Skip to main content

Biochips

  • Chapter
  • First Online:
More than Moore
  • 1523 Accesses

Abstract

This chapter gives an introduction to the basics of general architecture of microsystem for biological and chemical applications. A typical microfluidics system may contain many “technological blocks” relating to various stages of the sample preparation and analysis. Commercial success of microfluidic systems requires development of key technologies for fabrication, fast prototyping, and system integration. The development of technologies for integrated biochips and medical microsystems, therefore, represent an exciting challenge for the near future. Applications of such integrated systems include in-vitro diagnostics, environment monitoring, homeland security, and life sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manz, A., N. Graber, and H.M. Widmer, Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sensors and Actuators B: Chemical, 1990, 1(1–6): pp. 244–248.

    Article  Google Scholar 

  2. Bange, A., H.B. Halsall, and W.R. Heineman., Microfluidic immunosensor systems. Biosensors and Bioelectronics, 2005, 20: pp. 2488–2503.

    Article  Google Scholar 

  3. Vilkner, T., D. Janasek, and A. Manz, Micro total analysis systems. Recent developments. Analytical Chemistry, 2004, 76(12): p. 3373.

    Article  Google Scholar 

  4. Reyes, D.R., et al, Micro total analysis systems. 1. Introduction, theory, and technology. Analytical Chemistry, 2002, 74(12): pp. 2623–2636.

    Article  Google Scholar 

  5. Auroux, P.-A., et al, Micro total analysis systems. 2. Analytical standard operations and applications. Analytical Chemistry, 2002, 74(12): pp. 2637–2652.

    Article  Google Scholar 

  6. Oosterbroek, R.E. and A. van den Berg, Lab-on-a-chip, miniaturized systems for (bio)chemical analysis and synthesis, R.E. Oosterbroek and A. van den Berg, eds. 2003, Elsevier, Amsterdam, p. 394.

    Google Scholar 

  7. Tüdõs, A.J., G.A.J. Besselink, and R.B.M. Schasfoort, Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. Lab on a Chip, 2001, 1(2): pp. 83–95.

    Article  Google Scholar 

  8. Hobson, N.S., I. Tothill, and A.P.F. Turner, Microbial detection. Biosensors & Bioelectronics, 1996, 11(5): pp. 455–477.

    Article  Google Scholar 

  9. Ahmed, F.E., Detection of genetically modified organisms in foods. Trends in biotechnology, 2002, 20(5): pp. 215–223.

    Article  Google Scholar 

  10. Koester, C.J., S.L. Simonich, and B.K. Esser, Environmental analysis. Analytical Chemistry, 2003, 75: pp. 2813–2829.

    Article  Google Scholar 

  11. Richardson, S.D., Water analysis: Emerging contaminants and current issues. Analytical Chemistry, 2003, 75(12): pp. 2831–2857.

    Article  Google Scholar 

  12. Iqbal, S.S., et al, A review of molecular recognition technologies for detection of biological threat agents. Biosensors & Bioelectronics, 2000, 15(11–12): pp. 549–578.

    Article  Google Scholar 

  13. Wang, J., Microchip devices for detecting terrorist weapons. Analytica Chimica Acta, 2004, 507(1): pp. 3–10.

    Article  Google Scholar 

  14. Skelley, A.M., et al, Development and evaluation of a microdevice for amino acid biomarker detection and analysis on Mars. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(4): pp. 1041–1046.

    Article  Google Scholar 

  15. White, T.J., The future of PCR technology: Diversification of technologies and applications. Trends in Biotechnology, 1996, 14(12): pp. 478–483.

    Article  Google Scholar 

  16. Le Pioufle, B., M. Frenea, and A. Tixier, Biopuces pour le traitement de cellules vivantes: micromanipulation des cellules par voie electrique ou microfluidique. Comptes Rendus Physique, 2004, 5(5): pp. 589–596.

    Article  Google Scholar 

  17. El-Ali, J., P.K. Sorger, and K.F. Jensen, Cells on chips. Nature, 2006, 442(7101): p. 403.

    Article  Google Scholar 

  18. A. R. Kopf-Sill, Successes and challenges of lab-on-a-chip, Lab on a Chip, 2002, 2: pp. 42n–47n.

    Article  Google Scholar 

  19. R. H. Liu, J. N. Yang, R. Lenigk, J. Bonanno, and P. Grodzinski, Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection, Analytical Chemistry, 2004, 76: pp. 1824–1831.

    Article  Google Scholar 

  20. J. Lee and C. J. Kim, Surface-tension-driven microactuation based on continuous electrowetting, Journal of Microelectromechanical Systems, 2000, 9: pp. 171–180.

    Article  MATH  Google Scholar 

  21. M. G. Pollack, R. B. Fair, and A. D. Shenderov, Electrowetting-based actuation of liquid droplets for microfluidic applications, Applied Physics Letters, 2000, 77: pp. 1725–1726.

    Article  Google Scholar 

  22. Fouillet Y., et al, “EWOD digital microdluidic for lab-on-chip”, Proceedings of ASME ICNMM2006 4th International Conference on Nanochannels, Microchannels and Minichannels, June 19–21, 2006, Limerick, Ireland.

    Google Scholar 

  23. S.-K. Fan, C. Hashi, and C.-J. Kim, “Manipulation of multiple droplets on N/spl times/M grid by cross-reference EWOD driving scheme and pressure-contact packaging,” presented at Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto. IEEE The Sixteenth Annual International Conference on, 2003.

    Google Scholar 

  24. M. Joanicot and A. Ajdari, Droplet control for microfluidics, Science, 2005, 309.

    Google Scholar 

  25. Lichtenberg, J., N.F. de Rooij, and E. Verpoorte, Sample pretreatment on microfabricated devices, Talanta, 2002, 56(2): pp. 233–266.

    Article  Google Scholar 

  26. Pawliszyn, J., Sample preparation: Quo Vadis? Analytical Chemistry, 2003, 75(11): pp. 2543–2558.

    Article  Google Scholar 

  27. Andersson, H., et al, Micromachined flow-through filter-chamber for chemical reactions on beads. Sensors and Actuators B-Chemical, 2000, 67(1–2): pp. 203–208.

    Article  Google Scholar 

  28. Xing, X., et al, Micromachined membrane particle filters. Sensors and Actuators a-Physical, 1999, 73(1–2): pp. 184–191.

    Google Scholar 

  29. Desai, T.A., et al, Nanoporous anti-fouling silicon membranes for biosensor applications. Biosensors and Bioelectronics, 2000, 15(9–10): pp. 453–462.

    Article  Google Scholar 

  30. Brody, J.P. and P. Yager, Diffusion-based extraction in a microfabricated device. Sensors and Actuators A: Physical, 1997, 58(1): pp. 13–18.

    Article  Google Scholar 

  31. Hatch, A., et al, A rapid diffusion immunoassay in a T-sensor. Nature Biotechnology, 2001, 19(5): pp. 461–465.

    Article  Google Scholar 

  32. Raymond, D.E., A. Manz, and H.M. Widmer, Continuous sample pretreatment using a free-flow electrophoresis device integrated onto a silicon chip. Analytical Chemistry, 1994, 66(18): pp. 2858–2865.

    Article  Google Scholar 

  33. Hui W. C., et al, Microfluidic systems for extracting nucleic acids for DNA and RNA analysis, Sensors and Actuators A, 2007, 133: pp. 335–339.

    Article  Google Scholar 

  34. Tokeshi, M., et al, Continuous-flow chemical processing on a microchip by combining microunit operations and a multiphase flow network. Analytical Chemistry, 2002, 74(7): pp. 1565–1571.

    Article  Google Scholar 

  35. Tran V.M, et al, “Micro-extractor for liquid-liquid extraction, concentration and in-situ detection of lead”, 10th International Conference on Microreaction Technology (IMRET – 2008), 2008, New Orleans, USA.

    Google Scholar 

  36. Stachowiak, T.B., F. Svec, and J.M.J. Frechet, Chip electrochromatography. Journal of Chromatography A, 2004, 1044(1–2): pp. 97–111.

    Article  Google Scholar 

  37. Sarrut, N., et al. “Enzymatic digestion and liquid chromatography in micro-pillar reactors, hydrodynamic versus electroosmotic driven flow”, Photonics West, Microfluidics, BioMEMS and Medical Microsystems III, 2005, San Jose, CA. SPIE-Int. Soc. Opt. Eng.

    Google Scholar 

  38. Oleschuk, R.D., et al, Trapping of bead-based reagents within microfluidic systems: On-chip solid-phase extraction and electrochromatography. Analytical Chemistry, 2000, 72(3): pp. 585–590.

    Article  Google Scholar 

  39. Yu, C., et al, Monolithic porous polymer for on-chip solid-phase extraction and preconcentration prepared by photoinitiated in situ polymerization within a microfluidic device. Analytical Chemistry, 2001, 73(21): pp. 5088–5096.

    Article  Google Scholar 

  40. Stachowiak, T.B., et al, Fabrication of porous polymer monoliths covalently attached to the walls of channels in plastic microdevices. Electrophoresis, 2003, 24(21): pp. 3689–3693.

    Article  Google Scholar 

  41. Lion, N., et al, Microfluidic systems in proteomics. Electrophoresis, 2003, 24(21): pp. 3533–3562.

    Article  Google Scholar 

  42. Fan, Z.H., et al, Dynamic DNA hybridization on a chip using paramagnetic beads. Analytical Chemistry, 1999, 71(21): pp. 4851–4859.

    Article  Google Scholar 

  43. Choi, J.-W., et al., Development and Characterization of Microfluidic Devices and systems for magnetic bead-based biochemical detection. Biomedical Devices, 2001, 3(3): pp. 191–200.

    Google Scholar 

  44. Hashimoto, M., et al, Rapid PCR in a continuous flow device. Lab on a Chip, 2004, 4(6): pp. 638–645.

    Article  Google Scholar 

  45. Giordano, B.C., et al, Polymerase chain reaction in polymeric microchips: DNA amplification in less than 240 seconds. Analytical Biochemistry, 2001, 291(1): pp. 124–132.

    Article  Google Scholar 

  46. Guijt, R.M., et al, Chemical and physical processes for integrated temperature control in microfluidic devices. Lab on a Chip, 2003, 3(1): pp. 1–4.

    Article  Google Scholar 

  47. Roper, M.G., C.J. Easley, and J.P. Landers, Advances in polymerase chain reaction on microfluidic chips. Analytical Chemistry, 2005, 77(12): pp. 3887–3893.

    Article  Google Scholar 

  48. Palmieri, M., et al, Develops the “In-Check” platform for diagnostic applications, Proceedings of SPIE, 2008, 6886, p. 688602.

    Article  Google Scholar 

  49. Schwarz, M.A. and P.C. Hauser, Recent developments in detection methods for microfabricated analytical devices. Lab on a Chip, 2001, 1(1): pp. 1–6.

    Article  Google Scholar 

  50. Fritz, J., et al, Translating biomolecular recognition into nanomechanics. Science, 2000, 288(5464): pp. 316–318.

    Article  Google Scholar 

  51. Drummond, G., M.G. Hill, and J.K. Barton, Electrochemical DNA sensors. Nature biotechnology, 2003, 21(10): pp. 1192–1199.

    Article  Google Scholar 

  52. Bakker, E. and Y. Qin, Electrochemical sensors. Analytical Chemistry, 2006, 78(12): pp. 3965–3984.

    Article  Google Scholar 

  53. Miller, M.M., et al, Detection of a micron-sized magnetic sphere using a ring-shaped anisotropic magnetoresistance-based sensor: A model for a magnetoresistance-based biosensor. Applied Physics Letters, 2002, 81(12): pp. 2211–2213.

    Article  Google Scholar 

  54. Cui, Y., et al, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001, 293: pp. 1289–1292.

    Article  Google Scholar 

  55. Patolsky, F., G. Zheng, and C.M. Lieber, Nanowire-based biosensors. Analytical Chemistry, 2006, 78(13): p. 4261.

    Article  Google Scholar 

  56. Gu, L.-Q., S. Cheley, and H. Bayley, Capture of a single molecule in a nanocavity. Science, 2001, 291: pp. 636–640.

    Article  Google Scholar 

  57. Saleh, O.A. and L.L. Sohn, An artificial nanopore for molecular sensing. Nano Letters, 2003, 3(1): pp. 37–38.

    Article  Google Scholar 

  58. Gut, I.G., Automation in genotyping of single nucleotide polymorphisms. Human Mutation, 2001, 17: pp. 475–492.

    Article  Google Scholar 

  59. Aebersold, R. and M. Mann, Mass spectrometry-based proteomics. Nature, 2003, 422: pp. 198–207.

    Article  Google Scholar 

  60. Hierlemann, A., et al, Microfabrication Techniques for Chemical/Biosensors. Proceedings of the IEEE, 2003, 91(6): pp. 839–863.

    Article  Google Scholar 

  61. Verpoorte, E.M.J. and N.F. de Rooij, Microfluidics Meets MEMS. Proceedings of the IEEE, 2003, 91(6): pp. 930–953.

    Article  Google Scholar 

  62. Becker, H. and L.E. Locascio, Polymer microfluidic devices. Talanta, 2002, 56(2): pp. 221–378.

    Article  Google Scholar 

  63. Spearing, S.M., Materials issues in microelectromechanical systems (MEMS). Acta Materialia, 2000, 48(1): pp. 179–196.

    Article  Google Scholar 

  64. Kovacs, G.T.A., N.I. Maluf, and K.E. Petersen, Bulk micromachining of silicon. Proceedings of the IEEE, 1998, 86(8): pp. 1536–1551.

    Article  Google Scholar 

  65. Bustillo, J.M., R.T. Howe, and R.S. Muller, Surface micromachining for microelectromechanical systems. Proceedings of the IEEE, 1998, 86(8): pp. 1552–1574.

    Article  Google Scholar 

  66. Liu, R.H., et al, Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Analytical Chemistry, 2004, 76(7): pp. 1824–1831.

    Article  Google Scholar 

  67. Easley, C.J., et al, A fully integrated microfluidic genetic analysis system with sample-in-answer-out capability. Proceedings of the National Academy of Sciences, 2006, 103(51): pp. 19272–19277.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Vauchier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vauchier, C., Puget, P. (2009). Biochips. In: Zhang, G., Roosmalen, A. (eds) More than Moore. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-75593-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-75593-9_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-75592-2

  • Online ISBN: 978-0-387-75593-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics