Skip to main content

Built-in Self-Test and Defect Tolerance in Molecular Electronics-Based Nanofabrics

  • Chapter
Emerging Nanotechnologies

Part of the book series: Frontiers in Electronic Testing ((FRET,volume 37))

  • 607 Accesses

Although complementary metal-oxide semiconductor (CMOS) chips are projected to continue their dominance for another 10—15 years [1], CMOS technology today faces a number of challenges. Quantum effects will soon make it nearly impossible to further scale devices. Deep sub-micron (DSM) technologies suffer from high leakage, and it is projected that stand-by power and active power for CMOS chips will soon become comparable [2]. Moreover, the high cost associated with chip masks and next-generation fabrication plants poses a formidable economic barrier to commercial nanometer-scale lithography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Mishra and S. Goldstein, “Defect Tolerance at the End of the Roadmap,” in Proc. International Test Conference, 2003, pp. 1201-1210.

    Google Scholar 

  2. E. J. Nowack, “Maintaining the Benefits of CMOS scaling when Scaling Bogs Down,” IBM Journal of Research and Development, no. 2/3, Mar.-May 2002.

    Google Scholar 

  3. S. C. Goldstein and M. Budiu, “NanoFabrics: Spatial Computing Using Molecular Electronics,” in Proc. International Symposium on Computer Architecture, 2001, pp. 178-189.

    Google Scholar 

  4. S. C. Goldstein and D. Rosewater, “Digital Logic Using Molecular Electronics,” in Proc. IEEE International Solid State Circuits Conference, vol. 1, 2002, pp. 204-459.

    Google Scholar 

  5. M. Butts, A. DeHon, and S. C. Goldstein, “Molecular Electronics: Devices, Systems and Tools for Gigagate, Gigabit Chips,” in Proc. International Conference on Computer-Aided Design, 2002, pp. 433-440.

    Google Scholar 

  6. M. R. Stan, P. D. Franzon, S. C. Goldstein, J. C. Lach, and M. M. Ziegler, “Molecular Electronics: From Devices and Interconnect to Circuits and Architecture,” Proc. IEEE, vol. 91, Nov. 2003, pp. 1940-1957.

    Article  Google Scholar 

  7. Y. Chen, G.-Y. Jung, D. A. A. Ohlberg, X. Li, D. R. Stewart, J. O. Jeppesen, K. A. Nielsen, J. F. Stoddart, and R. StanleyWilliams, “Nanoscale molecular- switch crossbar circuits,” Nanotechnology, vol. 14, Mar. 2003, pp. 462-468.

    Article  Google Scholar 

  8. Nantero Inc., http://www.nantero.com/.

  9. A. J. van de Goor, Testing Semiconductor Memories: Theory and Practice. ComTex Publishing, 1998.

    Google Scholar 

  10. C. Stroud, S. Konala, P. Chen, and M. Abramovici, “Built-In Self-Test of Logic Blocks in FPGAs (Finally, A Free Lunch: BIST Without Overhead!),” in Proc. IEEE VLSI Test Symposium, 1996, pp. 387-392.

    Google Scholar 

  11. M. Abramovici, E. Lee, and C. Stroud, “BIST-based Diagnostics for FPGA Logic Blocks,” in Proc. International Test Conference, 1997, pp. 539-547.

    Google Scholar 

  12. C. Metra, G. Mojoli, S. Pastore, D. Salvi, and G. Sechi, “Novel Technique for Testing FPGAs,” in Proc. Design, Automation and Test in Europe, 1998, pp. 89-94.

    Google Scholar 

  13. S. J. Wang and T. M. Tsai, “Test and Diagnosis of Fault Logic Blocks in FP- GAs,” in IEE Proceedings: Computers and Digital Techniques, vol. 146, 1999, pp. 100-106.

    Article  Google Scholar 

  14. M. B. Tahoori, E. J. McCluskey, M. Renovell, and P. Faure, “A multi- configuration strategy for an application dependent testing of FPGAs,” in Proc. IEEE VLSI Test Symposium, 2004, pp. 154-159.

    Google Scholar 

  15. M. Tahoori and S. Mitra, “Techniques and algorithms for fault grading of FPGA interconnect test configurations,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 23, Feb. 2004, pp. 261-272.

    Article  Google Scholar 

  16. W. B. Culbertson, R. Amerson, R. J. Carter, P. Kuekes, and G. Snider, “Defect Tolerance on the Teramac Custom Computer,” in Proc. IEEE Symposium on Field-Programmable Custom Computing Machines, 1997, pp. 116-223.

    Google Scholar 

  17. J. R. Heath, P. J. Kuekes, G. S. Snider, and R. S. Williams, “A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology,” Science, vol. 280, Jun. 1998, pp. 1716-1721.

    Article  Google Scholar 

  18. S. C. Goldstein and D. Rosewater, “What Makes a Good Molecular-Scale Com- puter Device?” School of Computer Science, Carnegie Mellon University, Tech. Rep. CMU-CS-02-181, Sep. 2002.

    Google Scholar 

  19. J. G. Brown and R. D. S. Blanton, “CAEN-BIST: Testing the NanoFabric,” in Proc. International Test Conference, 2004, pp. 462-471.

    Google Scholar 

  20. Z. Wang and K. Chakrabarty, “Built-in Self-Test of Molecular Electronics-Based Nanofabrics,” in Proc. European Test Symposium, 2005, pp. 168-173.

    Google Scholar 

  21. M. Tehranipoor, “Defect Tolerance for Molecular Electronics-Based NanoFabrics Using Built-In Self-Test Procedure,” in Proc. International Symposium on Defect and Fault Tolerance in VLSI Systems, 2005, pp. 305-313.

    Google Scholar 

  22. R. M. Rad and M. Tehranipoor, “SCT: An Approach for Testing and Configuring Nanoscale Devices,” in Proc. IEEE VLSI Test Symposium, 2006 (to appear).

    Google Scholar 

  23. S. Sayil, D. V. Kerns, and S. E. Kerns, “A survey contactless measurement and testing techniques,” IEEE Potentials, vol. 24, Feb.-Mar. 2005, pp. 25-28.

    Article  Google Scholar 

  24. M. Vallet and P. Sardin, “Electrical testing for failure analysis: Ebeam testing,” Microelectronic Engineering, vol. 49, 1999, pp. 157-167.

    Article  Google Scholar 

  25. A. Mabrouk and A. Hubbard, “Design and implementation of an optical test- ing technique for VLSI chips using a potential-sensitive fluorescing dye,” in Proc. IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, 1997, pp. 568-572.

    Google Scholar 

  26. S. Sayil, “All-Silicon Optical Contactless Testing Of ICs,” International Journal of Electronics, vol. 89, 2002, pp. 537-547.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wang, Z., Chakrabarty, K. (2008). Built-in Self-Test and Defect Tolerance in Molecular Electronics-Based Nanofabrics. In: Tehranipoor, M. (eds) Emerging Nanotechnologies. Frontiers in Electronic Testing, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74747-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-74747-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-74746-0

  • Online ISBN: 978-0-387-74747-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics