Natl Acad Sci U S A 44:671–682

    Article  PubMed  CAS  Google Scholar 

  • Minton AP (2005) Influence of macromolecular crowding upon the stability and state of association of proteins: predictions and observations. J Pharm Sci 94:1668–1675

    Article  PubMed  CAS  Google Scholar 

  • Mullin R (2004) Biopharmaceuticals. Chem Eng News 82:9

    Google Scholar 

  • Pekar A, Sukumar M (2007) Quantitation of aggregates in therapeutic proteins using sedimentation velocity analytical ultracentrifugation: practical considerations that affect precision and accuracy. Anal Biochem 367:225–237

    Article  PubMed  CAS  Google Scholar 

  • Philo J (1994) Measuring sedimentation, diffusion, and molecular weights of small molecules by direct fitting of sedimentation velocity concentration profiles. In: Schuster TM, Laue TM (eds) Modern analytical ultracentrifugation. Birkhausser, Boston, pp 156–170

    Chapter  Google Scholar 

  • Philpot JSL, Cook GH (1948) Research 1:234

    Google Scholar 

  • Pickels EG (1950) Mach Des 22:102

    Google Scholar 

  • Pickels EG (1952) Methods Med Res 5:107

    Google Scholar 

  • Schachman HK, Edelstein SJ (1966) Ultracentrifuge studies with absorption optics. IV. Molecular weight determinations at the microgram level. Biochemistry 5:2681–2705

    Article  PubMed  CAS  Google Scholar 

  • Schuck P (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys J 78:1606–1619

    Article  PubMed  CAS  Google Scholar 

  • Shire SJ (1994) Analytical ultracentrifugation and its use in biotechnology. In: Schuster TM, Laue TM (eds) Modern analytical ultracentrifugation. Birkhausser, Boston, pp 261–297

    Chapter  Google Scholar 

  • Stafford WFI (1992) Boundary analysis in sedimentation transport experiments: a procedure for obtaining sedimentation coefficient distributions using the time derivative of the concentration profile. Anal Biochem 203:295–301

    Article  PubMed  CAS  Google Scholar 

  • Stafford WFI (1997) Sedimentation velocity spins a new weave for an old fabric. Curr Opin Biotechnol 8:14–24

    Article  PubMed  CAS  Google Scholar 

  • Svedberg T, FÃ¥hraeus RA (1926) New method for determining the molecular weight of the proteins. J Am Chem Soc 48:430

    Article  Google Scholar 

  • Svedberg T, Rinde H (1924) The ultra-centrifuge, a new instrument for the determination of size and distribution of size of particle in amicroscopic colloids. J Am Chem Soc 46:2677–2693

    Article  Google Scholar 

  • Van Holde KE, Weischet W (1978) Boundary analysis of sedimentation-velocity experiments with monodisperse and paucidisperse solutes. Biopolymers 17:1387–1403

    Article  Google Scholar 

  • Vogelstein B, Dintzis RZ, Dintzis HM (1982) Specific cellular stimulation in the primary immune response: a quantized model. Proc Natl Acad Sci U S A 79:395–399

    Article  PubMed  CAS  Google Scholar 

  • Williams RCJ (1976) Improvement in precision of sedimentation-equilibrium experiments with an on-line absorption scanner. Biophys Chem 5:19–26

    Article  PubMed  CAS  Google Scholar 

  • Zhou H-X, Rivas GM, Minton AP (2008) Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu Rev Biophys 37:375–397

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Shire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Andya, J.D., Liu, J., Shire, S.J. (2010). Analysis of Irreversible Aggregation, Reversible Self-association and Fragmentation of Monoclonal Antibodies by Analytical Ultracentrifugation. In: Shire, S., Gombotz, W., Bechtold-Peters, K., Andya, J. (eds) Current Trends in Monoclonal Antibody Development and Manufacturing. Biotechnology: Pharmaceutical Aspects, vol XI. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76643-0_13

Download citation

Publish with us

Policies and ethics