Skip to main content

Testing and Diagnosis of Realistic Defects in Digital Microfluidic Biochips

  • Chapter
Emerging Nanotechnologies

Part of the book series: Frontiers in Electronic Testing ((FRET,volume 37))

Over the past decade, research in integrated circuit testing has broadened from digital test to include the testing of analog and mixed-signal devices. More recently, new test techniques for mixed-technology microelectromechanical systems (MEMS) are also receiving attention [1–5]. As MEMS rapidly evolve from single components to highly integrated systems for safety-critical applications, dependability is emerging as an important performance parameter. Fabrication techniques such as silicon micromachining lead to new types of manufacturing defects in MEMS [2]. Moreover, due to their underlying mixed technology and multiple energy domains (e.g., electric, mechanical, and fluidic), such composite microsystems exhibit failure mechanisms that are significantly different from those in electronic circuits. In fact, the 2003 International Technology Roadmap for Semiconductors (ITRS) recognizes the need for new test methods for disruptive device technologies that underly composite microsystems, and highlights it as one of the five difficult test challenges beyond 2009 [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Kolpekwar and R. D. Blanton, “Development of a MEMS testing methodology”, Proc. IEEE Int. Test Conf., pp. 923-93, 1997.

    Google Scholar 

  2. N. Deb and R. D. Blanton, “Analysis of failure sources in surface-micromachined MEMS”, Proc. IEEE Int. Test Conf., pp. 739-749, 2000.

    Google Scholar 

  3. N. Deb and R. D. Blanton, “Multi-modal built-in self-test for symmetric microsystems”, Proc. IEEE VLSI Test Symp., pp. 139-147, 2004.

    Google Scholar 

  4. S. Mir, B. Charlot and B. Courtois, “Extending fault-based testing to microelectromechanical Systems”, Journal of Electronic Testing: Theory and Applications, vol. 16, pp. 279-288, 2000.

    Article  Google Scholar 

  5. A. Dhayni, S. Mir and L. Rufer, “MEMS built-in-self-test using MLS”, Proc. IEEE Eur. Test Symp., pp. 66-71, 2004.

    Google Scholar 

  6. International Technology Roadmap for Semiconductor (ITRS), http://public. itrs.net/Files/2003ITRS/Home2003.htm.

  7. E. Verpoorte and N. F. De Rooij, “Microfluidics meets MEMS”, Proc. IEEE, vol. 91, pp. 930-953, 2003.

    Article  Google Scholar 

  8. M. Pollack, A. D. Shenderov and R. B. Fair, “Electrowetting-based actuation of droplets for integrated microfluidics”, Lab on a Chip, vol. 2, pp. 96-101, 2002.

    Article  Google Scholar 

  9. F. Su and K. Chakrabarty, “Architectural-level synthesis of digital microfluidics- based biochips”, Proc. IEEE Int. Conf. on CAD, pp. 223-228, 2004.

    Google Scholar 

  10. V. Srinivasan V. K. Pamula and R. B. Fair, “An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids”, Lab on a Chip, vol. 4, pp. 310-315, 2004.

    Article  Google Scholar 

  11. F. Su, S. Ozev and K. Chakrabarty, “Testing of droplet-based microelectrofluidic systems”, Proc. IEEE Int. Test Conf., pp. 1192-1200, 2003.

    Google Scholar 

  12. F. Su, S. Ozev and K. Chakrabarty, “Test planning and test resource optimization for droplet-based microfluidic systems”, Proc. IEEE Eur. Test Sym., pp. 72-77, 2004.

    Google Scholar 

  13. F. Su, S. Ozev and K. Chakrabarty, “Concurrent testing of droplet-based microfluidic systems for multiplexed biomedical assays”, Proc. IEEE Int. Test Conf., pp. 883-892, 2004.

    Google Scholar 

  14. F. Su, K. Chakrabarty and V. K. Pamula, “Yield enhancement of digital microfluidics-based biochips using space redundancy and local reconfiguration”, accepted for publication in Proc. DATE Conference, 2005.

    Google Scholar 

  15. F. Su and K. Chakrabarty, “Defect tolerance for gracefully-degradable microfluidics-based biochips”, accepted for publication in Proc. IEEE VLSI Test Symp., 2005.

    Google Scholar 

  16. S. K. Tewksbury, “Challenges facing practical DFT for MEMS”, Proc. Defect and Tolerance in VLSI Systems, pp. 11-17, 2001.

    Google Scholar 

  17. H. G. Kerkhoff, “Testing philosophy behind the micro analysis system”, Proc. SPIE: Design, Test and Microfabrication of MEMS and MOEMS, vol. 3680, pp. 78-83, 1999.

    Google Scholar 

  18. H. G. Kerkhoff and H. P. A. Hendriks, “Fault modeling and fault simulation in mixed micro-fluidic microelectronic systems”, Journal of Electronic Testing: Theory and Applications, vol. 17, pp. 427-437, 2001.

    Article  Google Scholar 

  19. H. G. Kerkhoff and M. Acar, “Testable design and testing of micro-electro-fluidic arrays”, Proc. IEEE VLSI Test Symp., pp. 403-409, 2003.

    Google Scholar 

  20. M. G. Pollack, “Electrowetting-Based Microactuation of Droplets for Digital Microfluidics”, PhD thesis, Duke University, 2001.

    Google Scholar 

  21. V. Srinivasan, V. K. Pamula, M. G. Pollack and R. B. Fair, “A digital microfluidic biosensor for multianalyte detection”, Proc. IEEE MEMS Conference, pp. 327-330, 2003.

    Google Scholar 

  22. V. Srinivasan, V. K. Pamula, M. G. Pollack and R. B. Fair, “Clinical diagnostics on human whole blood, plasma, serum, urine, saliva, sweat, and tears on a digital microfluidic platform”, Proc. Micro Total Analysis Systems, pp. 1287-1290, 2003.

    Google Scholar 

  23. D. B. West, Introduction to Graph Theory, Prentice Hall, NJ, 1996.

    Google Scholar 

  24. T. H. Cormen, S. Clifford, C. E. Leiserson and R. L. Rivest, Introduction to Algorithm, MIT, 2001

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Su, F., Hwang, W., Mukherjee, A., Chakrabarty, K. (2008). Testing and Diagnosis of Realistic Defects in Digital Microfluidic Biochips. In: Tehranipoor, M. (eds) Emerging Nanotechnologies. Frontiers in Electronic Testing, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74747-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-74747-7_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-74746-0

  • Online ISBN: 978-0-387-74747-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics