Skip to main content

Sensors and Actuators on CMOS Platforms

  • Chapter
  • First Online:
More than Moore

Abstract

The monolithic or hybrid integration of sensors and actuators (S&A) onto CMOS platforms is of great importance to reduce the device size and cost as well as to facilitate new functionalities and better performance. Hence, S&As on CMOS platforms are important and convincing examples of “more than Moore.” This chapter focuses on a broad range of aspects of S&As on CMOS platforms. First, the basic concept is introduced, followed by a detailed description of the fundamentals of current S&A concepts. The current market situation is then described, demonstrating the great opportunities for S&As. A substantial part of the chapter is devoted to the various techniques and fabrication processes for monolithic and hybrid integration of S&As on CMOS. Successful examples of very large-scale integration (VLSI) ofS&As on CMOS platforms are also described. Current research into the use nanostructures for new or better S&A functionalities or improved performance is described in an additional subsection. Finally, the equally important back-end-of-the-line aspects in large-volume production, packaging, and testing are presented. The chapter closes with the authors’ outlook and view on the challenges and opportunities in research, development, production, and marketing of new and better S&As, VLSI-type S&As on single-chip CMOS platforms, and S&A networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lion KS (1969) Transducers: problems and prospects. IEEE Transactions on Industrial Electronics and Control Instrumentation IECI–16:2–5.

    Google Scholar 

  2. Middelhoek S, Noorlag D (1981) Three-dimensional representation of input and output transducers. Sensors and Actuators 2:29–41.

    Google Scholar 

  3. Waser R (2003) Nanoelectronics and information technology. Wiley-VCH, Weinheim.

    Google Scholar 

  4. Gopel W, Hesse J, Zemel J (1989) Sensors a comprehensive survey. VCH, Weinheim.

    Google Scholar 

  5. Sze SM (1994) Semiconductor sensors. Wiley, New York.

    Google Scholar 

  6. Atkinson GM, Pearson RE, Ounaies Z, et al (2003) Novel piezoelectric polyimide MEMS. Proceedings of the IEEE International Solid-State Sensors and Actuators Conference, Boston, MA, USA, vol. 1, 782–785.

    Google Scholar 

  7. Wang LP, Deng K, Zou L, et al (2002) Microelectromechanical systems (MEMS) accelerometers using lead zirconate titanate thick films. IEEE Electron Device Letters 23:182–184.

    Google Scholar 

  8. Shibata T, Unno K, Makino E (2003) Diamond AFM probe with piezoelectric sensor and actuator. Proceedings of the IEEE International Solid-State Sensors and Actuators Conference, Boston, MA, USA, vol. 1, 500–503.

    Google Scholar 

  9. Okuyama M, Yamashita K, Noda M (2003) Infrared and ultrasonic sensors using ferroelectric thin films. Proceedings of the IEEE International Solid-State Sensors and Actuators Conference, Boston, MA, USA, vol. 1, 226–229.

    Google Scholar 

  10. Kanda Y (1991) Piezoresistance effect of silicon. Sensors and Actuators A (Physical) A28:83–91.

    Google Scholar 

  11. Smith CS (1954) Piezoresistance effect in germanium and silicon. Physical Review 94:42.

    Google Scholar 

  12. Huang S, Li X, Wang Y, et al (2003) A piezoresistive accelerometer with axially stressed tiny beams for both much increased sensitivity and much broadened frequency bandwidth. Proceedings of the IEEE International Solid-State Sensors and Actuators Conference, Boston, MA, USA, vol. 1, 91–94.

    Google Scholar 

  13. Dao DV, Toriyama T, Sugiyama S, et al (2003) A MEMS-based microsensor to measure all six components of force and moment on a near-wall particle in turbulent flow. Proceedings of the IEEE International Solid-State Sensors and Actuators Conference, Boston, MA, USA, vol. 1, 504–507.

    Google Scholar 

  14. Charlot B, Parrain F, Galy N, et al (2004) A sweeping mode integrated fingerprint sensor with 256 tactile microbeams. Journal of Microelectromechanical Systems 13:636–644.

    Google Scholar 

  15. Charlot B, Parrain F, Galy N, et al (2003) A sweeping mode integrated tactile fingerprint sensor. Proceedings of the IEEE International Solid-State Sensors and Actuators Conference, Boston, MA, USA, vol. 2, 1031–1034.

    Google Scholar 

  16. Seo C-T, Gong S-S, Sim J-H, et al (1999) Novel differential pressure sensor with silicon beams embedded in a silicone rubber membrane. Proceedings of the IEEE International Solid-State Sensors and Actuators Conference, Sendai, Japan, 354–357.

    Google Scholar 

  17. Seo C-T, Kim Y-J, Shin J-K, et al (2004) A novel comb-type differential pressure sensor with silicon beams embedded in a silicone rubber membrane. Japanese Journal of Applied Physics 43:2046–2049.

    Google Scholar 

  18. Svedin N, Kalvesten E, Stemme G (1999) A new edge-detected lift force flow sensor. Proceedings of the IEEE International Solid-State Sensors and Actuators Conference, Sendai, Japan, 1078–1081.

    Google Scholar 

  19. Svedin N, Kalvesten E, Stemme G (2003) A new edge-detected lift force flow sensor. Journal of Microelectromechanical Systems 12:344–354.

    Google Scholar 

  20. Baxter LK (1997) Capacitive sensors design and applications. IEEE Press, New York.

    Google Scholar 

  21. Tang WC-K, Electrostatic comb drive for resonant sensor and actuator applications, Ph.D. dissertation, University of California, Berkeley, CA, USA, 1990.

    Google Scholar 

  22. Puers R (1993) Capacitive sensors: when and how to use them. Sensors and Actuators A (Physical) A37–A38:93–105.

    Google Scholar 

  23. Dai C-L (2007) A capacitive humidity sensor integrated with micro heater and ring oscillator circuit fabricated by CMOS-MEMS technique. Sensors and Actuators B (Chemical) 122:375–380.

    Google Scholar 

  24. Malcovati P, Haberli A, Mayer F, et al (1995) Combined air humidity and flow CMOS microsensor with on-chip 15 bit sigma-delta A/D interface. Proceedings of the Symposium on VLSI Circuits, Kyoto, Japan, 45–46.

    Google Scholar 

  25. Yotter RA, Baxter RR, Ohno S, et al (2003) On a micromachined fluidic inclinometer. Proceedings of the IEEE International Solid-State Sensors and Actuators Conference, Boston, MA, USA, vol. 2, 1279–1282.

    Google Scholar 

  26. Dauderstadt UA, de Vries PHS, Hiratsuka R, et al (1995) Silicon accelerometer based on thermopiles. Sensors and Actuators A (Physical) A46:201–204.

    Google Scholar 

  27. Binnig G, Despont M, Drechsler U, et al (1999) Ultrahigh-density atomic force microscopy data storage with erase capability. Applied Physics Letters 74:1329–1331.

    Google Scholar 

  28. Lantz MA, Binnig GK, Despont M, et al (2005) A micromechanical thermal displacement sensor with nanometre resolution. Nanotechnology 16:1089–1094.

    Google Scholar 

  29. Duerig U (2005) Fundamentals of micromechanical thermoelectric sensors. Journal of Applied Physics 98:1–14.

    Google Scholar 

  30. Trimmer WSN, Gabriel KJ (1987) Design considerations for a practical electrostatic micro-motor. Sensors and Actuators 11:198–206.

    Google Scholar 

  31. Hoen S, Bai Q, Harley JA, et al (2003) A high-performance dipole surface drive for large travel and force. Proceedings of the IEEE International Solid-State Sensors and Actuators Conference, Boston, MA, USA, vol. 1, 344–347.

    Google Scholar 

  32. Legtenberg R, Groeneveld AW, Elwenspoek M (1996) Comb-drive actuators for large displacements. Journal of Micromechanics and Microengineering 6:320–329.

    Google Scholar 

  33. Oboe R, Antonello R, Lasalandra E, et al (2005) Control of a z-axis MEMS vibrational gyroscope. IEEE/ASME Transactions on Mechatronics 10:364–370.

    Google Scholar 

  34. Kim CJ, Pisano AP, Muller RS, et al (1990) Polysilicon microgripper. Proceedings of the IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, USA, 48–51.

    Google Scholar 

  35. Del Sarto M, Sassolini S, Baldo L, et al (2003) Batch fabricated silicon electrostatic micropositioner for dual stage actuation. Proceedings of the SPIE 4979:155–164.

    Google Scholar 

  36. Li ZH, Zhang DC, Li T, et al (2000) Bulk micromachined relay with lateral contact. Journal of Micromechanics and Microengineering 10:329–333.

    Google Scholar 

  37. Xu Y, MacDonald NC, Miller SA (1995) Integrated micro-scanning tunneling microscope. Applied Physics Letters 67:2305–2307.

    Google Scholar 

  38. Lu Y, Pang CK, Chen J, et al (2005) Design, fabrication and control of a micro X-Y stage with large ultra-thin film recoding media platform. Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Monterey, CA, USA, 19–24.

    Google Scholar 

  39. Hoen S, Merchant P, Koke G, et al (1997) Electrostatic surface drives: theoretical considerations and fabrication. Proceedings of the International Solid State Sensors and Actuators Conference, Chicago, IL, USA, 41–44.

    Google Scholar 

  40. Klaasse G, Puers B, Tilmans HAC (2004) Piezoelectric actuation for application in RF-MEMS switches. Proceedings of the SPIE 5455:174–180.

    Google Scholar 

  41. Park JH, Lee HC, Park YH, et al (2006) A fully wafer-level packaged RF MEMS switch with low actuation voltage using a piezoelectric actuator. Journal of Micromechanics and Microengineering 16:2281–2286.

    Google Scholar 

  42. Park JY, Yee YJ, Nam HJ, et al (2001) Micromachined RF MEMS tunable capacitors using piezoelectric actuators. Proceedings of the IEEE MTT-S International Microwave Symposium, Phoenix, AZ, USA, vol. 3, 2111–2114.

    Google Scholar 

  43. Maillefer D, van Lintel H, Rey-Mermet G, et al (1999) A high-performance silicon micropump for an implantable drug delivery system. Proceedings of the IEEE International Workshop on Micro Electro Mechanical Systems - MEMS, Orlando, FL, USA, 541–546.

    Google Scholar 

  44. Kobayashi T, Itoh T, Sawada R, et al (2007) Tunable optical microscanner driven by piezoelectric actuator. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 46:6429–6432.

    Google Scholar 

  45. Koganezawa S, Uematsu Y, Yamada T, et al (1999) Dual-stage actuator system for magnetic disk drives using a shear mode piezoelectric microactuator. IEEE Transactions on Magnetics 35:988–992.

    Google Scholar 

  46. Guckel H, Klein J, Christenson T, et al (1992) Thermo-magnetic metal flexure actuators. Proceedings of the IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, USA, 73–75.

    Google Scholar 

  47. Lakdawala H, Fedder G (1999) Analysis of temperature-dependent residual stress gradients in CMOS micromachined structures. Proceedings of the IEEE International Solid-State Sensors and Actuators Conference, Sendai, Japan, 526–529.

    Google Scholar 

  48. Zheng LS, Lu MSC (2007) A large-displacement CMOS micromachined thermal actuator with comb electrodes for capacitive sensing. Sensors and Actuators A (Physical) 136:697–703.

    Google Scholar 

  49. Nguyen NT, Ho SS, Low CLN (2004) A polymeric microgripper with integrated thermal actuators. Journal of Micromechanics and Microengineering 14:969–974.

    Google Scholar 

  50. Noworolski JM, Klaassen EH, Logan JR, et al (1996) Process for in-plane and out-of-plane single-crystal-silicon thermal microactuators. Sensors and Actuators A (Physical) A55:65–69.

    Google Scholar 

  51. Field LA, Burriesci DL, Robrish PR, et al (1996) Micromachined 1*2 optical-fiber switch. Sensors and Actuators A (Physical) A53:311–316.

    Google Scholar 

  52. Comtois JH, Bright VM (1997) Applications for surface-micromachined polysilicon thermal actuators and arrays. Sensors and Actuators A (Physical) A58:19–25.

    Google Scholar 

  53. Trimmer WSN (1989) Microrobots and micromechanical systems. Sensors and Actuators 19:267–287.

    Google Scholar 

  54. Zhang YH, Ding GF, Shun XF, et al (2007) Preparing of a high speed bistable electromagnetic RF MEMS switch. Sensors and Actuators A (Physical) 134:532–537.

    Google Scholar 

  55. Ahn CH, Kim YJ, Allen MG (1993) A planar variable reluctance magnetic micromotor with fully integrated stator and coils. Journal of Microelectromechanical Systems 2:165–173.

    Google Scholar 

  56. Choi JJ, Park H, Kim KY, et al (2001) Electromagnetic micro x-y stage with very thick Cu coil for probe-based mass data storage device. Proceedings of the SPIE 4334:363–371.

    Google Scholar 

  57. Hsieh HT, Su GD (2007) Reliability of a MEMS actuator improved by spring corner designs and reshaped driving waveforms. Sensors 7:1720–1730.

    Google Scholar 

  58. Rothuizen H, Despont M, Drechsler U, et al (2002) Compact copper/epoxy-based electromagnetic scanner for scanning probe applications. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems – MEMS, Las Vegas, NV, USA, 582–585.

    Google Scholar 

  59. Rothuizen H, Drechsler U, Genolet G, et al (2000) Fabrication of a micromachined magnetic X/Y/Z scanner for parallel scanning probe applications. Microelectronic Engineering 53:509–512.

    Google Scholar 

  60. Lantz MA, Rothuizen HE, Drechsler U, et al (2007) A vibration resistant nanopositioner for mobile parallel-probe storage applications. Journal of Microelectromechanical Systems 16:130–139.

    Google Scholar 

  61. Judy JW, Muller RS, Zappe HH (1995) Magnetic microactuation of polysilicon flexure structures. Journal of Microelectromechanical Systems 4:162–169.

    Google Scholar 

  62. Judy JW, Muller RS (1996) Magnetic microactuation of torsional polysilicon structures. Sensors and Actuators A (Physical) A53:392–397.

    Google Scholar 

  63. Vigna B (2005) More than Moore: micro-machined products enable new applications and open new markets. Proceedings of the International Electron Devices Meeting, Washington, DC, USA, 8 pp.

    Google Scholar 

  64. DLP by Texas Instruments, Dallas, TX, USA. http://www.dlp.com. Accessed 04 Jan 08.

  65. Nagel DJ, Zaghloul ME (2001) MEMS: micro technology, mega impact. IEEE Circuits and Devices Magazine 17:14–25.

    Google Scholar 

  66. Vigna B (2007) Physical sensors drive MEMS consumerization wave. Proceedings of the International Micromachine/Nanotech Symposium, Tokyo, Japan.

    Google Scholar 

  67. Bourne M (2007) A consumer’s guide to MEMS and nanotechnology. Bourne Research LLC.

    Google Scholar 

  68. Murari B (2003) Bridging the gap between the digital and real worlds: the expanding role of analog interface technologies. Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 30–35.

    Google Scholar 

  69. Gola A, Pasolini F, Chiesa E, et al (2003) A 2.5-rad/s(2) resolution digital output MEMS-based rotational accelerometer for HDD applications. IEEE Transactions on Magnetics 39:915–919.

    Google Scholar 

  70. Johnson R (2007) There’s more to MEMS than meets the iPhone. EETimes, http://www.eetimes.com/showArticle.jhtml?articleID=200900669.

  71. Toedosio M (2007) Making MEMS the new ‘mouse’. EETimes Asia, http://www.eetasia.com/ART_8800460968_499495_NT_734b413b.HTM.

  72. Marriott M (2006) At the heart of the Wii, micron-size machines. New York Times, http://www.nytimes.com/2006/12/21/technology/21howw.html. Accessed 04 Jan 08.

  73. Yoshida M (2006) For Nintendo, MEMS the word. EETimes, http://www.eetimes.com/showArticle.jhtml?articleID=187201578.

  74. Nuttal C (2006) Video games take the next virtual leap. Financial Times, http://search.ft.com/ftArticle?queryText=%22Shigeru+Miyamoto%22&id=060509009782&ct=0&nclick_check=1. Accessed 04 Jan 08.

  75. Sachs D, Nasiri S, Goeh D (2007) Image stabilization technology overview. invensense.com, http://www.invensense.com/shared/pdf/ImageStabilizationWhitepaper_051606.pdf.

  76. Marriott M (2005) Getting around, made easier. New York Times, http://travel.nytimes.com/2005/12/15/technology/circuits/15basics.html. Accessed 04 Jan 08.

  77. Makimoto T, Doi TT (2002) Chip technologies for entertainment robots - present and future. Proceedings of the IEEE International Electron Devices Meeting, San Francisco, CA, USA, 9–16.

    Google Scholar 

  78. Chalard L, Helal D, Verbaere L, et al (2007) Wireless sensor networks devices: overview, issues, state of the art and promising technologies. ST Journal of Research 4:4–18.

    Google Scholar 

  79. Wang ZL (2008) Self-powered nanotech. Scientific American 50:66–71.

    Google Scholar 

  80. Allan R (2005) Wireless sensors land anywhere and everywhere. Electronic Design 53:65–70.

    Google Scholar 

  81. Allan R (2004) The future of sensors. Electronic Design 52:51–55.

    Google Scholar 

  82. Cheyney T (2007) As MEMS “consumerization wave” surges, developers address production challenges. Small Times, http://www.smalltimes.com/articles/article_display.cfm?article_id=309262.

  83. Industry report: Focus on Integration. MEMS Industry Group, http://www.memsindustrygroup.org.

  84. The Mosis Service, CA, USA. http://www.mosis.com/.

  85. Schurig E, Demierre M, Schott C, et al (2002) A vertical Hall device in CMOS high-voltage technology. Sensors and Actuators A (Physical) 97(8):47–53.

    Google Scholar 

  86. Klaassen EH, Reay RJ, Kovacs GT (1996) Diode-based thermal RMS converter with on-chip circuitry fabricated using CMOS technology. Sensors and Actuators A (Physical) 52:33–40.

    Google Scholar 

  87. Kim YS, Jang S, Lee CS, et al (2007) Thermo-piezoelectric Si3N4 cantilever array on CMOS circuit for high density probe-based data storage. Sensors and Actuators A (Physical) 135:67–72.

    Google Scholar 

  88. Hilbert C, Curtis H (2000) MEMS/Microsystems Device and Process Technologies. LETI, France, http://www.wtec.org/loyola/mcc/mems_eu/Pages/Chapter-5.html. Accessed 04/Jan/08.

  89. Marek J, Illing M (2002) Micromachined sensors for automotive applications. Proc. IEEE Sensors, Orlando, FL, USA, vol. 2, 1561–1564.

    Google Scholar 

  90. Brand O (2005) Fabrication technology. In: Brand O, Fedder GKs (eds.) CMOS-MEMS: advanced micro & nanosystems, Wiley-VCH, Weinheim.

    Google Scholar 

  91. Lutz M, Partridge A, Gupta P, et al (2007) MEMS oscillators for high volume commercial applications. Proceedings of the International Solid-State Sensors, Actuators and Microsystems Conference, Lyon, France, 49–52.

    Google Scholar 

  92. Arkalgud S (2007) 3-D integration options. Semiconductor International, http://www.semiconductor.net/webcastsDetail/2140065776.html.

  93. Sze SM (1988) VLSI technology. McGraw-Hill, New York.

    Google Scholar 

  94. Ghandhi SK (1994) VLSI fabrication principles silicon and gallium arsenide. Wiley, New York.

    Google Scholar 

  95. Madou MJ (1997) Fundamentals of microfabrication. CRC Press, Boca Raton.

    Google Scholar 

  96. Gad-el-Hak M (2002) The MEMS handbook. CRC Press, Boca Raton.

    Google Scholar 

  97. Lee H-J, Park J-Y, Bu J (2005) Piezoelectrically actuated RF MEMS DC contact switches with low voltage operation. IEEE Microwave and Wireless Components Letters 15:202–204.

    Google Scholar 

  98. Schow CL, Doany FE, Tsang CK, et al (2008) 300-Gb/s, 24-channel full-duplex, 850-nm, CMOS-based optical transceivers. Proceedings of the Optical Fiber Communications Conference, San Diego, CA, USA, 1–3.

    Google Scholar 

  99. Schares L, Kash JA, Doany FE, et al (2006) Terabus: terabit/second-class card-level optical interconnect technologies. IEEE Journal of Selected Topics in Quantum Electronics 12:1032–1044.

    Google Scholar 

  100. Goossen KW, Walker JA, D’Asaro LA, et al (1995) GaAs MQW modulators integrated with silicon CMOS. IEEE Photonics Technology Letters 7:360–362.

    Google Scholar 

  101. Petersen KE (1982) Silicon as a mechanical material. Proceedings of the IEEE 70:420–57.

    Google Scholar 

  102. Laermer F, Schilp A, Funk K, et al (1999) Bosch deep silicon etching: improving uniformity and etch rate for advanced MEMS applications. Proceedings of the International Workshop on Micro Electro Mechanical Systems - MEMS, Orlando, FL, USA, 211–216.

    Google Scholar 

  103. Core TA, Tsang WK, Sherman SJ (1993) Fabrication technology for an integrated surface-micromachined sensor. Solid State Technology 36:39-ff.

    Google Scholar 

  104. Smith JH, Montague S, Sniegowski JJ (1995) Material and processing issues for the monolithic integration of microelectronics with surface-micromachined polysilicon sensors and actuators. Proceedings of the SPIE 2639:64–73.

    Google Scholar 

  105. Westberg D, Paul O, Andersson GI, et al (1996) Surface micromachining by sacrificial aluminium etching. Journal of Micromechanics and Microengineering 6:376–384.

    Google Scholar 

  106. Jahnes CV, Cotte J, Lund JL, et al (2004) Simultaneous fabrication of RF MEMS switches and resonators using copper-based CMOS interconnect manufacturing methods. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems – MEMS, Maastricht, The Netherlands, 789–792.

    Google Scholar 

  107. Spiller E, Feder R, Topalian J, et al (1976) X-ray lithography for bubble devices. Solid State Technology 19:62–67.

    Google Scholar 

  108. Despont M, Lorenz H, Fahrni N, et al (1997) High-aspect-ratio, ultrathick, negative-tone near-uv photoresist for MEMS applications. Proceedings of the IEEE International Workshop on Micro Electro Mechanical Systems - MEMS, Nagoya, Japan, 518–522.

    Google Scholar 

  109. Lang W, Steiner P, Sandmaier H (1995) Porous silicon: a novel material for microsystems. Sensors and Actuators A (Physical) 51:31–36.

    Google Scholar 

  110. Archer M, Christophersen M, Fauchet PM (2005) Electrical porous silicon chemical sensor for detection of organic solvents. Sensors and Actuators B (Chemical) 106:347–357.

    Google Scholar 

  111. Nam CM, Kwon YS (1997) High-performance planar inductor on thick oxidized porous silicon (OPS) substrate. IEEE Microwave and Guided Wave Letters 7:236–238.

    Google Scholar 

  112. Lehmann V, Honlein W, Reisinger H, et al (1996) A novel capacitor technology based on porous silicon. Thin Solid Films 276:138–142.

    Google Scholar 

  113. Lammel G, Renaud P (2000) Free-standing, mobile 3D porous silicon microstructures. Sensors and Actuators A (Physical) 85:356–360.

    Google Scholar 

  114. Brazzle JD, Dokmeci MR, Mastrangelo CH (2004) Modeling and characterization of sacrificial polysilicon etching using vapor-phase xenon difluoride. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems – MEMS, Maastricht, The Netherlands, 737–740.

    Google Scholar 

  115. Lee YI, Park KH, Lee J, et al (1997) Dry release for surface micromachining with HF vapor-phase etching. Journal of Microelectromechanical Systems 6:226–233.

    Google Scholar 

  116. Baltes HP, Baltes HP, Popovic RS (1986) Integrated semiconductor magnetic field sensors. Proceedings of the IEEE 74:1107–1132.

    Google Scholar 

  117. Popovic RS, Baltes HP (1983) A CMOS magnetic field sensor. IEEE Journal of Solid-State Circuits 18:426–428.

    Google Scholar 

  118. Micronas, Zurich, Switzerland. http://www.micronas.com/products/index.html. Accessed 04/Jan/08.

  119. Infineon Technologies, Munich, Germany. http://www.infineon.com/sensors/.

  120. Allegro Microsystems, Worcester, MA, USA. http://www.allegromicro.com/hall/.

  121. Melexis Microelectronic Systems, Belgium. http://www.melexis.com/prod_hall.asp.

  122. Pham D, Aipperspach T, Boerstler D, et al (2006) Overview of the architecture, circuit design, and physical implementation of a first-generation cell processor. IEEE Journal of Solid-State Circuits 41:179–196.

    Google Scholar 

  123. Lammel G, Armbruster S, Schelling C, et al (2005) Next generation pressure sensors in surface micromachining technology. Proc. International Conference on Solid-State Sensors, Actuators and Microsystems, Seoul, South Korea, 35–36.

    Google Scholar 

  124. Seshia AA, Palaniapan M, Roessig TA, et al (2002) A vacuum packaged surface micromachined resonant accelerometer. Journal of Microelectromechanical Systems 11:784–793.

    Google Scholar 

  125. Bhave SA, Seeger JI, Xuesong J, et al (2003) An integrated, vertical-drive, in-plane-sense microgyroscope. Proceedings of the IEEE International Solid-State Sensors and Actuators Conference, Boston, MA, USA, vol. 1, 171–174.

    Google Scholar 

  126. Sensirion Inc., Staefa, Switzerland. http://www.sensirion.com. Accessed 04/Jan/08.

  127. Mayer F (2008) CMOS-based sensors: From a sample to real products. Proceedings of the 21st IEEE International Conference on Micro Electro Mechanical Systems – MEMS, Tucson, AZ, USA, 1–5.

    Google Scholar 

  128. Schott C, Schott C, Racz R, et al (2007) CMOS single-chip electronic compass with microcontroller. IEEE Journal of Solid-State Circuits 42:2923–2933.

    Google Scholar 

  129. Toshikiyo K, Yogo T, Ishii M, et al (2007) A MOS image sensor with microlenses built by sub-wavelength patternings. Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 514–515.

    Google Scholar 

  130. Jung S, Thewes R, Scheiter T, et al. (1999) CMOS fingerprint sensor with automatic local contrast adjustment and pixel-parallel encoding logic. Proceedings of the Symposium on VLSI Circuits, 161–164.

    Google Scholar 

  131. Manaresi N, Rambaldi R, Tartagni M, et al (1999) A CMOS-only micro touch pointer. IEEE Journal of Solid-State Circuits 34:1860–1868.

    Google Scholar 

  132. Seung-Min J, Jin-Moon N, Dong-Hoon Y, et al (2005) A CMOS integrated capacitive fingerprint sensor with 32-bit RISC microcontroller. IEEE Journal of Solid-State Circuits 40:1745–1750.

    Google Scholar 

  133. Lewis S, Lewis S, Alie S, et al. (2003) Integrated sensor and electronics processing for >10 8 “iMEMS” inertial measurement unit components. Proceedings of the IEEE International Electron Devices Meeting, 39.1.1–39.1.4.

    Google Scholar 

  134. Hagleitner C, Hierlemann A, Lange D, et al (2001) Smart single-chip gas sensor microsystem. Nature 414(6861):293–296.

    Google Scholar 

  135. Brandl M, Kempe V (2001) High performance accelerometer based on CMOS technologies with low cost add-ons. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems - MEMS, Interlaken, Switzerland, 6–9.

    Google Scholar 

  136. Nasiri S (2007) A critical review of MEMS gyroscopes technology and commercialization status. invensense.com. http://www.invensense.com/shared/pdf/MEMSGyroComp.pdf

  137. Invensense, CA, USA. http://www.invensense.com/products/index.html.

  138. Bauer T (2007) High density through wafer via technology. Silex. http://www.silexmicrosystems.com/docs/Silex_High_Density_Through_Wafer_Via_Technology.pdf

  139. Bakke T, Volker B, Friedrichs M, et al (2006) Micromirror array of monocrystalline silicon. Proceedings of the IEEE/LEOS International Conference on Optical MEMS and Their Applications, Big Sky, MT, USA, 128–129.

    Google Scholar 

  140. van der Wijngaart W, Guerre R, Despont M, et al. (2008) Recent advances in wafer scale transfer bonding technologies. MST News, http://www.mstnews.de/. Accessed 04/Jan/08.

  141. Despont M, Drechsler U, Yu R, et al (2004) Wafer-scale microdevice transfer/interconnect: its application in an AFM-based data-storage system. Journal of Microelectromechanical Systems 13:895–901.

    Google Scholar 

  142. Kim YS, Nam HJ, Jang S, et al (2006) Wafer-level transfer of thermo-piezoelectric Si3N4 cantilever array on a CMOS circuit for high density probe-based data storage. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems - MEMS, Istanbul, Turkey, 922–925.

    Google Scholar 

  143. Guerre R, Drechsler U, Jubin D, et al (2007) CMOS-compatible wafer-level microdevice-distribution technology. Proceedings of the International Solid-State Sensors, Actuators and Microsystems Conference, Lyon, France, 2087–2090.

    Google Scholar 

  144. Niklaus F, Kalvesten E, Stemme G (2001) Wafer-level membrane transfer bonding of polycrystalline silicon bolometers for use in infrared focal plane arrays. Journal of Micromechanics and Microengineering 11:509–513.

    Google Scholar 

  145. Niklaus F, Stemme G, Lu JQ, et al (2006) Adhesive wafer bonding. Journal of Applied Physics 99(3):031101.

    Google Scholar 

  146. Haasl S, Niklaus F, Stemme G (2003) Arrays of monocrystalline silicon micromirrors fabricated using CMOS compatible transfer bonding. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems – MEMS, Kyoto, Japan, 271–274.

    Google Scholar 

  147. Ballabriga R, Campbell M, Heijne EH, et al (2007) The Medipix3 prototype, a pixel readout chip working in single photon counting mode with improved spectrometric performance. IEEE Transactions on Nuclear Science 54:1824–1829.

    Google Scholar 

  148. Singh A, Horsley DA, Cohn MB, et al (1999) Batch transfer of microstructures using flip-chip solder bonding. Journal of Microelectromechanical Systems 8:27–33.

    Google Scholar 

  149. Senturia SD (1998) CAD challenges for microsensors, microactuators, and microsystems. Proceedings of the IEEE 86:1611–1626.

    Google Scholar 

  150. Hagleitner C, Bonaccio T, Rothuizen H, et al (2007) Modeling, design, and verification for the analog front-end of a MEMS-based parallel scanning-probe storage device. IEEE Journal of Solid-State Circuits 42:1779–1789.

    Google Scholar 

  151. Coventor, MA, USA. http://www.coventor.com/.

  152. Tanner Research, CA, USA. http://www.tanner.com/.

  153. Tummala RR (2001) Fundamentals of microsystems packaging. McGraw-Hill, New York.

    Google Scholar 

  154. Brand O, Baltes H (2002) Microsensor packaging. Microsystem Technologies 7:205–208.

    Google Scholar 

  155. Bright VM, Stoldt CR, Monk DJ, et al (2004) Packaging of advanced micro- and nanosystems. In: Baltes H, Brand O, et al. (eds.) Enabling technology for MEMS and nanodevices, Wiley-VCH, Weinheim.

    Google Scholar 

  156. Gilleo K (2002) MEMS packaging and assembly challenges. Area array packaging handbook, McGraw-Hill, New York.

    Google Scholar 

  157. Reichl H, Grosser V (2001) Overview and development trends in the field of MEMS packaging. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems – MEMS, Interlaken, Switzerland, 1–5.

    Google Scholar 

  158. Yazdi N, Ayazi F, Najafi K (1998) Micromachined inertial sensors. Proceedings of the IEEE 86:1640–1659.

    Google Scholar 

  159. STMicroelectronics, Geneva, Switzerland. www.st.com/mems.

  160. Johnson R (2007) ‘Chip-on-MEMS’ enables wafer-level calibration. EEtimes Asia, http://www.eetasia.com/ART_8800493826_480500_NT_b48f765c.HTM.

  161. Knechtel R (2005) Glass frit bonding: an universal technology for wafer level encapsulation and packaging. Microsystem Technologies 12:63–68.

    Google Scholar 

  162. Zhang X, Tee TY, Luan J (2005) Comprehensive warpage analysis of stacked die MEMS package in accelerometer application. Proceedings of the International Conference on Electronics Packaging Technology, Shenzhen, China, 581–586.

    Google Scholar 

  163. Roukes ML (2000) Nanoelectromechanical systems. Proceedings of the IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, USA, 367–376.

    Google Scholar 

  164. Mamin HJ, Rugar D (2001) Sub-attonewton force detection at millikelvin temperatures. Applied Physics Letters 79:3358–3360.

    Google Scholar 

  165. Yang YT, Callegari C, Feng XL, et al (2006) Zeptogram-scale nanomechanical mass sensing. Nano Letters 6:583–586.

    Google Scholar 

  166. Fon WC, Schwab KC, Worlock JM, et al (2005) Nanoscale, phonon-coupled calorimetry with sub-attojoule/Kelvin resolution. Nano Letters 5:1968–1971.

    Google Scholar 

  167. Cui Y, Wei QQ, Park HK, et al (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–1292.

    Google Scholar 

  168. Patolsky F, Zheng GF, Hayden O, et al (2004) Electrical detection of single viruses. Proceedings of the National Academy of Sciences of the United States of America 101:14017–14022.

    Google Scholar 

  169. Patolsky F, Zheng G, Lieber CM (2006) Nanowire sensors for medicine and the life sciences. Nanomedicine 1:51–65.

    Google Scholar 

  170. Heer F, Keller M, Yu G, et al (2008) CMOS electro-chemical DNA detection array with on-chip ADC. Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA.

    Google Scholar 

  171. Patolsky F, Timko BP, Zheng GF, et al (2007) Nanowire-based nanoelectronic devices in the life sciences. MRS Bulletin 32:142–149.

    Google Scholar 

  172. Stampfer C, Jungen A, Linderman R, et al (2006) Nano-electromechanical displacement sensing based on single-walled carbon nanotubes. Nano Letters 6:233–237.

    Google Scholar 

  173. Stampfer C, Jungen A, Hierold C (2006) Fabrication of discrete nanoscaled force sensors based on single-walled carbon nanotubes. IEEE Sensors Journal 6:613–617.

    Google Scholar 

  174. Grow RJ, Wang Q, Cao J, et al (2005) Piezoresistance of carbon nanotubes on deformable thin-film membranes. Applied Physics Letters 86:093104.

    Google Scholar 

  175. Vettiger P, Albrecht T, Despont M, et al (2003) Thousands of microcantilevers for highly parallel and ultra-dense data storage. Proceedings of the IEEE International Electron Devices Meeting, Washington, DC, USA, 32.1.1–32.1.4.

    Google Scholar 

Download references

Acknowledgment

With great pleasure and appreciation, the authors acknowledge the encouragement of Paul Seidler and Werner Bux, the Department Managers of Science & Technology and Systems, respectively, and the editorial support of Charlotte Bolliger from the Publications Group of the IBM Zurich Research Laboratory. In addition, numerous interesting and stimulating discussions and collaborations with the many colleagues from the teams at IBM and STMicroelectronics were important cornerstones for the content of this chapter. Thank you all very much.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Lantz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lantz, M., Hagleitner, C., Despont, M., Vettiger, P., Cortese, M., Vigna, B. (2009). Sensors and Actuators on CMOS Platforms. In: Zhang, G., Roosmalen, A. (eds) More than Moore. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-75593-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-75593-9_5

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-75592-2

  • Online ISBN: 978-0-387-75593-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics