Skip to main content
  • 3394 Accesses

Abstract

Glycopeptides are a class of antibiotic drugs that is composed of glycosylated cyclic or polycyclic nonribosomal peptides. Older molecules used in clinical practice are vancomycin and teicoplanin. Oritavancin, dalbavancin, and telavancin belong to the subclass of lipoglycopeptides. Glycopeptides inhibit bacterial cell wall peptoglycan synthesis of aerobic and anaerobic Gram-positive bacteria. Glyco (lipo)peptides are not absorbed orally and have to be administered intravenously. In this chapter, the pharmacokinetics (Pk) and the pharmacodynamics (Pd) of the glycopeptides are studied. Pk in serum as well as protein binding and elimination are reviewed. Pharmacodynamic data include MICs of Gram-positive bacteria, PK/Pd effects in in vitro systems, animal models and human studies. Adverse effects of glycopeptides on the host are concentration related nephro- and ototoxicity. In the past, because of fear of toxicity, the older glycopeptides have been underdosed in many settings. The implementation of Pk/Pd knowledge into clinical practice by e.g. administering higher doses of vancomycin and teicoplanin and using continuous infusion of vancomycin is urgently needed. This chapter contains clinical vignettes showing the benefit of Therapeutic Drug Monitoring of glycopeptides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerman BH, Taylor EH et al (1988) Vancomycin serum protein binding determination by ultrafiltration. Drug Intell Clin Pharm 22(4):300–303

    CAS  PubMed  Google Scholar 

  • Ackerman BH, Vannier AM et al (1992) Analysis of vancomycin time-kill studies with Staphylococcus species by using a curve stripping program to describe the relationship between concentration and pharmacodynamic response. Antimicrob Agents Chemother 36(8):1766–1769

    CAS  PubMed Central  PubMed  Google Scholar 

  • Albrecht LM, Rybak MJ et al (1991) Vancomycin protein binding in patients with infections caused by Staphylococcus aureus. DICP 25(7–8):713–715

    CAS  PubMed  Google Scholar 

  • Bailey EM, Rybak MJ et al (1991) Comparative effect of protein binding on the killing activities of teicoplanin and vancomycin. Antimicrob Agents Chemother 35(6):1089–1092

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barbot A, Venisse N et al (2003) Pharmacokinetics and pharmacodynamics of sequential intravenous and subcutaneous teicoplanin in critically ill patients without vasopressors. Intensive Care Med 29(9):1528–1534

    CAS  PubMed  Google Scholar 

  • Barcia-Macay M, Lemaire S et al (2006) Evaluation of the extracellular and intracellular activities (human THP-1 macrophages) of telavancin versus vancomycin against methicillin-susceptible, methicillin-resistant, vancomycin-intermediate and vancomycin-resistant Staphylococcus aureus. J Antimicrob Chemother 58(6):1177–1184

    CAS  PubMed  Google Scholar 

  • Barcia-Macay M, Mouaden F et al (2008) Cellular pharmacokinetics of telavancin, a novel lipoglycopeptide antibiotic, and analysis of lysosomal changes in cultured eukaryotic cells (J774 mouse macrophages and rat embryonic fibroblasts). J Antimicrob Chemother 61(6):1288–1294

    CAS  PubMed  Google Scholar 

  • Barriere S, Genter F et al (2004) Effects of a new antibacterial, telavancin, on cardiac repolarization (QTc interval duration) in healthy subjects. J Clin Pharmacol4 4:689–695

    Google Scholar 

  • Bellomo R, Ernest D et al (1990) Clearance of vancomycin during continuous arteriovenous hemodiafiltration. Crit Care Med 18(2):181–183

    CAS  PubMed  Google Scholar 

  • Bernareggi A, Borgonovi M et al (1991) Teicoplanin binding in plasma following administration of increasing intravenous doses to healthy volunteers. Eur J Drug Metab Pharmacokinet Spec No 3:256–260

    Google Scholar 

  • Bernareggi A, Borghi A et al (1992) Teicoplanin metabolism in humans. Antimicrob Agents Chemother 36(8):1744–1749

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blevins RD, Halstenson CE et al (1984) Pharmacokinetics of vancomycin in patients undergoing continuous ambulatory peritoneal dialysis. Antimicrob Agents Chemother 25(5):603–606

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blouin RA, Bauer LA et al (1982) Vancomycin pharmacokinetics in normal and morbidly obese subjects. Antimicrob Agents Chemother 21(4):575–580

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boeckh M, Lode H et al (1988) Pharmacokinetics and serum bactericidal activity of vancomycin alone and in combination with ceftazidime in healthy volunteers. Antimicrob Agents Chemother 32(1):92–95

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bonnet RM, Mattie H et al (2004) Clinical ototoxicity of teicoplanin. Ann Otol Rhinol Laryngol 113(4):310–312

    PubMed  Google Scholar 

  • Bosso JA, Nappi J et al (2011) Relationship between vancomycin trough concentrations and nephrotoxicity: a prospective multicenter trial. Antimicrob Agents Chemother 55(12):5475–5479

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bourgeois I, Pestel-Caron M et al (2007) Tolerance to the glycopeptides vancomycin and teicoplanin in coagulase-negative staphylococci. Antimicrob Agents Chemother 51(2):740–743

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brink AJ, Richards GA et al (2008) Recommendations to achieve rapid therapeutic teicoplanin plasma concentrations in adult hospitalised patients treated for sepsis. Int J Antimicrob Agents 32(5):455–458

    CAS  PubMed  Google Scholar 

  • Brown N, Ho DH et al (1983) Effects of hepatic function on vancomycin clinical pharmacology. Antimicrob Agents Chemother 23(4):603–609

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brummett RE, Fox KE (1989) Vancomycin- and erythromycin-induced hearing loss in humans. Antimicrob Agents Chemother 33(6):791–796

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brummett RE, Fox KE et al (1987) Absence of ototoxicity of teichomycin A2 in guinea pigs. Antimicrob Agents Chemother 31(4):612–613

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brummett RE, Fox KE et al (1990) Augmented gentamicin ototoxicity induced by vancomycin in guinea pigs. Arch Otolaryngol Head Neck Surg 116(1):61–64

    CAS  PubMed  Google Scholar 

  • Buniva G, Del Favero A et al (1988) Pharmacokinetics of 14C-teicoplanin in healthy volunteers. J Antimicrob Chemother 21(Suppl A):23–28

    PubMed  Google Scholar 

  • Cantu TG, Yamanaka-Yuen NA et al (1994) Serum vancomycin concentrations: reappraisal of their clinical value. Clin Infect Dis 18(4):533–543

    CAS  PubMed  Google Scholar 

  • Carlone NA, Cuffini AM et al (1989) Cellular uptake, and intracellular bactericidal activity of teicoplanin in human macrophages. J Antimicrob Chemother 23(6):849–859

    CAS  PubMed  Google Scholar 

  • Chang D (1995) Influence of malignancy on the pharmacokinetics of vancomycin in infants and children. Pediatr Infect Dis J 14(8):667–673

    CAS  PubMed  Google Scholar 

  • Chang D, Liem L et al (1994) A prospective study of vancomycin pharmacokinetics and dosage requirements in pediatric cancer patients. Pediatr Infect Dis J 13(11):969–974

    CAS  PubMed  Google Scholar 

  • Charles PG, Ward PB et al (2004) Clinical features associated with bacteremia due to heterogeneous vancomycin-intermediate Staphylococcus aureus. Clin Infect Dis 38(3):448–451

    PubMed  Google Scholar 

  • Cimino MA, Rotstein C et al (1987) Relationship of serum antibiotic concentrations to nephrotoxicity in cancer patients receiving concurrent aminoglycoside and vancomycin therapy. Am J Med 83(6):1091–1097

    CAS  PubMed  Google Scholar 

  • Corey GR, Stryjewski ME et al (2009) Telavancin. Nat Rev Drug Discov 8(12):929–930

    CAS  PubMed  Google Scholar 

  • Craig WA (2003) Basic pharmacodynamics of antibacterials with clinical applications to the use of beta-lactams, glycopeptides, and linezolid. Infect Dis Clin North Am 17(3):479–501

    PubMed  Google Scholar 

  • Crandon JL, Nicolau DP (2011) Pharmacodynamic approaches to optimizing beta-lactam therapy. Crit Care Clin 27(1):77–93

    CAS  PubMed  Google Scholar 

  • Crawford BS, Largen RF et al (2008) Once-weekly vancomycin for patients receiving high-flux hemodialysis. Am J Health Syst Pharm 65(13):1248–1253

    CAS  PubMed  Google Scholar 

  • Cunha BA, Quintiliani R et al (1981) Pharmacokinetics of vancomycin in anuria. Rev Infect Dis 3(Suppl):S269–S272

    PubMed  Google Scholar 

  • Cunningham R, Gurnell M et al (1997) Teicoplanin resistance in Staphylococcus haemolyticus, developing during treatment. J Antimicrob Chemother 39(3):438–439

    CAS  PubMed  Google Scholar 

  • Darley ES, MacGowan AP (2004) The use and therapeutic drug monitoring of teicoplanin in the UK. Clin Microbiol Infect 10(1):62–69

    CAS  PubMed  Google Scholar 

  • Davey PG, Williams AH (1991) A review of the safety profile of teicoplanin. J Antimicrob Chemother 27(Suppl B):69–73

    PubMed  Google Scholar 

  • de Hoog M, Mouton JW et al (2004) Vancomycin: pharmacokinetics and administration regimens in neonates. Clin Pharmacokinet 43(7):417–440

    PubMed  Google Scholar 

  • de Hoog M, Schoemaker RC et al (2000) Vancomycin population pharmacokinetics in neonates. Clin Pharmacol Ther.67:360–367

    Google Scholar 

  • Dean RP, Wagner DJ et al (1985) Vancomycin/aminoglycoside nephrotoxicity. J Pediatr 106(5):861–862

    CAS  PubMed  Google Scholar 

  • Del Favero A, Menichetti F et al (1987) Prospective randomized clinical trial of teicoplanin for empiric combined antibiotic therapy in febrile, granulocytopenic acute leukemia patients. Antimicrob Agents Chemother 31(7):1126–1129

    PubMed Central  PubMed  Google Scholar 

  • del Mar Fernandez de Gatta Garcia M, Revilla N et al (2007) Pharmacokinetic/pharmacodynamic analysis of vancomycin in ICU patients. Intensive Care Med 33(2):279–285

    Google Scholar 

  • Downs NJ, Neihart RE et al (1989) Mild nephrotoxicity associated with vancomycin use. Arch Intern Med 149(8):1777–1781

    CAS  PubMed  Google Scholar 

  • Draghi DC, Benton BM et al (2008a) Comparative surveillance study of telavancin activity against recently collected gram-positive clinical isolates from across the United States. Antimicrob Agents Chemother 52(7):2383–2388

    CAS  PubMed Central  PubMed  Google Scholar 

  • Draghi DC, Benton BM et al (2008b) In vitro activity of telavancin against recent Gram-positive clinical isolates: results of the 2004–05 Prospective European Surveillance Initiative. J Antimicrob Chemother 62(1):116–121

    CAS  PubMed  Google Scholar 

  • Dykhuizen RS, Harvey G et al (1995) Protein binding and serum bactericidal activities of vancomycin and teicoplanin. Antimicrob Agents Chemother 39(8):1842–1847

    CAS  PubMed Central  PubMed  Google Scholar 

  • European_Medicines_Agency (2011) Telavancin product information

    Google Scholar 

  • EORTC (1991) European organization for research and treatment of cancer international antimicrobial chemotherapy cooperative group and the national cancer institute of canada-clinical trials group. Vancomycin added to empirical combination antibiotic therapy for fever in granulocytopenic cancer patients. J Infect Dis 163:951–958

    Google Scholar 

  • Eykyn S, Phillips I et al (1970) Vancomycin for staphylococcal shunt site infections in patients on regular haemodialysis. Br Med J 3(5714):80–82

    CAS  PubMed Central  PubMed  Google Scholar 

  • Farber BF, Moellering RC Jr (1983) Retrospective study of the toxicity of preparations of vancomycin from 1974 to 1981. Antimicrob Agents Chemother 23(1):138–141

    CAS  PubMed Central  PubMed  Google Scholar 

  • Farrell DJ, Krause KM et al (2011) In vitro activity of telavancin and comparator antimicrobial agents against a panel of genetically defined staphylococci. Diagn Microbiol Infect Dis 69(3):275–279

    CAS  PubMed  Google Scholar 

  • Fernandez de Gatta MM, Fruns I et al (1993) Vancomycin pharmacokinetics and dosage requirements in hematologic malignancies. Clin Pharm 12(7):515–520

    CAS  PubMed  Google Scholar 

  • Forouzesh A, Moise PA et al (2009) Vancomycin ototoxicity: a re-evaluation in an era of increasing doses. Antimicrob Agents Chemother 53(2):483–486

    CAS  PubMed Central  PubMed  Google Scholar 

  • Freeman CD, Quintiliani R et al (1993) Vancomycin therapeutic drug monitoring: is it necessary? Ann Pharmacother 27(5):594–598

    CAS  PubMed  Google Scholar 

  • Geraci JE, Wilson WR (1981) Vancomycin therapy for infective endocarditis. Rev Infect Dis 3(Suppl):S250–S258

    PubMed  Google Scholar 

  • Geraci JE, Heilman FR et al (1956) Some laboratory and clinical experiences with a new antibiotic, vancomycin. Antibiot Annu 1956–1957:90–106

    Google Scholar 

  • Gimenez F, Leblond V et al (1997) Variations of teicoplanin concentrations in neutropenic patients. J Clin Pharm Ther 22(3):187–190

    CAS  PubMed  Google Scholar 

  • Goetz MB, Sayers J (1993) Nephrotoxicity of vancomycin and aminoglycoside therapy separately and in combination. J Antimicrob Chemother 32(2):325–334

    CAS  PubMed  Google Scholar 

  • Goldberg MR, Wong SL et al (2010a) Lack of effect of moderate hepatic impairment on the pharmacokinetics of telavancin. Pharmacotherapy 30(1):35–42

    CAS  PubMed  Google Scholar 

  • Goldberg MR, Wong SL et al (2010b) Single-dose pharmacokinetics and tolerability of telavancin in elderly men and women. Pharmacotherapy 30(8):806–811

    CAS  PubMed  Google Scholar 

  • Goldstein EJ, Citron DM et al (2006) In vitro activities of dalbavancin and 12 other agents against 329 aerobic and anaerobic gram-positive isolates recovered from diabetic foot infections. Antimicrob Agents Chemother 50(8):2875–2879

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gotfried MH, Shaw JP et al (2008) Intrapulmonary distribution of intravenous telavancin in healthy subjects and effect of pulmonary surfactant on in vitro activities of telavancin and other antibiotics. Antimicrob Agents Chemother 52(1):92–97

    CAS  PubMed Central  PubMed  Google Scholar 

  • Greenberg RN (1990) Treatment of bone, joint, and vascular-access-associated gram-positive bacterial infections with teicoplanin. Antimicrob Agents Chemother 34(12):2392–2397

    CAS  PubMed Central  PubMed  Google Scholar 

  • Greenberg RN, Benes CA (1990) Time-kill studies with oxacillin, vancomycin, and teicoplanin versus Staphylococcus aureus. J Infect Dis 161(5):1036–1037

    CAS  PubMed  Google Scholar 

  • Gyssens IC (2010a) Teicoplanin. In: Grayson ML, Crowe S, McCarthy J et al (eds) Kucers’ the use of antibiotics. A clinical review of antibacterial, antifungal, anti-parasitic and antiviral drugs. Hodder Arnold, London

    Google Scholar 

  • Gyssens IC (2010b) Vancomycin. In: Grayson ML, Crowe S, McCarthy J et al (eds) Kucers’ the use of antibiotics. A clinical review of antibacterial, antifungal, anti-parasitic and antiviral drugs. Hodder Arnold, London

    Google Scholar 

  • Hahn-Ast C, Glasmacher A et al (2008) An audit of efficacy and toxicity of teicoplanin versus vancomycin in febrile neutropenia: is the different toxicity profile clinically relevant? Infection 36(1):54–58

    CAS  PubMed  Google Scholar 

  • Harding I, MacGowan AP et al (2000) Teicoplanin therapy for Staphylococcus aureus septicaemia: relationship between pre-dose serum concentrations and outcome. J Antimicrob Chemother 45(6):835–841

    CAS  PubMed  Google Scholar 

  • Hayden MK, Koenig GI et al (1994) Bactericidal activities of antibiotics against vancomycin-resistant Enterococcus faecium blood isolates and synergistic activities of combinations. Antimicrob Agents Chemother 38(6):1225–1229

    CAS  PubMed Central  PubMed  Google Scholar 

  • Healy DP, Polk RE et al (1987) Comparison of steady-state pharmacokinetics of two dosage regimens of vancomycin in normal volunteers. Antimicrob Agents Chemother 31(3):393–397

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hegde SS, Reyes N et al (2004) Pharmacodynamics of telavancin (TD-6424), a novel bactericidal agent, against gram-positive bacteria. Antimicrob Agents Chemother 48(8):3043–3050

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hidayat LK, Hsu DI et al (2006) High-dose vancomycin therapy for methicillin-resistant Staphylococcus aureus infections: efficacy and toxicity. Arch Intern Med 166(19):2138–2144

    PubMed  Google Scholar 

  • Higgins DL, Chang R et al (2005) Telavancin, a multifunctional lipoglycopeptide, disrupts both cell wall synthesis and cell membrane integrity in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 49(3):1127–1134

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hiramatsu K (2001) Vancomycin-resistant Staphylococcus aureus: a new model of antibiotic resistance. Lancet Infect Dis 1(3):147–155

    CAS  PubMed  Google Scholar 

  • Howden BP, Ward PB et al (2004) Treatment outcomes for serious infections caused by methicillin-resistant Staphylococcus aureus with reduced vancomycin susceptibility. Clin Infect Dis 38(4):521–528

    CAS  PubMed  Google Scholar 

  • Ingram PR, Lye DC et al (2008) Risk factors for nephrotoxicity associated with continuous vancomycin infusion in outpatient parenteral antibiotic therapy. J Antimicrob Chemother 62(1):168–171

    CAS  PubMed  Google Scholar 

  • James A, Koren G et al (1987) Vancomycin pharmacokinetics and dose recommendations for preterm infants. Antimicrob Agents Chemother 31(1):52–54

    CAS  PubMed Central  PubMed  Google Scholar 

  • James JK, Palmer SM et al (1996) Comparison of conventional dosing versus continuous-infusion vancomycin therapy for patients with suspected or documented gram-positive infections. Antimicrob Agents Chemother 40(3):696–700

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jeffres MN, Isakow W et al (2006) Predictors of mortality for methicillin-resistant Staphylococcus aureus health-care-associated pneumonia: specific evaluation of vancomycin pharmacokinetic indices. Chest 130(4):947–955

    PubMed  Google Scholar 

  • Jones RN (2006) Microbiological features of vancomycin in the 21st century: minimum inhibitory concentration creep, bactericidal/static activity, and applied breakpoints to predict clinical outcomes or detect resistant strains. Clin Infect Dis 42(Suppl 1):S13–S24

    CAS  PubMed  Google Scholar 

  • King A, Phillips I et al (2004) Comparative in vitro activity of telavancin (TD-6424), a rapidly bactericidal, concentration-dependent anti-infective with multiple mechanisms of action against Gram-positive bacteria. J Antimicrob Chemother 53(5):797–803

    CAS  PubMed  Google Scholar 

  • Knudsen JD, Fuursted K et al (2000) Pharmacodynamics of glycopeptides in the mouse peritonitis model of Streptococcus pneumoniae or Staphylococcus aureus infection. Antimicrob Agents Chemother 44(5):1247–1254

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krause KM, Renelli M et al (2008) In vitro activity of telavancin against resistant gram-positive bacteria. Antimicrob Agents Chemother 52(7):2647–2652

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krothapalli RK, Senekjian HO et al (1983) Efficacy of intravenous vancomycin in the treatment of gram-positive peritonitis in long-term peritoneal dialysis. Am J Med 75(2):345–348

    CAS  PubMed  Google Scholar 

  • Kullar R, Leonard SN et al (2011) Validation of the effectiveness of a vancomycin nomogram in achieving target trough concentrations of 15-20 mg/L suggested by the vancomycin consensus guidelines. Pharmacotherapy 31(5):441–448

    CAS  PubMed  Google Scholar 

  • Kullar R, Davis SL et al (2012) Effects of targeting higher vancomycin trough levels on clinical outcomes and costs in a matched patient cohort. Pharmacotherapy 32(3):195–201

    PubMed  Google Scholar 

  • Kureishi A, Jewesson PJ et al (1991) Double-blind comparison of teicoplanin versus vancomycin in febrile neutropenic patients receiving concomitant tobramycin and piperacillin: effect on cyclosporin A-associated nephrotoxicity. Antimicrob Agents Chemother 35(11):2246–2252

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuti JL, Kiffer CR et al (2008) Pharmacodynamic comparison of linezolid, teicoplanin and vancomycin against clinical isolates of Staphylococcus aureus and coagulase-negative staphylococci collected from hospitals in Brazil. Clin Microbiol Infect 14(2):116–123

    CAS  PubMed  Google Scholar 

  • LaPlante KL, Rybak MJ (2004) Impact of high-inoculum Staphylococcus aureus on the activities of nafcillin, vancomycin, linezolid, and daptomycin, alone and in combination with gentamicin, in an in vitro pharmacodynamic model. Antimicrob Agents Chemother 48(12):4665–4672

    CAS  PubMed Central  PubMed  Google Scholar 

  • Larsson AJ, Walker KJ et al (1996) The concentration-independent effect of monoexponential and biexponential decay in vancomycin concentrations on the killing of Staphylococcus aureus under aerobic and anaerobic conditions. J Antimicrob Chemother 38(4):589–597

    CAS  PubMed  Google Scholar 

  • Lazzarini L, Tramarin A et al (2002) Three-times weekly teicoplanin in the outpatient treatment of acute methicillin-resistant staphylococcal osteomyelitis: a pilot study. J Chemother 14(1):71–75

    CAS  PubMed  Google Scholar 

  • Lee JY, Ko KS et al (2006) In vitro evaluation of the antibiotic lock technique (ALT) for the treatment of catheter-related infections caused by staphylococci. J Antimicrob Chemother 57(6):1110–1115

    CAS  PubMed  Google Scholar 

  • Leonard SN, Rybak MJ (2009) Evaluation of vancomycin and daptomycin against methicillin-resistant Staphylococcus aureus and heterogeneously vancomycin-intermediate S. aureus in an in vitro pharmacokinetic/pharmacodynamic model with simulated endocardial vegetations. J Antimicrob Chemother 63(1):155–160

    CAS  PubMed  Google Scholar 

  • Leuthner KD, Cheung CM et al (2006) Comparative activity of the new lipoglycopeptide telavancin in the presence and absence of serum against 50 glycopeptide non-susceptible staphylococci and three vancomycin-resistant Staphylococcus aureus. J Antimicrob Chemother 58(2):338–343

    CAS  PubMed  Google Scholar 

  • Lindholm DD, Murray JS (1966) Persistence of vancomycin in the blood during renal failure and its treatment by hemodialysis. N Engl J Med 274(19):1047–1051

    CAS  PubMed  Google Scholar 

  • Lodise TP Jr, Gotfried M et al (2008a) Telavancin penetration into human epithelial lining fluid determined by population pharmacokinetic modeling and Monte Carlo simulation. Antimicrob Agents Chemother 52(7):2300–2304

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lodise TP, Lomaestro B et al (2008b) Larger vancomycin doses (at least four grams per day) are associated with an increased incidence of nephrotoxicity. Antimicrob Agents Chemother 52(4):1330–1336

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lodise TP, Patel N et al (2009) Relationship between initial vancomycin concentration-time profile and nephrotoxicity among hospitalized patients. Clin Infect Dis 49(4):507–514

    CAS  PubMed  Google Scholar 

  • Lodise TP, Butterfield JM et al (2012) Telavancin pharmacokinetics and pharmacodynamics in patients with complicated skin and skin structure infections and various degrees of renal function. Antimicrob Agents Chemother 56(4):2062–2066

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lowdin E, Odenholt I et al (1998) In vitro studies of pharmacodynamic properties of vancomycin against Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob Agents Chemother 42(10):2739–2744

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lubenko IY, Strukova EV et al (2008) Telavancin and vancomycin pharmacodynamics with Staphylococcus aureus in an in vitro dynamic model. J Antimicrob Chemother 62(5):1065–1069

    CAS  PubMed  Google Scholar 

  • Lunde CS, Hartouni SR, Janc JW et al (2009) Telavancin disrupts the functional integrity of the bacterial membrane through targeted interaction with the cell wall precursor lipid II. Antimicrob Agents Chemother 8:3375–3383

    Google Scholar 

  • Lutz H, Lenarz T et al (1991) Ototoxicity of vancomycin: an experimental study in guinea pigs. ORL J Otorhinolaryngol Relat Spec 53(5):273–278

    CAS  PubMed  Google Scholar 

  • MacGowan AP, McMullin CM et al (1992) Serum monitoring of teicoplanin. J Antimicrob Chemother 30(3):399–402

    CAS  PubMed  Google Scholar 

  • MacGowan AP, Noel AR et al (2011) Pharmacodynamics of telavancin studied in an in vitro pharmacokinetic model of infection. Antimicrob Agents Chemother 55(2):867–873

    CAS  PubMed Central  PubMed  Google Scholar 

  • Madrigal AG, Basuino L et al (2005) Efficacy of Telavancin in a rabbit model of aortic valve endocarditis due to methicillin-resistant Staphylococcus aureus or vancomycin-intermediate Staphylococcus aureus. Antimicrob Agents Chemother 49(8):3163–3165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Magera BE, Arroyo JC et al (1983) Vancomycin pharmacokinetics in patients with peritonitis on peritoneal dialysis. Antimicrob Agents Chemother 23(5):710–714

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marre R, Schulz E et al (1987) Teicoplanin: renal tolerance and pharmacokinetics in rats. J Antimicrob Chemother 20(5):697–704

    CAS  PubMed  Google Scholar 

  • Matthews PC, Taylor A et al (2007) Teicoplanin levels in bone and joint infections: are standard doses subtherapeutic? J Infect 55(5):408–413

    PubMed  Google Scholar 

  • Matzke GR, McGory RW et al (1984) Pharmacokinetics of vancomycin in patients with various degrees of renal function. Antimicrob Agents Chemother 25(4):433–437

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matzke GR, Zhanel GG et al (1986) Clinical pharmacokinetics of vancomycin. Clin Pharmacokinet 11(4):257–282

    CAS  PubMed  Google Scholar 

  • McCormick MH, Stark WM, Pittenger GE et al (1956) Vancomycin, a new antibiotic. I. Chemical and biologic properties. Antibiot Ann 3:606–611

    Google Scholar 

  • Mellor JA, Kingdom J et al (1985) Vancomycin toxicity: a prospective study. J Antimicrob Chemother 15(6):773–780

    CAS  PubMed  Google Scholar 

  • Mendes RE, Sader HS et al (2012) Telavancin activity tested against a contemporary collection of Gram-positive pathogens from USA Hospitals (2007–2009). Diagn Microbiol Infect Dis 72(1):113–117

    CAS  PubMed  Google Scholar 

  • Mendes RE, Sader HS et al (2011) Update on the telavancin activity tested against European staphylococcal clinical isolates (2009–2010). Diagn Microbiol Infect Dis 71(1):93–97

    CAS  PubMed  Google Scholar 

  • Meylan PR, Francioli P et al (1986) Discrepancies between MBC and actual killing of viridans group streptococci by cell-wall-active antibiotics. Antimicrob Agents Chemother 29(3):418–423

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miro JM, Garcia-de-la-Maria C et al (2007) Efficacy of telavancin in the treatment of experimental endocarditis due to glycopeptide-intermediate Staphylococcus aureus. Antimicrob Agents Chemother 51(7):2373–2377

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moellering RC Jr (1994) Monitoring serum vancomycin levels: climbing the mountain because it is there? Clin Infect Dis 18(4):544–546

    PubMed  Google Scholar 

  • Moellering Jr RC, Krogstad DJ et al (1981) Vancomycin therapy in patients with impaired renal function: nomogram for dosage. Ann Intern Med 94:343–346

    Google Scholar 

  • Moellering RC Jr (1984) Pharmacokinetics of vancomycin. J Antimicrob Chemother 14(Suppl D):43–52

    CAS  PubMed  Google Scholar 

  • Moise PA, Forrest A et al (2000) Area under the inhibitory curve and a pneumonia scoring system for predicting outcomes of vancomycin therapy for respiratory infections by Staphylococcus aureus. Am J Health Syst Pharm 57(Suppl 2):S4–S9

    PubMed  Google Scholar 

  • Moise PA, Smyth DS et al (2008) Microbiological effects of prior vancomycin use in patients with methicillin-resistant Staphylococcus aureus bacteraemia. J Antimicrob Chemother 61(1):85–90

    CAS  PubMed  Google Scholar 

  • Moise-Broder PA, Forrest A et al (2004a) Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin Pharmacokinet 43(13):925–942

    CAS  PubMed  Google Scholar 

  • Moise-Broder PA, Sakoulas G et al (2004b) Accessory gene regulator group II polymorphism in methicillin-resistant Staphylococcus aureus is predictive of failure of vancomycin therapy. Clin Infect Dis 38(12):1700–1705

    CAS  PubMed  Google Scholar 

  • Morse GD, Farolino DF et al (1987) Comparative study of intraperitoneal and intravenous vancomycin pharmacokinetics during continuous ambulatory peritoneal dialysis. Antimicrob Agents Chemother 31(2):173–177

    CAS  PubMed Central  PubMed  Google Scholar 

  • Naqvi SH, Keenan WJ et al (1986) Vancomycin pharmacokinetics in small, seriously ill infants. Am J Dis Child 140(2):107–110

    CAS  PubMed  Google Scholar 

  • Noble JT, Tyburski MB et al (1980) Antimicrobial tolerance in group G streptococci. Lancet 2(8201):982

    CAS  PubMed  Google Scholar 

  • Odenholt I, Lowdin E et al (2003) In vitro studies of the pharmacodynamics of teicoplanin against Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecium. Clin Microbiol Infect 9(9):930–937

    CAS  PubMed  Google Scholar 

  • Outman WR, Nightingale CH et al (1990) Teicoplanin pharmacokinetics in healthy volunteers after administration of intravenous loading and maintenance doses. Antimicrob Agents Chemother 34(11):2114–2117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pace JL, Krause K et al (2003) In vitro activity of TD-6424 against Staphylococcus aureus. Antimicrob Agents Chemother 47(11):3602–3604

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pankuch GA, Appelbaum PC (2009) Postantibiotic effects of telavancin against 16 gram-positive organisms. Antimicrob Agents Chemother 53(3):1275–1277

    CAS  PubMed Central  PubMed  Google Scholar 

  • Papaioannou MG, Marinaki S et al (2002) Pharmacokinetics of teicoplanin in patients undergoing chronic haemodialysis. Int J Antimicrob Agents 19(3):233–236

    CAS  PubMed  Google Scholar 

  • Pauly DJ, Musa DM et al (1990) Risk of nephrotoxicity with combination vancomycin-aminoglycoside antibiotic therapy. Pharmacotherapy 10(6):378–382

    CAS  PubMed  Google Scholar 

  • Pea F, Viale P (2008) Should the currently recommended twice-daily dosing still be considered the most appropriate regimen for treating MRSA ventilator-associated pneumonia with vancomycin? Clin Pharmacokinet 47(3):147–152

    CAS  PubMed  Google Scholar 

  • Pea F, Porreca L et al (2000) High vancomycin dosage regimens required by intensive care unit patients cotreated with drugs to improve haemodynamics following cardiac surgical procedures. J Antimicrob Chemother 45(3):329–335

    CAS  PubMed  Google Scholar 

  • Pea F, Viale P et al (2004) Teicoplanin in patients with acute leukaemia and febrile neutropenia: a special population benefiting from higher dosages. Clin Pharmacokinet 43(6):405–415

    CAS  PubMed  Google Scholar 

  • Pfeiffer RR (1981) Structural features of vancomycin. Rev Infect Dis 3 (Suppl):S205–209

    Google Scholar 

  • Phillips G, Golledge CL (1992) Vancomycin and teicoplanin: something old, something new. Med J Aust 156(1):53–57

    CAS  PubMed  Google Scholar 

  • Pollard TA, Lampasona V et al (1994) Vancomycin redistribution: dosing recommendations following high-flux hemodialysis. Kidney Int 45(1):232–237

    CAS  PubMed  Google Scholar 

  • Pritchard L, Baker C et al (2010) Increasing vancomycin serum trough concentrations and incidence of nephrotoxicity. Am J Med 123(12):1143–1149

    CAS  PubMed  Google Scholar 

  • Quale JM, O’Halloran JJ et al (1992) Removal of vancomycin by high-flux hemodialysis membranes. Antimicrob Agents Chemother 36(7):1424–1426

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reed MD, Yamashita TS et al (1997) The pharmacokinetics of teicoplanin in infants and children. J Antimicrob Chemother 39(6):789–796

    CAS  PubMed  Google Scholar 

  • Reyes N, Skinner R et al (2005) Efficacy of telavancin (TD-6424), a rapidly bactericidal lipoglycopeptide with multiple mechanisms of action, in a murine model of pneumonia induced by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 49(10):4344–4346

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reyes N, Skinner R et al (2006) Efficacy of telavancin in a murine model of bacteraemia induced by methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 58(2):462–465

    CAS  PubMed  Google Scholar 

  • Rodvold KA, Blum RA et al (1988) Vancomycin pharmacokinetics in patients with various degrees of renal function. Antimicrob Agents Chemother 32(6):848–852

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rotschafer JC, Crossley K et al (1982) Pharmacokinetics of vancomycin: observations in 28 patients and dosage recommendations. Antimicrob Agents Chemother 22(3):391–394

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rouveix B, Jehl F et al (2004) Randomized comparison of serum teicoplanin concentrations following daily or alternate daily dosing in healthy adults. Antimicrob Agents Chemother 48(7):2394–2399

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rubinstein E, Lalani T et al (2011) Telavancin versus vancomycin for hospital-acquired pneumonia due to gram-positive pathogens. Clin Infect Dis 52(1):31–40

    CAS  PubMed  Google Scholar 

  • Rybak MJ (2006) The pharmacokinetic and pharmacodynamic properties of vancomycin. Clin Infect Dis 42 (Suppl 1):S35–39

    Google Scholar 

  • Rybak MJ, Albrecht LM et al (1990) Nephrotoxicity of vancomycin, alone and with an aminoglycoside. J Antimicrob Chemother 25(4):679–687

    CAS  PubMed  Google Scholar 

  • Rybak MJ, Lerner SA et al (1991) Teicoplanin pharmacokinetics in intravenous drug abusers being treated for bacterial endocarditis. Antimicrob Agents Chemother 35(4):696–700

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rybak M, Lomaestro B et al (2009a) Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm 66(1):82–98

    CAS  PubMed  Google Scholar 

  • Rybak MJ, Lomaestro BM et al (2009b) Vancomycin therapeutic guidelines: a summary of consensus recommendations from the infectious diseases Society of America, the American Society of Health-System Pharmacists, and the Society of Infectious Diseases Pharmacists. Clin Infect Dis 49(3):325–327

    PubMed  Google Scholar 

  • Sakoulas G, Moise-Broder PA et al (2004) Relationship of MIC and bactericidal activity to efficacy of vancomycin for treatment of methicillin-resistant Staphylococcus aureus bacteremia. J Clin Microbiol 42(6):2398–2402

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salzman C, Weingold AB et al (1987) Increased dose requirements of vancomycin in a pregnant patient with endocarditis. J Infect Dis 156(2):409

    CAS  PubMed  Google Scholar 

  • Sanchez A, Lopez-Herce J et al (1999) Teicoplanin pharmacokinetics in critically ill paediatric patients. J Antimicrob Chemother 44(3):407–409

    CAS  PubMed  Google Scholar 

  • Sanofi Aventis (2006) Telavancin monograph

    Google Scholar 

  • Santre C, Leroy O et al (1993) Pharmacokinetics of vancomycin during continuous hemodiafiltration. Intensive Care Med 19(6):347–350

    CAS  PubMed  Google Scholar 

  • Saravolatz LD, Pawlak J et al (2007) Comparative activity of telavancin against isolates of community-associated methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 60(2):406–409

    CAS  PubMed  Google Scholar 

  • Sato M, Chida K et al (2006) Recommended initial loading dose of teicoplanin, established by therapeutic drug monitoring, and outcome in terms of optimal trough level. J Infect Chemother 12(4):185–189

    CAS  PubMed  Google Scholar 

  • Saugel B, Nowack MC et al (2013) Continuous intravenous administration of vancomycin in medical intensive care unit patients. J Crit Care 28(1):9–13

    CAS  PubMed  Google Scholar 

  • Saunders NJ (1995) Vancomycin administration and monitoring reappraisal. J Antimicrob Chemother 36(2):279–282

    CAS  PubMed  Google Scholar 

  • Schaad UB, McCracken GH Jr et al (1980) Clinical pharmacology and efficacy of vancomycin in pediatric patients. J Pediatr 96(1):119–126

    CAS  PubMed  Google Scholar 

  • Shaw JP, Seroogy J et al (2005) Pharmacokinetics, serum inhibitory and bactericidal activity, and safety of telavancin in healthy subjects. Antimicrob Agents Chemother 49(1):195–201

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith SR, Cheesbrough J et al (1989) Randomized prospective study comparing vancomycin with teicoplanin in the treatment of infections associated with Hickman catheters. Antimicrob Agents Chemother 33(8):1193–1197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smithers JA, Kulmala HK et al (1992) Pharmacokinetics of teicoplanin upon multiple-dose intravenous administration of 3, 12, and 30 milligrams per kilogram of body weight to healthy male volunteers. Antimicrob Agents Chemother 36(1):115–120

    CAS  PubMed Central  PubMed  Google Scholar 

  • Soriano A, Marco F et al (2008) Influence of vancomycin minimum inhibitory concentration on the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis 46(2):193–200

    CAS  PubMed  Google Scholar 

  • Sorrell TC, Collignon PJ (1985) A prospective study of adverse reactions associated with vancomycin therapy. J Antimicrob Chemother 16(2):235–241

    CAS  PubMed  Google Scholar 

  • Spitzer PG, Eliopoulos GM (1984) Systemic absorption of enteral vancomycin in a patient with pseudomembranous colitis. Ann Intern Med 100(4):533–534

    CAS  PubMed  Google Scholar 

  • Stamatiadis D, Papaioannou MG et al (2003) Pharmacokinetics of teicoplanin in patients undergoing continuous ambulatory peritoneal dialysis. Perit Dial Int 23(2):127–131

    CAS  PubMed  Google Scholar 

  • Stryjewski ME, O’Riordan WD et al (2005) Telavancin versus standard therapy for treatment of complicated skin and soft-tissue infections due to gram-positive bacteria. Clin Infect Dis 40(11):1601–1607

    CAS  PubMed  Google Scholar 

  • Stryjewski ME, Chu VH et al (2006) Telavancin versus standard therapy for treatment of complicated skin and skin structure infections caused by gram-positive bacteria: FAST 2 study. Antimicrob Agents Chemother 50(3):862–867

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stucki A, Gerber P et al (2006) Efficacy of telavancin against penicillin-resistant pneumococci and Staphylococcus aureus in a rabbit meningitis model and determination of kinetic parameters. Antimicrob Agents Chemother 50(2):770–773

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun HK, Duchin K et al (2006) Tissue penetration of telavancin after intravenous administration in healthy subjects. Antimicrob Agents Chemother 50(2):788–790

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson GA, Smithers JA et al (1992) Pharmacokinetics of teicoplanin upon multiple dose intravenous administration to normal healthy male volunteers. Biopharm Drug Dispos 13(3):213–220

    CAS  PubMed  Google Scholar 

  • Truong J, Levkovich BJ et al (2012) Simple approach to improving vancomycin dosing in intensive care: a standardised loading dose results in earlier therapeutic levels. Intern Med J 42(1):23–29

    CAS  PubMed  Google Scholar 

  • Tsuji BT, Leonard SN et al (2008) Evaluation of daptomycin, telavancin, teicoplanin, and vancomycin activity in the presence of albumin or serum. Diagn Microbiol Infect Dis 60(4):441–444

    CAS  PubMed  Google Scholar 

  • Van Bambeke F (2004) Glycopeptides in clinical development: pharmacological profile and clinical perspectives. Curr Opin Pharmacol 4(5):471–478

    PubMed  Google Scholar 

  • Van der Auwera P, Aoun M et al (1991) Randomized study of vancomycin versus teicoplanin for the treatment of gram-positive bacterial infections in immunocompromised hosts. Antimicrob Agents Chemother 35(3):451–457

    PubMed Central  PubMed  Google Scholar 

  • Vance-Bryan K, Guay DR et al (1993) Effect of obesity on vancomycin pharmacokinetic parameters as determined by using a Bayesian forecasting technique. Antimicrob Agents Chemother 37(3):436–440

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vance-Bryan K, Rotschafer JC et al (1994) A comparative assessment of vancomycin-associated nephrotoxicity in the young versus the elderly hospitalized patient. J Antimicrob Chemother 33(4):811–821

    CAS  PubMed  Google Scholar 

  • Verbist L, Tjandramaga B et al (1984) In vitro activity and human pharmacokinetics of teicoplanin. Antimicrob Agents Chemother 26:881–886

    Google Scholar 

  • Whitehouse T, Cepeda JA et al (2005) Pharmacokinetic studies of linezolid and teicoplanin in the critically ill. J Antimicrob Chemother 55(3):333–340

    CAS  PubMed  Google Scholar 

  • Williams AH, Gruneberg RN (1984) Teicoplanin. J Antimicrob Chemother 14(5):441–445

    CAS  PubMed  Google Scholar 

  • Wilson AP (2000) Clinical pharmacokinetics of teicoplanin. Clin Pharmacokinet 39(3):167–183

    CAS  PubMed  Google Scholar 

  • Wilson AP, Gruneberg RN et al (1993) Dosage recommendations for teicoplanin. J Antimicrob Chemother 32(6):792–796

    CAS  PubMed  Google Scholar 

  • Wong SL, Barriere SL et al (2008) Multiple-dose pharmacokinetics of intravenous telavancin in healthy male and female subjects. J Antimicrob Chemother 62(4):780–783

    CAS  PubMed  Google Scholar 

  • Wong SL, Sorgel F et al (2009) Lack of pharmacokinetic drug interactions following concomitant administration of telavancin with aztreonam or piperacillin/tazobactam in healthy participants. J Clin Pharmacol 49(7):816–823

    CAS  PubMed  Google Scholar 

  • Wootton M, MacGowan AP et al (2007) A multicenter study evaluating the current strategies for isolating Staphylococcus aureus strains with reduced susceptibility to glycopeptides. J Clin Microbiol 45(2):329–332

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wysocki M, Thomas F et al (1995) Comparison of continuous with discontinuous intravenous infusion of vancomycin in severe MRSA infections. J Antimicrob Chemother 35(2):352–354

    CAS  PubMed  Google Scholar 

  • Wysocki M, Delatour F et al (2001) Continuous versus intermittent infusion of vancomycin in severe Staphylococcal infections: prospective multicenter randomized study. Antimicrob Agents Chemother 45(9):2460–2467

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yano R, Nakamura T et al (2007) Variability in teicoplanin protein binding and its prediction using serum albumin concentrations. Ther Drug Monit 29(4):399–403

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inge C. Gyssens M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gyssens, I.C. (2014). Glycopeptides. In: Vinks, A., Derendorf, H., Mouton, J. (eds) Fundamentals of Antimicrobial Pharmacokinetics and Pharmacodynamics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75613-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-75613-4_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-75612-7

  • Online ISBN: 978-0-387-75613-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics