Skip to main content

Test Planning and Test Resource Optimization for Droplet-Based Microfluidic Systems

  • Chapter
Emerging Nanotechnologies

Part of the book series: Frontiers in Electronic Testing ((FRET,volume 37))

Next-generation system-on-chip designs are expected to be composite microsystems with microelectromechanical and microfluidic components [15,23]. These mixed-signal and mixed-technology systems monolithically integrate microelectronics with microsensors and microactuators, thereby leading to chips that cannot only compute and communicate, but also sense and actuate. This high level of integration is enabling a new class of microsystems targeted at health care, environmental monitoring, biomedical analysis, harmful agent detection for countering bio-terrorism, and precision fluid dispensing [13].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Balch and R. Arkin, “Avoiding the past: a simple, but effective strategy for reactive navigation”, Proc. Int. Conf. Rob. Autom., pp. 678-685, 1993

    Google Scholar 

  2. M. Berkelaar. lpsolve. Eindhoven Univ. Technol., Eindhoven, The Netherlands. [Online]. Available: ftp://ftp.ics.ele.tue.nl/pub/lp solve

  3. K. F. Böhringer, “Optimal strategies for moving droplets in digital microfluidic systems”, Int. Conf. Miniaturized Chem. Biochem. Anal. Syst. (MicroTAS’03), pp. 591-594, 2003

    Google Scholar 

  4. N. Deb and R. D. Blanton, “Analysis of failure sources in surface-micromachined MEMS”, Proc. IEEE Int. Test Conf., pp. 739-749, 2000

    Google Scholar 

  5. J. Gross and J. Yellen, Graph Theory and its Applications, Boca Raton, FL: CRC Press, 1999

    MATH  Google Scholar 

  6. C. Icking, T. Kamphans, R. Klein and E. Langetepe, “Exploring an Unknown Cellular Environment”, Proc. Eur. Workshop Comput. Geometry, pp. 140-143, 2000

    Google Scholar 

  7. A. Itai, C. H. Papadimitriou and J. L. Szwarcfiter, “Hamilton paths in grid graphs”, SIAM J. Computing, vol. 11, pp. 676-686, 1982

    Article  MATH  MathSciNet  Google Scholar 

  8. H. G. Kerkhoff, “Testing philosophy behind the micro analysis system”, Proc. SPIE: Design, Test Microfabrication MEMS MOEMS, vol. 3680, pp. 78-83, 1999

    Google Scholar 

  9. H. G. Kerkhoff and M. Acar, “Testable design and testing of micro-electro-fluidic arrays”, Proc. IEEE VLSI Test Symp., pp. 403-409, 2003

    Google Scholar 

  10. H. G. Kerkhoff and H. P. A. Hendriks, “Fault modeling and fault simulation in mixed micro-fluidic microelectronic systems”, J. Electron. Testing: Theory Appl. (JETTA), vol. 17, pp. 427-437, 2001

    Article  Google Scholar 

  11. A. Kolpekwar and R. D. Blanton, “Development of a MEMS testing methodology”, Proc. IEEE Int. Test Conf., pp. 923-931, 1997

    Google Scholar 

  12. R. E. Korf, “Real-time heuristic search”, Artif. Intell., vol. 42, pp. 189-211, 1990

    Article  MATH  Google Scholar 

  13. W. Menz and A. Guber, “Microstructure technologies and their potential in medical applications”, Minimally Invasive Neurosurgery, vol. 37, pp. 21-27, 1994

    Article  Google Scholar 

  14. S. Mir, B. Charlot and B. Courtois. “Extending fault-based testing to microelectromechanical systems”, J. Electron. Test. Theory Appl. (JETTA), vol. 16, pp. 279-288, 2000

    Article  Google Scholar 

  15. S. Mir, H. Kerkhoff, R. D. Blanton, H. Bederr and H. Klim, “SoCs with MEMS? Can we include MEMS in the SoCs design and test flow?”, Proc. IEEE VLSI Test Symp., pp. 449, 2002

    Google Scholar 

  16. S. D. Nigam and J. U. Turner, “Review of statistical approaches to tolerance analysis”, Computer-Aided Des., vol. 27, pp. 6-25, 1995

    Article  MATH  Google Scholar 

  17. C. H. Papadimitriou, Computational Complexity, Reading, MA: Addison Wesley, 1993

    Google Scholar 

  18. M. G. Pollack, R. B. Fair and A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications”, Appl. Phys. Lett., vol. 77, pp. 1725-1726, 2000

    Article  Google Scholar 

  19. F. Su, W. Hwang, A. Mukherjee and K. Chakrabarty, “Defect-oriented testing and diagnosis of digital microfluidics-based biochip”, Proc. IEEE Int. Test Conf, 2005

    Google Scholar 

  20. F. Su and K. Chakrabarty, “Design of fault-tolerant and dynamically- reconfigurable microfluidic biochips”, Proc. Des. Automation Test Eur. (DATE) Conf.,, pp. 1202-1207, 2005

    Google Scholar 

  21. F. Su and K. Chakrabarty, “Architectural-level synthesis of digital microfluidicsbased biochips”, Proc. IEEE Int. Conf., CAD, pp. 223-228, 2004

    Google Scholar 

  22. F. Su, S. Ozev and K. Chakrabarty, “Testing of droplet-based microelectrofluidic systems”, Proc. IEEE Int. Test Conf., pp. 1192-1200, 2003

    Google Scholar 

  23. S. Thrun, Efficient exploration in reinforcement learning. Technical Report CMU-CS-92-102, Carnegie Mellon University, 1992

    Google Scholar 

  24. I. Wagner, M. Lindenbaum and A. Bruckstein, “On-line graph searching by a smell-oriented vertex process”, Proc. AAAI Workshop on On-Line Search, pp. 122-125, 1997

    Google Scholar 

  25. H. P. Williams, Model Building in Mathematical Programming, New York: Wiley, 1999

    Google Scholar 

  26. T. Zhang, K. Chakrabarty and R. B. Fair, Microelectrofluidic Systems: Modeling and Simulation, Boca Raton, FL: CRC Press, 2002

    Google Scholar 

  27. International Technology Roadmap for Semiconductor (ITRS), http://public. itrs.net/Files/2003ITRS/Home2003.htm

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Su, F., Ozev, S., Chakrabarty, K. (2008). Test Planning and Test Resource Optimization for Droplet-Based Microfluidic Systems. In: Tehranipoor, M. (eds) Emerging Nanotechnologies. Frontiers in Electronic Testing, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74747-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-74747-7_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-74746-0

  • Online ISBN: 978-0-387-74747-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics