Skip to main content

Imaging of Urinary Tract Tumors

  • Chapter
Imaging in Oncology

Part of the book series: Cancer Treatment and Research ((CTAR,volume 143))

Advances in imaging have given radiology an increasingly significant role in the diagnosis, staging and re-staging of patients with urinary tract tumors. In this chapter we emphasize the value of current imaging and briefly discuss the potential applications of novel imaging techniques in the management of patients with urinary tract tumors. We will focus primarily on renal cell tumors and bladder transitional cell cancers. Multi-detector-row CT (MDCT) offers greater speed, improved spatial resolution and wider coverage, and allows screening of multiple organs in the abdomen for metastatic disease and for complications. MRI, with its superior soft tissue resolution, offers advantages in imaging some urinary tumors. Ultrasound can also play a complementary role to CT or MRI in imaging of urinary tumors. We will limit discussion of nuclear medicine techniques, but will mention the emerging role of FDG-PET and Positron Emission Tomography/CT (PET/CT) for the detection of distant metastases of several GU malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Cancer Society. Cancer facts and figures 2006. Atlanta (GA): American Cancer Society; 2006

    Google Scholar 

  2. Bosniak MA. Observation of small incidentally detected renal masses. Semin Urol Oncol. 1995;13(4):267–272.

    PubMed  CAS  Google Scholar 

  3. Kassouf W, Aprikian AG, Laplante M, et al. Natural history of renal masses followed expectantly. J Urol. 2004;171(1):111–113.

    Article  PubMed  CAS  Google Scholar 

  4. Beck SD, Patel MI, Snyder ME, et al. Effect of papillary and chromophobe cell type on disease-free survival after nephrectomy for renal cell carcinoma. Ann Surg Oncol. 2004;11(1):71–77.

    Article  PubMed  Google Scholar 

  5. McKiernan J, Yossepowitch O, Kattan MW, et al. Partial nephrectomy for renal cortical tumors: pathologic findings and impact on outcome. Urology. 2002;60(6):1003–1009.

    Article  PubMed  Google Scholar 

  6. Zhang J, Lefkowitz RA, Bach A. Imaging of Kidney Cancer. Radiologic Clinics of North America 2007 45 (1) 119–147.

    Article  PubMed  Google Scholar 

  7. Yuh BI, Cohan RH, Francis IR, et al. Comparison of nephrographic with excretory phase helical computed tomography for detecting and characterizing renal masses. Can Assoc Radiol J. 2000;51(3):170–176.

    PubMed  CAS  Google Scholar 

  8. Yuh BI, Cohan RH. Different phases of renal enhancement: role in detecting and characterizing renal masses during helical CT. AJR Am J Roentgenol. 1999;173(3):747–755.

    PubMed  CAS  Google Scholar 

  9. Kopka L, Fischer U, Zoeller G, et al. Dual-phase helical CT of the kidney: value of the corticomedullary and nephrographic phase for evaluation of renal lesions and preoperative staging of renal cell carcinoma. AJR Am J Roentgenol. 1997;169(6):1573–1578.

    PubMed  CAS  Google Scholar 

  10. Herts BR, Coll DM, Novick AC, et al. Enhancement characteristics of papillary renal neoplasms revealed on triphasic helical CT of the kidneys. AJR Am J Roentgenol. 2002;178(2):367–372.

    PubMed  Google Scholar 

  11. Sheir KZ, El-Azab M, Mosbah A, et al. Differentiation of renal cell carcinoma subtypes by multislice computerized tomography. J Urol. 2005;174(2):451–455

    Article  PubMed  Google Scholar 

  12. Prasad SR, Humphrey PA, Catena JR, et al. Common and uncommon histologic subtypes of renal cell carcinoma: imaging spectrum with pathologic correlation. Radiographics. 2006 Nov-Dec;26(6):1795–806

    Article  PubMed  Google Scholar 

  13. Birnbaum BA, Maki DD, Chakraborty DP, et al.. Renal cyst pseudo enhancement: evaluation with an anthropomorphic body CT phantom. Radiology. 2002;225(1):83–90.

    Article  PubMed  Google Scholar 

  14. Abdulla C, Kalra MK, Saini S, et al. Pseudo enhancement of simulated renal cysts in a phantom using different multidetector CT scanners. AJR Am J Roentgenol. 2002;179(6):1473–1476.

    PubMed  Google Scholar 

  15. Bosniak MA. The current radiological approach to renal cysts. Radiology. 1986; 158(1):1–10.

    PubMed  CAS  Google Scholar 

  16. Eble JN, Bonsib SM. Extensively cystic renal neoplasms: cystic nephroma, cystic partially differentiated nephroblastoma, multilocular cystic renal cell carcinoma, and cystic hamartoma of renal pelvis. Semin Diagn Pathol. 1998;15(1):2–20.

    PubMed  CAS  Google Scholar 

  17. Brinker DA, Amin MB, de Peralta-Venturina M, et al. Extensively necrotic cystic renal cell carcinoma: a clinicopathologic study with comparison to other cystic and necrotic renal cancers. Am J Surg Pathol. 2000;24(7):988–995.

    Article  PubMed  CAS  Google Scholar 

  18. Semelka RC, Shoenut JP, Kroeker MA, et al. Renal lesions: controlled comparison between CT and 1.5-T MRI with non-enhanced and gadolinium-enhanced fat-suppressed spin-echo and breath hold FLASH techniques. Radiology. 1992;182(2):425–430.

    PubMed  CAS  Google Scholar 

  19. Scialpi M, Di Maggio A, Midiri M, et al.. Small renal masses: assessment of lesion characterization and vascularity on dynamic contrast-enhanced MRI with fat suppression. AJR Am J Roentgenol. 2000;175(3):751–757.

    PubMed  CAS  Google Scholar 

  20. Pretorius ES, Siegelman ES, Ramchandani P, et al. Renal neoplasms amenable to partial nephrectomy: MRI. Radiology. 1999;212(1):28–34.

    PubMed  CAS  Google Scholar 

  21. Broome DR, Girguis MS, Baron PW, Cottrell AC, Kjellin I, Kirk GA. M. Gadodiamide-assocaited nephrogenic systemic fibrosis: why radiologists should be concerned. Am J Roentgenol. 2007;188(2):586–92.

    Article  Google Scholar 

  22. Elizabeth A. Sadowski, Lindsey K. Bennett, Micah R. Chan, Andrew L. Wentland, Andrea L. Garrett, Robert W. Garrett, and Arjang Djamali Nephrogenic Systemic Fibrosis: Risk Factors and Incidence Estimation Radiology 2007 243: 148–157

    Article  PubMed  Google Scholar 

  23. Eilenberg SS, Lee JK, Brown J, et al. Renal masses: evaluation with gradient-echo Gd-DTPA-enhanced dynamic MRI. Radiology. 1990;176(2):333–338.

    PubMed  CAS  Google Scholar 

  24. Fein AB, Lee JK, Balfe DM, et al. Diagnosis and staging of renal cell carcinoma: a comparison of MRI and CT. AJR Am J Roentgenol. 1987;148(4):749–753.

    PubMed  CAS  Google Scholar 

  25. Ho VB, Allen SF, Hood MN, et al.. Renal masses: quantitative assessment of enhancement with dynamic MRI. Radiology. 2002;224(3):695–700.

    Article  PubMed  Google Scholar 

  26. Israel GM, Hindman N, Bosniak MA. Evaluation of cystic renal masses: comparison of CT and MRI by using the Bosniak classification system. Radiology. 2004;231(2):365–371.

    Article  PubMed  Google Scholar 

  27. Forman HP, Middleton WD, Melson GL, et al. Hyperechoic renal cell carcinomas: increase in detection at US. Radiology. 1993;188(2):431–434.

    PubMed  CAS  Google Scholar 

  28. Prasad SR, Saini S, Stewart S, et al. CT characterization of “indeterminate” renal masses: targeted or comprehensive scanning?. J Comput Assist Tomogr. 2002;26(5):725–727.

    Article  PubMed  Google Scholar 

  29. Warshauer DM, McCarthy SM, Street L, et al. Detection of renal masses: sensitivities and specificities of excretory urography/linear tomography, US, and CT. Radiology. 1988;169(2):363–365.

    PubMed  CAS  Google Scholar 

  30. Jamis-Dow CA, Choyke PL, Jennings SB, et al. Small (< or = 3-cm) renal masses: detection with CT versus US and pathologic correlation. Radiology. 1996;198(3):785–788.

    PubMed  CAS  Google Scholar 

  31. Aide N, Cappele O, Bottet P, et al. Efficiency of [(18) F] FDG-PET in characterizing renal cancer and detecting distant metastases: a comparison with CT. Eur J Nucl Med Mol Imaging. 2003;30(9):1236–1245.

    Article  PubMed  Google Scholar 

  32. Montravers F, Grahek D, Kerrou K, et al. Evaluation of FDG uptake by renal malignancies (primary tumor or metastases) using a coincidence detection gamma camera. J Nucl Med. 2000;41(1):78–84.

    PubMed  CAS  Google Scholar 

  33. Ramdave S, Thomas GW, Berlangieri SU, et al. Clinical role of F-18 fluorodeoxyglucose positron emission tomography for detection and management of renal cell carcinoma. J Urol. 2001;166(3):825–830.

    Article  PubMed  CAS  Google Scholar 

  34. Blake MA, McKernan M, Setty B, et al. Renal oncocytoma displaying intense activity on 18F-FDG PET. AJR Am J Roentgenol. 2006;186(1):269–270.

    Article  PubMed  Google Scholar 

  35. Schoder H, Larson SM. Positron emission tomography for prostate, bladder, and renal cancer. Semin Nucl Med. 2004;34(4):274–292.

    Article  PubMed  Google Scholar 

  36. Javidan J, Stricker HJ, Tamboli P, et al.. Prognostic significance of the 1997 TNM classification of renal cell carcinoma. J Urol. 1999;162(4):1277–1281.

    Article  PubMed  CAS  Google Scholar 

  37. Kidney. In: American Joint Committee on Cancer. AJCC Cancer Staging Manual. 6th edition. New York: Springer; 2002;p. 323–325.

    Google Scholar 

  38. Johnson CD, Dunnick NR, Cohan RH, et al. Renal adenocarcinoma: CT staging of 100 tumors. AJR Am J Roentgenol. 1987;148(1):59–63.

    PubMed  CAS  Google Scholar 

  39. Roy C, El Ghali S, Buy X, et al.. Significance of the pseudocapsule on MRI of renal neoplasms and its potential application for local staging: a retrospective study. AJR Am J Roentgenol. 2005;184(1):113–120.

    PubMed  Google Scholar 

  40. Semelka RC, Shoenut JP, Magro CM, et al. Renal cancer staging: comparison of contrast-enhanced CT and gadolinium-enhanced fat-suppressed spin-echo and gradient-echo MRI. J Magn Reson Imaging. 1993;3(4):597–602.

    Article  PubMed  CAS  Google Scholar 

  41. Didier D, Racle A, Etievent JP, et al. Tumor thrombus of the inferior vena cava secondary to malignant abdominal neoplasms: US and CT evaluation. Radiology. 1987;162(1 Pt 1):83–89.

    PubMed  CAS  Google Scholar 

  42. Studer UE, Scherz S, Scheidegger J, et al. Enlargement of regional lymph nodes in renal cell carcinoma is often not due to metastases. J Urol. 1990;144(2 Pt 1):243–245.

    PubMed  CAS  Google Scholar 

  43. Hilton S. Imaging of renal cell carcinoma. Semin Oncol. 2000;27(2):150–159.

    PubMed  CAS  Google Scholar 

  44. Raptopoulos VD, Blake SP, Weisinger K, et al. Multiphase contrast-enhanced helical CT of liver metastases from renal cell carcinoma. Eur Radiol. 2001;11(12):2504–2509.

    Article  PubMed  CAS  Google Scholar 

  45. Rabbani F, Herr HW, Almahmeed T, et al. Temporal change in risk of metachronous contralateral renal cell carcinoma: influence of tumor characteristics and demographic factors. J Clin Oncol. 2002;20(9):2370–2375.

    Article  PubMed  Google Scholar 

  46. Barentsz JO, Witjes JA, Ruijs JH. What is new in bladder cancer imaging? Urol Clin North Am 1997; 24: 583–602.

    Article  PubMed  CAS  Google Scholar 

  47. MacVicar AD. Bladder cancer staging. BJU Int 2000; 86 [suppl 1]: 111–122.

    Article  PubMed  Google Scholar 

  48. Barentsz JO, Jager GJ, Witjes JA, et al. Primary staging of urinary bladder carcinoma: the role of MRI and a comparison with CT. Eur Radiol 1996; 6:129–133.

    Article  PubMed  CAS  Google Scholar 

  49. Stein JP, Lieskovsky G, Cote R, et al. Radical cystectomy in the treatment of invasive bladder cancer: long-term results in 1,054 patients. J Clin Oncol 2001; 19:666–675.

    PubMed  CAS  Google Scholar 

  50. Kim J K, Park SY, Ahn HJ, et al. Bladder Cancer: Analysis of Multi–Detector Row Helical CT Enhancement Pattern and Accuracy in Tumor Detection and Perivesical Staging. Radiology 2004; 231:725–731.

    Article  PubMed  Google Scholar 

  51. Kundra V, Silverman PM. Imaging in oncology from the University of Texas M. D. Anderson Cancer Center. Imaging in the diagnosis, staging, and follow-up of cancer of the urinary bladder. AJR Am J Roentgenol. 2003; 180(4): 1045–54.

    PubMed  Google Scholar 

  52. Ellis JH, McCullough NB, Francis IR, et al. Transitional cell carcinoma of the bladder: patterns of recurrence after cystectomy as determined by CT. AJR Am J Roentgenol. 1991; 157(5): 999–1002.

    PubMed  CAS  Google Scholar 

  53. Vinnicombe SJ, Norman AR, Nicholson V, et al. Normal pelvic lymph nodes: evaluation with CT after bipedal lymphangiography. Radiology 1995; 194:349–55

    PubMed  CAS  Google Scholar 

  54. Husband JE, Robinson L, Thomas G. Contrast enhancing lymph nodes in bladder cancer: a potential pitfall on CT. Clin Radiol. 1992; 45(6): 395–8.

    Article  PubMed  CAS  Google Scholar 

  55. Kim B, Semelka RC, Ascher SM, et al. Bladder tumor staging: comparison of contrast-enhanced CT, T1- and T2-weighted MRI, dynamic gadolinium-enhanced imaging, and late gadolinium-enhanced imaging. Radiology 1994; 193: 239–245.

    PubMed  CAS  Google Scholar 

  56. Maeda H, Kinukawa T, Hattori R, et al. Detection of muscle layer invasion with sub millimeter pixel MR images: staging of bladder carcinoma. Magn Reson Imaging 13:9, 1995.

    Article  PubMed  CAS  Google Scholar 

  57. Tekes A, Kamel I, Imam K, et al. Dynamic MRI of bladder cancer: evaluation of staging accuracy. AJR Am J Roentgenol. 2005; 184 (1): 121–7.

    PubMed  Google Scholar 

  58. Lammle M, Beer A, Settles M, et al. Reliability of MRI-based virtual cystoscopy in the diagnosis of cancer of the urinary bladder. AJR Am J Roentgenol. 2002; 178(6): 1483–8.

    PubMed  Google Scholar 

  59. Kawai N, Mimura T, Nagata D, et al. Intravenous urography-virtual cystoscopy is a better preliminary examination than air virtual cystoscopy. BJU Int. 2004; 94(6): 832–6.

    Article  PubMed  Google Scholar 

  60. Tsili ACh, Tsampoulas C, Chatziparaskevas N, et al. Computed tomographic virtual cystoscopy for the detection of urinary bladder neoplasms. Eur Urol. 2004; 46(5): 579–85.

    Article  PubMed  Google Scholar 

  61. Nambirajan T, Sohaib SA, Muller-Pollard C, et al. Virtual cystoscopy from computed tomography: a pilot study. BJU Int. 2004; 94(6): 828–31.

    Article  PubMed  Google Scholar 

  62. Kawashima A, Glockner JF, King BF Jr. CT urography and MR urography. Radiol Clin North Am. 2003; 41(5): 945–61.

    Article  PubMed  Google Scholar 

  63. Drieskens O, Oyen R, Van Poppel H, Vankan Y, Flamen P, Mortelmans L. FDG-PET for preoperative staging of bladder cancer. Eur J Nucl Med Mol Imaging. 2005; 32(12): 1412–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Blake, M.A., Kalra, M.K. (2008). Imaging of Urinary Tract Tumors. In: Blake, M.A., Kalra, M.K. (eds) Imaging in Oncology. Cancer Treatment and Research, vol 143. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-75587-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-75587-8_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-75586-1

  • Online ISBN: 978-0-387-75587-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics