Skip to main content

Liquid Electrolytes

  • Chapter
Advanced Batteries
  • 8317 Accesses

Most current battery systems have solid electrodes, separated by liquid electrolytes. Aside from considerations such as the magnitude of the ionic conductivity of liquids typically being considerably greater than those of solids, one of the major advantages of this arrangement is that the presence of the liquid reduces problems resulting from the volume changes that typically result from the changes in the composition of the electrode materials as they are charged and discharged.

A major consideration in connection with electrolytes has to do with the range of potentials over which they are stable. An obvious example of this is the fact that aqueous electrolytes cannot be used with negative electrodes that have high lithium activities. Organic solvent electrolytes must be used instead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Deublein and R.A. Huggins, Solid State Ionics 18/19, 1110 (1986)

    Article  Google Scholar 

  2. R.J. Heus and J.J. Egan, J. Phys. Chem. 77, 1989 (1973)

    Article  CAS  Google Scholar 

  3. R.N. Seefurth and R.A. Sharma, J. Electrochem. Soc. 122, 1049 (1975)

    Article  CAS  Google Scholar 

  4. G. Deublein and R.A. Huggins, unpublished results (1986)

    Google Scholar 

  5. W. Weppner and R.A. Huggins, J. Electrochem. Soc. 124, 35 (1977)

    Article  CAS  Google Scholar 

  6. W. Weppner and R.A. Huggins, Thermodynamic Stability of the Solid and Molten electrolyte LiAlCl4, in Fast Ion Transport in Solids, ed. by P. Vashishta, J.N. Mundy and G.K. Shenoy, North-Holland, New York (1979), p. 475

    Google Scholar 

  7. I.D. Raistrick and R.A. Huggins, Use of Lithium Aluminum Chloride Molten Salt as an Electrolyte in Lithium Cells, in Proceedings of the Fourth International Symposium on Molten Salts, ed. by M. Blander, D.S. Newman, G. Mamantov, M.L. Saboungi and K. Johnson, Electrochemical Society, Pennington, NJ (1984), p. 82

    Google Scholar 

  8. G. Deublein, Personal communication (2007)

    Google Scholar 

  9. N.A. Godshall, I.D. Raistrick and R.A. Huggins, J. Electrochem. Soc. 131, 543 (1984)

    Article  CAS  Google Scholar 

  10. E. Peled, J. Electrochem. Soc. 126, 2047 (1979)

    Article  CAS  Google Scholar 

  11. R. Fong, U. von Sacken and J.R. Dahn, J. Electrochem. Soc. 137, 2009 (1990)

    Article  CAS  Google Scholar 

  12. J.O. Besenhard and H.P. Fritz, J. Electroanal. Chem. 53, 329 (1974)

    Article  CAS  Google Scholar 

  13. J.-M. Tarascon and D. Guyomard, J. Electrochem. Soc. 140, 3071 (1993)

    Article  Google Scholar 

  14. J.-M. Tarascon and D. Guyomard, Solid State Ionics 69, 293 (1994)

    Article  CAS  Google Scholar 

  15. K. Xu, Chem. Rev. 104, 4303 (2004)

    Article  CAS  Google Scholar 

  16. J. Barthel and H.J. Gores, in Handbook of Battery Materials, ed. by J.O. Besenhard, Wiley-VCH, New York (1999), p. 457

    Google Scholar 

  17. K. Xu, S. Zhang, T.R. Jow, W. Xu and C.A. Angell, Electrochem. Solid State Lett. 5, A26 (2002)

    Article  CAS  Google Scholar 

  18. J. Jiang, H. Fortier, J.N. Reimers and J.R. Dahn, J. Electrochem. Soc. 151, A609 (2004)

    Article  CAS  Google Scholar 

  19. J.H. Shin and E.J. Cairns, Rechargeable Li Metal Cells Using N-Methyl-N-butyl pyrrolidinium Bis(trifluoromethane sulfonyl)imide Electrolyte Incorporating Polymer Additives, Presented at Focussed Battery Technology Workshop III, Pasadena (2008)

    Google Scholar 

  20. N. Agmon, Chem. Phys. Lett. 244, 456 (1995)

    Article  CAS  Google Scholar 

  21. W.G. Grot, US Patent 3,770,567 (1971)

    Google Scholar 

  22. K.-D. Kreuer, Chem. Mater. 8, 610 (1996)

    Article  CAS  Google Scholar 

  23. K.A. Mauritz and R.B. Moore, Chem. Rev. 104, 4535 (2004)

    Article  CAS  Google Scholar 

  24. K.-D. Kreuer, S.J. Paddison, E. Spohr and M. Schuster, Chem. Rev. 104, 4637 (2004)

    Article  CAS  Google Scholar 

  25. J.S. Wainright, J.T. Wang, D. Weng, R.F. Savinel and M. Litt, J. Electrochem. Soc. 142, L121 (1995)

    Article  CAS  Google Scholar 

  26. L. Pauling, The Nature of the Chemical Bond, Cornell Univ. Press, Ithaca, NY (1939), p. 60

    Google Scholar 

  27. G. Deublein, B.Y. Liaw and R.A. Huggins, Solid State Ionics 28–30, 1078 (1988)

    Article  Google Scholar 

  28. G. Deublein and R.A. Huggins, unpublished results

    Google Scholar 

  29. R.A. Huggins, J. Power Sources 22, 341 (1988)

    Article  CAS  Google Scholar 

  30. R.A. Huggins, in Fast Ion Transport in Solids, ed. by B. Scrosati, et al., Kluwer, Amsterdam (1993), p. 143

    Google Scholar 

  31. R.A. Huggins, in Handbook of Battery Materials, ed. by J.O. Besenhard, Wiley-VCH, New York (1999), p. 359.

    Google Scholar 

  32. R.A. Huggins, J. Power Sources, 81–82, 13 (1999)

    Article  Google Scholar 

  33. C.J. Wen and R.A. Huggins, J. Solid State Chem. 37, 271 (1981)

    Article  CAS  Google Scholar 

  34. G. Deublein and R.A. Huggins, J. Electrochem. Soc. 136, 2234 (1989)

    Article  CAS  Google Scholar 

  35. G. Deublein, B.Y. Liaw and R.A. Huggins, Solid State Ionics 28–30, 1660 (1988)

    Article  Google Scholar 

  36. B.Y. Liaw, G. Deublein and R.A. Huggins, J. Alloys Compounds 189, 175 (1992)

    Article  CAS  Google Scholar 

  37. G. Deublein and R.A. Huggins, Solid State Ionics 18/19, 1110 (1986)

    Article  Google Scholar 

  38. C.M. Luedecke, G. Deublein and R.A. Huggins, in Hydrogen Energy Progress V, ed. by T.N. Veziroglu and J.B. Taylor, Pergamon Press, New York (1984), p. 1421

    Google Scholar 

  39. C.M. Luedecke, G. Deublein and R.A. Huggins, J. Electrochem. Soc. 132, 52 (1985)

    Article  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2009). Liquid Electrolytes. In: Advanced Batteries. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-76424-5_14

Download citation

Publish with us

Policies and ethics