Skip to main content

Plasticity of Inhibition; GABA/glycine System

  • Chapter
Molecular Pain
  • 1050 Accesses

Abstract

Several conditions of pathological pain involve plastic changes in GABA/glycine-mediated inhibition in the CNS which can (i) alter the gain of the response to nociceptive input (hyperalgesia), but also(ii) allow cross talk between non-nociceptive and nociceptive pathways as a substrate for aberrant pain perception to normally innocuous input (allodynia). While plasticity of the GABA/glycine system had been traditionally overlooked and poorly studied, especially in the context of the pain system, recent findings highlight a richness of mechanisms by which inhibition is modulated that open several avenues for innovative therapeutic treatment for the prevention, as well as the reversal of pathological pain. These findings include (i) evidence of highly plastic GABA/glycine co-synapses, (ii) modulation of specific receptor subclasses by endogenous agents traditionally thought to act mainly in the periphery, but which also act centrally (e.g., neurosteroids and prostaglandins) and (iii) active regulation of anion homeostasis as a means to modulate both the strength and the sign of GABA/glycine action (i.e., excitatory vs.inhibitory).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General Citations

  • Ben Ari Y. 2002. Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci, 3: 728–739.

    Article  PubMed  CAS  Google Scholar 

  • Gaiarsa JL, Caillard O, Ben Ari Y. 2002. Longterm plasticity at GABAergic and glycinergic synapses: mechanisms and functional significance. Trends Neurosci, 25: 564–570.

    Article  PubMed  CAS  Google Scholar 

  • Price TJ, Cervero F, de Koninck Y. 2005. Role of cation-chloride-cotransporters (CCC) in pain and hyperalgesia. Curr Top Med Chem, 5: 547–555.

    Article  PubMed  CAS  Google Scholar 

  • Rudomin P. 1998. Presynaptic Inhibition and Neural Control. New York: Oxford University Press.

    Google Scholar 

  • Willis WD Jr. 1999. Dorsal root potentials and dorsal root reflexes: a double-edged sword. Exp Brain Res, 124: 395–421.

    Article  PubMed  CAS  Google Scholar 

  • Zeilhofer HU. 2005. The glycinergic control of spinal pain processing. Cell Mol Life Sci, 62: 2 027–2 035.

    Article  CAS  Google Scholar 

Discovery Citations

  • Aguado F, et al., 2003. BDNF regulates spontaneous correlated activity at early developmental stages by increasing synaptogenesis and expression of the K+/Cl co-transporter KCC2. Development, 130:1 267–1 280.

    Article  CAS  Google Scholar 

  • Ahmadi S, Lippross S, Neuhuber WL, Zeilhofer HU. 2002. PGE(2) selectively blocks inhibitory glycinergic neurotransmission onto rat superficial dorsal horn neurons. Nat Neurosci, 5: 34–40.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Leefrnans FJ, Gamiño SM, Giradelz F, Noguerón I. 1998. Intracellular chloride regulation in amphibian dorsal root ganglion neurones studied with ion-selective microelectrodes. J Physiol (Lond), 406: 225–246.

    Google Scholar 

  • Baba H, et al. 2003. Removal of GABAergic inhibition facilitates polysynaptic A fiber-mediated excitatory transmission to the superficial spinal dorsal horn. Mol Cell Neurosci, 24: 818–830.

    Article  PubMed  CAS  Google Scholar 

  • Baccei ML, Fitzgerald M. 2004. Development of GABAergic and glycinergic transmission in the neonatal rat dorsal horn. J Neurosci, 24: 4749–4757.

    Article  PubMed  CAS  Google Scholar 

  • Bekenstein JW, Lothman EW. 1993. Dormancy of inhibitory interneurons in a model of temporal lobe epilepsy. Science, 259: 97–100

    Article  PubMed  CAS  Google Scholar 

  • Ben Ari Y. 2002. Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci, 3: 728–739.

    Article  PubMed  CAS  Google Scholar 

  • Caillard O, McLean HA, Ben Ari Y, Gaiarse JL. 1998. Ontogenesis of presynaptic GABAB receptor-mediated inhibition in the CA3 region of the rat hippocampus. J Neuro-physiol, 79: 1341–1348.

    CAS  Google Scholar 

  • Cervero F, Laird JM. 1996. Mechanisms of touch-evoked pain (allodynia): a new model. Pain, 68: 13–23.

    Article  PubMed  CAS  Google Scholar 

  • Chéry N, de Koninck Y 1999. Junctional versus extrajunctional glycine and GABA(A) receptor-mediated IPSCs in identified lamina I neurons of the adult rat spinal cord. JNeurosci, 19: 7342–7355.

    Google Scholar 

  • Choquet D, Triller A. 2003. The role of receptor diffusion in the organization of the postsynaptic membrane. Nat Rev Neurosci, 4: 251–265.

    Article  PubMed  CAS  Google Scholar 

  • Cordero-Erausquin M, Coull JA, Boudreau D, Rolland M, de Koninck Y. 2005. Differential maturation of GABA action and anion reversal potential in spinal. amina I neurons; impact of chloride extrusion capacity. Journal of Neuroscience,. (in press)

    Google Scholar 

  • Coull JA, et al. 2005. BDNF from microglia mediates the shift in neuronal anion gradient that underlies neuropathic pain. Nature. (in press)

    Google Scholar 

  • Coull JA, et al. 2003. Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature, 424: 938–942.

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald M. 1985. The post-natal development of cutaneous afferent fibre input and receptive field organization in the rat dorsal horn. J Physiol, 364: 1–18.

    PubMed  CAS  Google Scholar 

  • Fukuda A, Mody I, Prince DA. 1993. Differential ontogenesis of presynaptic and postsynaptic GABAB inhibition in rat somatosensory cortex. J Neurophysiol, 70: 448–452.

    PubMed  CAS  Google Scholar 

  • Gaiarsa JL, et al. 1995. Postnatal maturation of gamma-aminobutyric acid A and B-mediated inhibition in the CA3 hippocampal region of the rat. JNeurobiol, 26: 339–349.

    Article  CAS  Google Scholar 

  • Galan A, Cervero F. 2005. Painful stimuli induce in vivo phosphorylation and membrane mobilization of mouse spinal cord NKCC1 co-transporter. Neuroscience 133: 245–252.

    Article  PubMed  CAS  Google Scholar 

  • Gulledge AT, Stuart GJ. 2003. Excitatory actions of GABA in the cortex. Neuron, 37: 299–309.

    Article  PubMed  CAS  Google Scholar 

  • Ibuki T, Hama AT, Wang XT, Pappas GD, Sagen J. 1997. Loss of GABA-immunoreactivity in the spinal dorsal horn of rats with peripheral nerve injury and promotion of recovery by adrenal medullary grafts. Neuroscience, 76: 845–858.

    Article  PubMed  CAS  Google Scholar 

  • Jonas P, Bischofberger J, Sandkuhler J. 1998. Corelease of two fast neurotransmitters at a central synapse. Science, 281: 419–424.

    Article  PubMed  CAS  Google Scholar 

  • Kaila K, Lamsa K, Smirnov S, Taira T, Voipio J. 1997. Long-lasting GABA-mediated depolarization evoked by high-frequency stimulation in pyramidal neurons of rat hippocampal slice is attributable to a network-driven, bicarbonate-dependent K+ transient. J Neurosci, 17: 7662–7672.

    PubMed  CAS  Google Scholar 

  • Keller AF, Beggs S, Salter MW, de Koninck Y 2005. Disrupting anion homeostasis in the spinal dorsal horn induces a disinhibition of lamina I projection neurons. 11th World Congress on Pain, 136337.

    Google Scholar 

  • Keller AF, Breton JD, Schlichter R, Poisbeau P. 2004. Production of 5alpha-reduced neurosteroids is developmentally regulated and shapes GABA(A) miniature IPSCs in lamina II of the spinal cord. J Neurosci, 24: 907–915.

    Article  PubMed  CAS  Google Scholar 

  • Keller AF, Coull JA, Chery N, Poisbeau P, de Koninck Y 2001. Region-specific developmental specialization of GABA-glycine cosynapses in laminas I–II of the rat spinal dorsal horn. J Neurosci, 21: 7871–7880.

    PubMed  CAS  Google Scholar 

  • Kelsch W, et al. 2001. Insulin-like growth factor 1 and a cytosolic tyrosine kinase activate chloride outward transport during maturation of hippocampal neurons, J Neurosci, 21: 8339–8347.

    PubMed  CAS  Google Scholar 

  • Malmberg AB, et al. 1997. Diminished inflammation and nociceptive pain with preservation of neuropathic pain in mice with a targeted mutation of the type I regulatory sub-unit of cAMP-dependent protein kinase. J Neurosci, 17: 7462–7470.

    PubMed  CAS  Google Scholar 

  • Malosio ML, et al. 1991a. Alternative splicing generates two variants of the alpha 1 subunit of the inhibitory glycine receptor, J Biol Chem, 266: 2048–2053.

    PubMed  CAS  Google Scholar 

  • Malosio M L, Marqueze-Pouey B, Kuhse J, Betz H 1991b. Widespread expression of glycine receptor subunit mRNAs in the adult and developing rat brain. EMBO J, 10: 2401–2409.

    PubMed  CAS  Google Scholar 

  • Mitchell K, Spike RC, Todd AJ. 1993 An immunocytochemical study of glycine receptor and GABA in laminae I–III of rat spinal dorsal horn. J Neurosci, 13:2371–2381.

    PubMed  CAS  Google Scholar 

  • Moore KA, et al. 2002. Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J Neurosci, 22: 6724–6731.

    PubMed  CAS  Google Scholar 

  • Muller F, Heinke B, Sandkuhler J. 2003. Reduction of glycine receptor-mediated miniature inhibitory postsynaptic currents in rat spinal lamina I neurons after peripheral inflammation. Neuroscience, 122: 799–805.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien JA, Berger AJ. 1999. Cotransmission of GABA and glycine to brain stem motoneurons. J Neurophysiol, 82: 1638–1641.

    PubMed  CAS  Google Scholar 

  • Otis TS, Staley KJ, Mody I. 1991. Perpetual inhibitory activity in mammalian brain slices generated by spontaneous GABA release. Brain Res, 545:142–150.

    Article  PubMed  CAS  Google Scholar 

  • Polgar E, Gray S, Riddell JS, Todd AJ. 2004. Lack of evidence for significant neuronal loss in laminae I–III of the spinal dorsal horn of the rat in the chronic constriction injury model. Pain, 111: 144–150.

    Article  PubMed  CAS  Google Scholar 

  • Polgar E, Hughes DI, Arham AZ, Todd AJ. 2005. Loss of neurons from laminas I–III of the spinal dorsal horn is not required for development of tactile allodynia in the spared nerve injury model of neuropathic pain. J Neurosci, 25: 6658–6666.

    Article  PubMed  CAS  Google Scholar 

  • Polgar E, et al. 2003. Selective loss of spinal GABA-ergic or glycinergic neurons is not necessary for development of thermal hyperalgesia in the chronic constriction injury model of neuropathic pain. Vain, 104: 229–239.

    CAS  Google Scholar 

  • Rivera C, et al. 2002. BDNF-induced TrkB activation down-regulates the K+-Cl cotransporter KCC2 and impairs neuronal Cl extrusion, J Cell Biol, 159:747–752.

    Article  PubMed  CAS  Google Scholar 

  • Rivera C, et al. 1999. The K+/Cl co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature, 397:251–255.

    Article  PubMed  CAS  Google Scholar 

  • Rivera C, et al. 2004. Mechanism of activity-dependent downregulation of the neuron-specific K-Cl cotransporter KCC2. J Neurosci, 24: 4683–4691.

    Article  PubMed  CAS  Google Scholar 

  • Roy JP, Clercq M, Steriade M, Deschenes M. 1984. Electrophysiology of neurons of lateral thalamic nuclei in cat: mechanisms of long-lasting hyperpolarizations. J Neurophysiol, 51: 1220–1235.

    PubMed  CAS  Google Scholar 

  • Rudomin P. 1998. Presynaptic Inhibition and Neural Control. New York: Oxford University Press.

    Google Scholar 

  • Scholz J, et al. 2005. Blocking caspase activity prevents transsynaptic neuronal apoptosis and the loss of inhibition in lamina II of the dorsal horn after peripheral nerve injury. J Neurosci, 25:7317–7323.

    Article  PubMed  CAS  Google Scholar 

  • Sherman SE, Loomis CW. 1996. Strychnine-sensitive modulation is selective for non-noxious somatosensory input in the spinal cord of the rat. Pain, 66: 321–330.

    Article  PubMed  CAS  Google Scholar 

  • Sherman SE, Loomis CW. 1994. Morphine insensitive allodynia is produced by intrathecal strychnine in the lightly anesthetized rat. Pain, 56:17–29.

    Article  PubMed  CAS  Google Scholar 

  • Sherman SE, Luo L, Dostrovsky JO. 1997. Spinal strychnine alters response porperties of nociceptive-specific neurons in rat medial thalamus. J Neurophysiol, 78: 628–637.

    PubMed  CAS  Google Scholar 

  • Sivilotti L, Woolf CJ. 1994. The contribution of GABAA and glycine receptors to central sensitization: disinhibition and touch-evoked allodynia in the spinal cord. J Neurophysiol, 72: 169–179.

    PubMed  CAS  Google Scholar 

  • Sloviter RS. 1991. Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: the “dormant basket cell” hypothesis and its possible relevance to temporal lobe epilepsy. Hippocampus, 1:41–66.

    Article  PubMed  CAS  Google Scholar 

  • Sorkin LS, Puig S. 1996. Neuronal model of tactile allodynia produced by spinal strychnine: effects of excitatory amino acid receptor antagonists and a m-opiate receptor agonist. Pain, 68: 283–292.

    Article  PubMed  CAS  Google Scholar 

  • Staley K, Smith R, Schaack J, Wilcox C, Jentsch TJ. 1996. Alteration of GABAA receptor function following gene transfer of the CLC-2 chloride channel. NeuYon,17: 543–551.

    CAS  Google Scholar 

  • Staley KJ, Soldo BL, Proctor WR. 1995. Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors. Science, 269: 977–981.

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto T, Bennett G J, Kajander KC. 1990. Transsynaptic degeneration in the superficial dorsal horn after sciatic nerve injury: effects of a chronic constriction injury, transection, and strychnine. Pain, 42: 205–213.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Momiyama A, Hirai K, Hishinuma F, Akagi H. 1992. Functional correlation of fetal and adult forms of glycine receptors with developmental changes in inhibitory synaptic receptor channels. Neuron, 9: 1155–1161.

    Article  PubMed  CAS  Google Scholar 

  • Todd A J, Spike RC. 1993. The localization of classical transmitters and neuropeptides within neurons in laminae I–III of the mammalian spinal dorsal horn. Prog Neurobiol, 41: 609–645.

    Article  PubMed  CAS  Google Scholar 

  • Todd AJ, Sullivan AC. 1990. Light microscope study of the coexistence of GABA-like and glycine-like immunoreactivities in the spinal cord of the rat. J Comp Neurol, 296: 496–505.

    Article  PubMed  CAS  Google Scholar 

  • Todd AJ, Watt C, Spike RC, Sieghart W. 1996. Colocalization of GABA, glycine, and their receptors at synapses in the rat spinal cord. J Neurosci, 16: 974–982.

    PubMed  CAS  Google Scholar 

  • Wan Q, et al. 1997. Recruitment of functional GABAA receptors to postsynaptic domains by insulin. Nature, 388: 686–690.

    Article  PubMed  CAS  Google Scholar 

  • Willis WD Jr. 1999. Dorsal root potentials and dorsal root reflexes: a double-edged sword. Exp Brain Res, 124: 395–421.

    Article  PubMed  CAS  Google Scholar 

  • Yaksh TL. 1989. Behavioral and autonomic correlates of the tactile evoked allodynia produced by spinal glycine inhibition: Effects of modulatory receptor systems and excitatory amino acid antagonists. Pain, 37: 111–123.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Higher Education Press

About this chapter

Cite this chapter

De Koninck, Y. (2007). Plasticity of Inhibition; GABA/glycine System. In: Zhuo, M. (eds) Molecular Pain. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75269-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-75269-3_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-75268-6

  • Online ISBN: 978-0-387-75269-3

Publish with us

Policies and ethics