Skip to main content

Alternative Interacting Sites and Novel Receptors for Cannabinoid Ligands

  • Chapter
Cannabinoids and the Brain

The previous chapters provided us with detailed reviews on the molecular biology and pharmacology of major endocannabinoid and endovanilloid ligands (namely, anandamide and 2-arachidonoylglycerol) and their receptors (CB1, CB2 and TRPV1 receptors), which altogether can be termed as “canonical knowledge”. Still, experimental findings often display mismatches with this canonical knowledge: in the last decade, a rapidly increasing number of studies have reported “non-canonical”, “unusual” pharmacological profiles for certain cannabinoid ligands and receptors. Furthermore, from time to time results are explained by suggesting the involvement of a “new receptor”. The present chapter attempts to give a helpful guideline about how to evaluate “non-canonical” results in the cannabinoid field. All the major topics of “non-canonical” cannabinoid pharmacology, namely interactions of endogenous and exogenous cannabinoid and vanilloid ligands with (1) CB1 receptor splice variants, (2) CB1 receptor heterodimers and other non-ionotropic receptors, (3) ligand- and voltagegated ion channels and finally, (4) neurotransmitter uptake systems are thoroughly reviewed. For sake of simplicity, studies reporting unknown cannabinoid receptors without sufficient investigation of other already defined targets are not discussed here. Finally, this review highlights that the “unorthodox sites of action” may be an unavoidable consequence of evolution, providing novel ideas and pharmaceutical targets to modulate signaling systems in neuropsychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akinshola BE, Taylor RE, Ogunseitan AB, Onaivi ES (1999) Anandamide inhibition of recombinant AMPA receptor subunits in Xenopus oocytes is increased by forskolin and 8-bromo-cyclic AMP. Naunyn Schmiedebergs Arch Pharmacol 360:242–248.

    Article  PubMed  CAS  Google Scholar 

  • Aller MI, Veale EL, Linden AM, Sandu C, Schwaninger M, Evans LJ, Korpi ER, Mathie A, Wisden W, Brickley SG (2005) Modifying the subunit composition of TASK channels alters the modulation of a leak conductance in cerebellar granule neurons. J Neurosci 25:11455–11467.

    Article  PubMed  CAS  Google Scholar 

  • Ambrosio AL, Dias SM, Polikarpov I, Zurier RB, Burstein SH, Garratt RC (2007) Ajulemic acid, a synthetic nonpsychoactive cannabinoid acid, bound to the ligand binding domain of the human peroxisome proliferatoractivatedreceptor gamma. J Biol Chem doi/10.1074/jbc.M702538200.

    Google Scholar 

  • Baker D, Pryce G, Davies WL, Hiley CR (2006) In silico patent searching reveals a new cannabinoid receptor. Trends Pharmacol Sci 27:1–4.

    Article  PubMed  CAS  Google Scholar 

  • Barann M, Molderings G, Bruss M, Bonisch H, Urban BW, Gothert M (2002) Direct inhibition by cannabinoids of human 5-HT3A receptors: probable involvement of an allosteric modulatory site. Br J Pharmacol 137:589–596.

    Article  PubMed  CAS  Google Scholar 

  • Bátkai S, Pacher P, Járai Z, Wagner JA, Kunos G (2004) Cannabinoid antagonist SR-141716 inhibits endotoxic hypotension by a cardiac mechanism not involving CB1 or CB2 receptors. Am J Physiol Heart Circ Physiol 287:H595–H600.

    Article  PubMed  Google Scholar 

  • Begg M, Mo FM, Offertaler L, Batkai S, Pacher P, Razdan RK, Lovinger DM, Kunos G (2003) G protein-coupled endothelial receptor for atypical cannabinoid ligands modulates a Ca2+-dependent K+current. J Biol Chem 278:46188–46194.

    Article  PubMed  CAS  Google Scholar 

  • Begg M, Pacher P, Batkai S, Osei-Hyiaman D, Offertaler L, Mo FM, Liu J, Kunos G (2005) Evidence for novel cannabinoid receptors. Pharmacol Ther 106:133–145.

    Article  PubMed  CAS  Google Scholar 

  • Berghuis P, Dobszay MB, Wang X, Spano S, Ledda F, Sousa KM, Schulte G, Ernfors P, Mackie K, Paratcha G, Hurd YL, Harkany T (2005) Endocannabinoids regulate interneuron migration and morphogenesis by transactivating the TrkB receptor. Proc Natl Acad Sci USA 102:19115–191120.

    Article  PubMed  CAS  Google Scholar 

  • Brandes RP, Popp R, Ott G, Bredenkotter D, Wallner C, Busse R, Fleming I (2002) The extracellular regulated kinases (ERK) 1/2 mediate cannabinoid-induced inhibition of gap junctional communication in endothelial cells. Br J Pharmacol 136:709–716.

    Article  PubMed  CAS  Google Scholar 

  • Brown AJ, Wise A (2001) Identification of modulators of GPR55 activity. Patent Number WO0186305.

    Google Scholar 

  • Brown SP, Safo PK, Regehr WG (2004) Endocannabinoids inhibit transmission at granule cell to Purkinje cell synapses by modulating three types of presynaptic calcium channels. J Neurosci 24:5623–5631.

    Article  PubMed  CAS  Google Scholar 

  • Burstein S (2005) PPAR-B: A nuclear receptor with affinity for cannabinoids. Life Sci 77:1674–1684.

    Article  PubMed  CAS  Google Scholar 

  • Carriba P, Ortiz O, Patkar K, Justinova Z, Stroik J, Themann A, Müller C, Woods AS, Hope BT, Ciruela F, Casadó V, Canela EI, Lluis C, Goldberg SR, Moratalla R, Franco R, Ferré S (2007) Striatal adenosine A2A and cannabinoid CB1 receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids. Neuropsychopharmacol doi:10.1038/sj.npp. 1301375.

    Google Scholar 

  • Cheer JF, Cadogan AK, Marsden CA, Fone KC, Kendall DA (1999) Modification of 5-HT2 receptor mediated behaviour in the rat by oleamide and the role of cannabinoid receptors. Neuropharmacology 38:533–541.

    Article  PubMed  CAS  Google Scholar 

  • Chemin J, Monteil A, Perez-Reyes E, Nargeot J, Lory P (2001) Direct inhibition of T-type calcium channels by the endogenous cannabinoid anandamide. EMBO J 20:7033–7040.

    Article  PubMed  CAS  Google Scholar 

  • Chen N, Appell M, Berfield JL, Reith ME (2003) Inhibition by arachidonic acid and other fatty acids of dopamine uptake at the human dopamine transporter. Eur J Pharmacol 478:89–95.

    Article  PubMed  CAS  Google Scholar 

  • Christopoulos A, Wilson K (2001) Interaction of anandamide with the M1 and M4 muscarinic acetylcholine receptors. Brain Res 915:70–78.

    Article  PubMed  CAS  Google Scholar 

  • Cunha RA (2001) Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors. Neurochem Int 38:107–125.

    Article  PubMed  CAS  Google Scholar 

  • Deadwyler SA, Hampson RE, Mu J, Whyte A, Childers S (1995) Cannabinoids modulate voltage sensitive potassium A-current in hippocampal neurons via a cAMP-dependent process. J Pharmacol Exp Ther 273:734–743.

    PubMed  CAS  Google Scholar 

  • del Carmen Godino M, Torres M, Sanchez-Prieto J (2005) The modulation of Ca2+ and K+ channels, but not changes in cAMP, signaling contribute to the inhibition of glutamate release by cannabinoid receptors in cerebrocortical nerve terminals. Neuropharmacology 48:547–557.

    Article  PubMed  CAS  Google Scholar 

  • Devlin MG, Christopoulos A (2002) Modulation of cannabinoid agonist binding by 5-HT in the rat cerebellum. J Neurochem 80:1095–1102.

    Article  PubMed  CAS  Google Scholar 

  • Docherty RJ, Yeats JC, Piper AS (1997) Capsazepine block of voltage-activated calcium channels in adult rat dorsal root ganglion neurones in culture. Br J Pharmacol 121:1461–1467.

    Article  PubMed  CAS  Google Scholar 

  • Drebot II, Storozhuk MV, Kostyuk PG (2006) An unexpected effect of capsaicin on spontaneous GABAergic IPSCs in hippocampal cell cultures. Neurophysiology 38:364–367.

    Article  CAS  Google Scholar 

  • Duarte JM, Nogueira C, Mackie K, Oliveira CR, Cunha RA, Köfalvi A. Increase of cannabinoid CB1 receptor density in the hippocampus of streptozotocin-induced diabetic rats. Exp Neurol 204:479–484.

    Google Scholar 

  • Elphick MR, Egertová M (2005) The phylogenetic distribution and evolutionary origins of endocannabinoid signalling. Handbook Exp Pharmacol 168:283–297.

    Article  CAS  Google Scholar 

  • Ertel EA, Campbell KP, Harpold MM, Hofmann F, Mori Y, Perez-Reyes E, Schwartz A, Snutch TP, Tanabe T, Birnbaumer L, Tsien RW, Catterall WA (2000) Nomenclature of voltage-gated calcium channels. Neuron 25:533–555.

    Article  PubMed  CAS  Google Scholar 

  • Fan P (1995) Cannabinoid agonists inhibit the activation of 5-HT3 receptors in rat nodose ganglion neurons. J Neurophysiol 73:907–910.

    PubMed  CAS  Google Scholar 

  • Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A, Rodriguez De Fonseca F, Rosengarth A, Luecke H, Di Giacomo B, Tarzia G, Piomelli D (2003) Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature 425:90–93.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Anoveros J, Nagata K (2007) TRPA1. Handbook Exp Pharmacol 179:347–362.

    Article  CAS  Google Scholar 

  • Gill CH, Randall A, Bates SA, Hill K, Owen D, Larkman PM, Cairns W, Yusaf SP, Murdock PR, Strijbos PJ, Powell AJ, Benham CD, Davies CH (2004) Characterization of the human HCN1 channel and its inhibition by capsazepine. Br J Pharmacol 143:411–421.

    Article  PubMed  CAS  Google Scholar 

  • Glass M, Felder CC (1997) Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors augments cAMP accumulation in striatal neurons: evidence for a Gs linkage to the CB1 receptor. J Neurosci 17:5327–5333.

    PubMed  CAS  Google Scholar 

  • Glass M, Northup JK (1999) Agonist selective regulation of G proteins by cannabinoid CB1 and CB2 receptors. Mol Pharmacol 56:1362–1369.

    PubMed  CAS  Google Scholar 

  • Godlewski G, Gothert M, Malinowska B (2003) Cannabinoid receptor-independent inhibition by cannabinoid agonists of the peripheral 5-HT3 receptor-mediated von Bezold-Jarisch reflex. Br J Pharmacol 138:767–774.

    Article  PubMed  CAS  Google Scholar 

  • Gothert M, Bruss M, Bonisch H, Molderings GJ (1999) Presynaptic imidazoline receptors. New developments in characterization and classification. Ann N Y Acad Sci 881:171–184.

    Article  PubMed  CAS  Google Scholar 

  • Hampson AJ, Bornheim LM, Scanziani M, Yost CS, Gray AT, Hansen BM, Leonoudakis DJ, Bickler PE (1998) Dual effects of anandamide on NMDA receptor-mediated responses and neurotransmission. J Neurochem 70:671–676.

    Article  PubMed  CAS  Google Scholar 

  • Harkány T, Guzmán M, Galve-Roperh I, Berghuis P, Devi LA, Mackie K (2007) The emerging functions of endocannabinoid signaling during CNS development. Trends Pharmacol Sci 28:83–92.

    Article  PubMed  CAS  Google Scholar 

  • Hart S, Fischer OM, Ullrich A (2004) Cannabinoids induce cancer cell proliferation via tumor necrosis factor alpha-converting enzyme (TACE/ADAM17)-mediated transactivation of the epidermal growth factor receptor. Cancer Res 64:1943–1950.

    Article  PubMed  CAS  Google Scholar 

  • Hejazi N, Zhou C, Oz M, Sun H, Ye JH, Zhang L (2005) Delta9-tetrahydrocannabinol and endogenous cannabinoid anandamide directly potentiate the function of glycine receptors. Mol Pharmacol 69:991–997.

    PubMed  Google Scholar 

  • Ho WS, Hiley CR (2003) Vasodilator actions of abnormal-cannabidiol in rat isolated small mesenteric artery. Br J Pharmacol 138:1320–1332.

    Article  PubMed  CAS  Google Scholar 

  • Ho WS, Hiley CR (2004) Vasorelaxant activities of the putative endocannabinoid virodhamine in rat isolated small mesenteric artery. J Pharm Pharmacol 56:869–875.

    Article  PubMed  CAS  Google Scholar 

  • Hogestatt ED, Jonsson BA, Ermund A, Andersson DA, Bjork H, Alexander JP, Cravatt BF, Basbaum AI, Zygmunt PM (2005) Conversion of acetaminophen to the bioactive N-acylphenolamine AM404 via fatty acid amide hydrolase-dependent arachidonic acid conjugation in the nervous system. J Biol Chem 280:31405–31412.

    Article  PubMed  CAS  Google Scholar 

  • Hoi PM, Hiley CR (2006) Vasorelaxant effects of oleamide in rat small mesenteric artery indicate action at a novel cannabinoid receptor. Br J Pharmacol 147:560–568.

    Article  PubMed  CAS  Google Scholar 

  • Jarrahian A, Watts VJ, Barker EL (2004) D2 dopamine receptors modulate Galpha-subunit coupling of the CB1 cannabinoid receptor. J Pharmacol Exp Ther 308:880–886.

    Article  PubMed  CAS  Google Scholar 

  • Jeske NA, Patwardhan AM, Gamper N, Price TJ, Akopian AN, Hargreaves KM (2006) Cannabinoid WIN 55, 212–2 regulates TRPV1 phosphorylation in sensory neurons. J Biol Chem 281:32879–32890.

    Article  PubMed  CAS  Google Scholar 

  • Johnson DE, Heald SL, Dally RD, Janis RA (1993) Isolation, identification and synthesis of an endogenous arachidonic amide that inhibits calcium channel antagonist 1, 4-dihydropyridine binding. Prostaglandins, Leukotrienes and Essential Fatty Acids 48:429–437.

    Article  CAS  Google Scholar 

  • Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Hogestatt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265.

    Article  PubMed  CAS  Google Scholar 

  • Kathmann M, Flau K, Redmer A, Trankle C, Schlicker E (2006) Cannabidiol is an allosteric modulator at mu- and delta-opioid receptors. N Schmied Arch Pharmacol 372:354–361.

    Article  CAS  Google Scholar 

  • Kearn CS, Blake-Palmer K, Daniel E, Mackie K, Glass M (2004) Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors enhances heterodimer formation: a mechanism for receptor cross-talk? Mol Pharmacol 67:1697–1704.

    Article  CAS  Google Scholar 

  • Kelley BG, Thayer SA (2004) Anandamide transport inhibitor AM404 and structurally related compounds inhibit synaptic transmission between rat hippocampal neurons in culture independent of cannabinoid CB1 receptors. Eur J Pharmacol 496:33–39.

    Article  PubMed  CAS  Google Scholar 

  • Kim HI, Kim TH, Shin YK, Lee CS, Park M, Song JH (2005) Anandamide suppression of Na+ currents in rat dorsal root ganglion neurons. Brain Res 1062:39–47.

    Article  PubMed  CAS  Google Scholar 

  • Köfalvi A, Vizi ES, Ledent C, Sperlágh B (2003) Cannabinoids inhibit the release of [3H]glutamate from rodent hippocampal synaptosomes via a novel CB1 receptor-independent action. Eur J Neurosci 18:1973–1978.

    Article  PubMed  Google Scholar 

  • Köfalvi A, Rodrigues RJ, Ledent C, Mackie K, Vizi ES, Cunha RA, Sperlágh B (2005) Involvement of cannabinoid receptors in the regulation of neurotransmitter release in the rodent striatum: a combined immunochemical and pharmacological analysis. J Neurosci 25:2874–2884.

    Article  PubMed  CAS  Google Scholar 

  • Köfalvi A, Oliveira CR, Cunha RA (2006a) Lack of evidence for functional TRPV1 vanilloid receptors in rat hippocampal nerve terminals. Neurosci Lett 403:151–156.

    Article  PubMed  CAS  Google Scholar 

  • Köfalvi A, Rebola N, Rodrigues RJ, Pereira MF, Cunha RA (2006b) Evidence for CB1Rs, but lack of evidence for presynaptic functional CB2Rs and TRPV1Rs in the hippocampus. Annual International Cannabinoid Research Society Meeting, Tihany, Hungary.

    Google Scholar 

  • Köfalvi A, Pereira MF, Rebola N, Rodrigues RJ, Oliveira CR, Cunha RA (2007) Anandamide and NADA bi-directionally modulate presynaptic Ca2+ levels and transmitter release in the hippocampus. Br J Pharmacol doi:10.1038/sj.bjp. 0707252.

    Google Scholar 

  • Kozak KR, Gupta RA, Moody JS, Ji C, Boeglin WE, DuBois RN, Brash AR, Marnett LJ (2002) 15-Lipoxygenase metabolism of 2-arachidonylglycerol. Generation of a peroxisome proliferator-activated receptor alpha agonist. J Biol Chem 277:23278–23286.

    Article  PubMed  CAS  Google Scholar 

  • Lagalwar S, Bordayo EZ, Hoffmann KL, Fawcett JR, Frey WH II (1999) Anandamides inhibit binding to the muscarinic acetylcholine receptor. J Mol Neurosci 13:55–61.

    Article  PubMed  CAS  Google Scholar 

  • Lauckner JE, Hille B, Mackie K (2005) The cannabinoid agonist WIN55, 212–2 increases intracellular calcium via CB1 receptor coupling to Gq/11 G proteins. Proc Natl Acad Sci USA 102:19144–19149.

    Article  PubMed  CAS  Google Scholar 

  • Lawson K (2000) Is there a role for potassium channel openers in neuronal ion channel disorders? Expert Opin Investig Drugs 9:2269–2280.

    Article  PubMed  CAS  Google Scholar 

  • Lesage F, Lazdunski M (2000) Molecular and functional properties of two-pore-domain potassium channels. Am J Physiol Renal Physiol 279:F793–801.

    PubMed  CAS  Google Scholar 

  • Liao C, Zheng J, David LS, Nicholson RA (2004) Inhibition of voltage-sensitive sodium channels by the cannabinoid 1 receptor antagonist AM 251 in mammalian brain. Basic Clin Pharmacol Toxicol 94:73–78.

    PubMed  CAS  Google Scholar 

  • Linden AM, Aller MI, Leppa E, Vekovischeva O, Aitta-Aho T, Veale EL, Mathie A, Rosenberg P, Wisden W, Korpi ER (2006) The in vivo contributions of TASK-1-containing channels to the actions of inhalation anesthetics, the alpha2 adrenergic sedative dexmedetomidine, and cannabinoid agonists. J Pharmacol Exp Ther 317:615–626.

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Li H, Burstein SH, Zurier RB, Chen JD (2003) Activation and binding of peroxisome proliferator-activated receptor gamma by synthetic cannabinoid ajulemic acid. Mol Pharmacol 63:983–992.

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Simon SA (1997) Capsazepine, a vanilloid receptor antagonist, inhibits nicotinic acetylcholine receptors in rat trigeminal ganglia. Neurosci Lett 228:29–32.

    Article  PubMed  CAS  Google Scholar 

  • Lo Verme J, Fu J, Astarita G, La Rana G, Russo R, Calignano A, Piomelli D (2005) The nuclear receptor peroxisome proliferator-activated receptor-alpha mediates the anti-inflammatory actions of palmitoylethanolamide. Mol Pharmacol 67:15–19.

    Article  PubMed  CAS  Google Scholar 

  • Lozovaya N, Yatsenko N, Beketov A, Tsintsadze T, Burnashev N (2005) Glycine receptors in CNS neurons as a target for nonretrograde action of cannabinoids. J Neurosci 25:7499–7506.

    Article  PubMed  CAS  Google Scholar 

  • Lundbaek JA, Birn P, Tape SE, Toombes GE, Sogaard R, Koeppe RE 2nd, Gruner SM, Hansen AJ, Andersen OS (2005) Capsaicin regulates voltage-dependent sodium channels by altering lipid bilayer elasticity. Mol Pharmacol 68:680–689.

    PubMed  CAS  Google Scholar 

  • Mackie K (2005) Cannabinoid receptor homo- and heterodimerization. Life Sci 77:1667–1673.

    Article  PubMed  CAS  Google Scholar 

  • Mackie K, Stella N (2006) Cannabinoid receptors and endocannabinoids: evidence for new players. AAPS J 8:E298–306.

    PubMed  Google Scholar 

  • Mackie K, Lai Y, Wenstenbroek R, Mitchell R (1995) Cannabinoids activate an inwardly rectifying potassium conductance and inhibit Q-type calcium currents in At20 cells transfected with rat brain cannabinoid receptor. J Neurosci 15:6552–6561.

    PubMed  CAS  Google Scholar 

  • Maingret F, Patel AJ, Lazdunski M, Honore E (2001) The endocannabinoid anandamide is a direct and selective blocker of the background K+ channel TASK-1. EMBO J 20:47–54.

    Article  PubMed  CAS  Google Scholar 

  • Maricq AV, Peterson AS, Brake AJ, Myers RM, Julius D (1991) Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science 254:432–437.

    Article  PubMed  CAS  Google Scholar 

  • Matyas F, Yanovsky Y, Mackie K, Kelsch W, Misgeld U, Freund TF (2006) Subcellular localization of type 1 cannabinoid receptors in the rat basal ganglia. Neuroscience 137:337–361.

    Article  PubMed  CAS  Google Scholar 

  • McPartland JM, Glass M (2003) Functional mapping of cannabinoid receptor homologs in mammals, other vertebrates, and invertebrates. Gene 312:297–303.

    Article  PubMed  CAS  Google Scholar 

  • McPartland JM, Matias I, Di Marzo V, Glass M (2006) Evolutionary origins of the endocannabinoid system. Gene 370:64–74.

    Article  PubMed  CAS  Google Scholar 

  • Molderings GJ, Likungu J, Gothert M (1999) Presynaptic cannabinoid and imidazoline receptors in the human heart and their potential relationship. N Schmied Arch Pharmacol 360:157–164.

    Article  CAS  Google Scholar 

  • Molderings GJ, Bonisch H, Hammermann R, Gothert M, Bruss M (2002) Noradrenaline release-inhibiting receptors on PC12 cells devoid of alpha2- and CB1 receptors: similarities to presynaptic imidazoline and edg receptors. Neurochem Int 40:157–167.

    Article  PubMed  CAS  Google Scholar 

  • Morales M, Backman C (2002) Coexistence of serotonin 3 (5-HT3) and CB1 cannabinoid receptors in interneurons of hippocampus and dentate gyrus. Hippocampus 12:756–764.

    Article  PubMed  CAS  Google Scholar 

  • Moran MM, Xu H, Clapham DE (2004) TRP ion channels in the nervous system. Curr Opin Neurobiol 14:362–369.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson RA, Liao C, Zheng J, David LS, Coyne L, Errington AC, Singh G, Lees G (2003) Sodium channel inhibition by anandamide and synthetic cannabimimetics in brain. Brain Res 978:194–204.

    Article  PubMed  CAS  Google Scholar 

  • Nilius B, Vriens J, Prenen J, Droogmans G, Voets T (2004) TRPV4 calcium entry channel: a paradigm for gating diversity. Am J Physiol Cell Physiol 286:C195–205.

    Article  PubMed  CAS  Google Scholar 

  • Offertaler L, Mo FM, Batkai S, Liu J, Begg M, Razdan RK, Martin BR, Bukoski RD, Kunos G (2003) Selective ligands and cellular effectors of a G protein-coupled endothelial cannabinoid receptor. Mol Pharmacol 63:699–705.

    Article  PubMed  CAS  Google Scholar 

  • Ohno-Shosaku T, Matsui M, Fukudome Y, Shosaku J, Tsubokawa H, Taketo MM, Manabe T, Kano M (2003) Postsynaptic M1 and M3 receptors are responsible for the muscarinic enhancement of retrograde endocannabinoid signalling in the hippocampus. Eur J Neurosci 18:109–116.

    Article  PubMed  Google Scholar 

  • Oliver D, Lien CC, Soom M, Baukrowitz T, Jonas P, Fakler B (2004) Functional conversion between A-type and delayed rectifier K+ channels by membrane lipids. Science 304:265–270.

    Article  PubMed  CAS  Google Scholar 

  • O’Sullivan SE, Tarling EJ, Bennett AJ, Kendall DA, Randall MD (2005) Novel time-dependent vascular actions of O9-tetrahydrocannabinol mediated by peroxisome proliferator-activated receptor gamma. Biochem Biophys Res Commun 337:824–831.

    Article  PubMed  CAS  Google Scholar 

  • Oz M (2006) Receptor-independent effects of endocannabinoids on ion channels. Curr Pharm Des 12:227–329.

    Article  PubMed  CAS  Google Scholar 

  • Oz M, Tchugunova Y, Dunn SMJ (2000) Endogenous cannabinoid anandamide directly inhibits voltage- dependent calcium fluxes in rabbit T-tubule membrane preparations. Eur J Pharmacol 404:13–20.

    Article  PubMed  CAS  Google Scholar 

  • Oz M, Zhang L, Morales M (2002) Endogenous cannabinoid, anandamide, acts as a noncompetitive inhibitor on 5-HT3 receptor-mediated responses in Xenopus oocytes. Synapse 46:150–156.

    Article  PubMed  CAS  Google Scholar 

  • Oz M, Ravindran R, Zhang L, Morales M (2003) Endogenous cannabinoid, anandamide inhibits neuronal nicotinic acethylcholine receptor-mediated responses in Xenopus oocytes. J Pharmacol Exp Ther 306:1003–1010.

    Article  PubMed  CAS  Google Scholar 

  • Oz M, Tchugunova Y, Dinc M (2004a) Differential effects of endogenous and synthetic cannabinoids on voltage-dependent calcium fluxes in rabbit T-tubule membranes: comparison with fatty acids. Eur J Pharmacol 502:47–58.

    Article  PubMed  CAS  Google Scholar 

  • Oz M, Zhang L, Ravindran A, Morales M, Lupica CR (2004b) Differential effects of endogenous and synthetic cannabinoids on alpha7-nicotinic acetylcholine receptor-mediated responses in Xenopus Oocytes. J Pharmacol Exp Ther 310:1152–1160.

    Article  PubMed  CAS  Google Scholar 

  • Oz M, Jackson SN, Woods AS, Morales M, Zhang L (2005) Additive effects of endogenous cannabinoid anandamide and ethanol on alpha7-nicotinic acetylcholine receptor-mediated responses in Xenopus Oocytes. J Pharmacol Exp Ther 313:1272–1280.

    Article  PubMed  CAS  Google Scholar 

  • Pearlman RJ, Aubrey KR, Vandenberg RJ (2003) Arachidonic acid and anandamide have opposite modulatory actions at the glycine transporter, GLYT1a. J Neurochem 84:592–601.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen SF, Owsianik G, Nilius B (2005) TRP channels: an overview. Cell Calcium 38:233–252.

    Article  PubMed  CAS  Google Scholar 

  • Pereira DB, Rebola N, Rodrigues RJ, Cunha RA, Carvalho AP, Duarte CB (2006) Trkb receptors modulation of glutamate release is limited to a subset of nerve terminals in the adult rat hippocampus. J Neurosci Res 83:832–844.

    Article  PubMed  CAS  Google Scholar 

  • Pertwee RG (2004) Novel pharmacological targets for cannabinoids. Curr Neuropharmacol 2:9–29.

    Article  CAS  Google Scholar 

  • Pertwee RG (2005) Pharmacological actions of cannabinoids. Handb Exp Pharmacol 168:1–51.

    Article  PubMed  CAS  Google Scholar 

  • Poling JS, Rogawski MA, Salem N Jr, Vicini S (1996) Anandamide, an endogenous cannabinoid, inhibits Shaker-related voltage-gated K+ channels. Neuropharmacology 35:983–991.

    Article  PubMed  CAS  Google Scholar 

  • Prather PL, Martin NA, Breivogel CS, Childers SR (2000) Activation of cannabinoid receptors in rat brain by WIN 55212–2 produces coupling to multiple G protein alpha-subunits with different potencies. Mol Pharmacol 57:1000–1010.

    PubMed  CAS  Google Scholar 

  • Price DA, Owens WA, Gould GG, Frazer A, Roberts JL, Daws LC, Giuffrida A (2007) CB1-independent inhibition of dopamine transporter activity by cannabinoids in mouse dorsal striatum. J Neurochem doi:10.1111/j.1471–4159.2006.04383.x.

    Google Scholar 

  • Puntambekar P, Van Buren J, Raisinghani M, Premkumar LS, Ramkumar V (2004) Direct interaction of adenosine with the TRPV1 channel protein. J Neurosci 24:3663–3671.

    Article  PubMed  CAS  Google Scholar 

  • Rao GK, Kaminski NE (2006a) Cannabinoid-mediated elevation of intracellular calcium: a structure-activity relationship. J Pharmacol Exp Ther 317:820–829.

    Article  PubMed  CAS  Google Scholar 

  • Rao GK, Kaminski NE (2006b) Induction of intracellular calcium elevation by Delta9-tetrahydrocannabinol in T cells involves TRPC1 channels. J Leukoc Biol 79:202–213.

    Article  PubMed  CAS  Google Scholar 

  • Rawls SM, Tallarida RJ, Zisk J (2006) Agmatine and a cannabinoid agonist, WIN 55212–2, interact to produce a hypothermic synergy. Eur J Pharmacol 553:89–98.

    Article  PubMed  CAS  Google Scholar 

  • Rhee M-H, Bayewitch ML, Avidor-Reiss T, Levy R and Vogel Z (1998) Cannabinoid receptor activation differentially regulates the various adenylyl cyclase isozymes. J Neurochem 71:1525–1534.

    PubMed  CAS  Google Scholar 

  • Rhee MH, Nevo I, Avidor-Reiss T, Levy R, Vogel Z (2000) Differential superactivation of adenylyl cyclase isozymes after chronic activation of the CB1 cannabinoid receptor. Mol Pharmacol 57:746–552.

    PubMed  CAS  Google Scholar 

  • Rios C, Gomes I, Devi LA (2006) mu opioid and CB1 cannabinoid receptor interactions: reciprocal inhibition of receptor signaling and neuritogenesis. Br J Pharmacol 148:387–395.

    Article  PubMed  CAS  Google Scholar 

  • Robinson RB, Siegelbaum SA (2003) Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol 65:453–480.

    Article  PubMed  CAS  Google Scholar 

  • Rockwell CE, Snider NT, Thompson JT, Vanden Heuvel JP, Kaminski NE (2006) Interleukin-2 suppression by 2-arachidonyl glycerol is mediated through peroxisome proliferator-activated receptor gamma independently of cannabinoid receptors 1 and 2. Mol Pharmacol 70:101–111.

    PubMed  CAS  Google Scholar 

  • Rothlin CV, Katz E, Verbitsky M, Elgoyhen AB (1999) The alpha9 nicotinic acetylcholine receptor shares pharmacological properties with type A gamma-aminobutyric acid, glycine, and type 3 serotonin receptors. Mol Pharmacol 55:248–254.

    PubMed  CAS  Google Scholar 

  • Ryberg E, Vu HK, Larsson N, Groblewski T, Hjorth S, Elebring T, Sjogren S, Greasley PJ (2005) Identification and characterisation of a novel splice variant of the human CB1 receptor. FEBS Lett 579:259–264.

    Article  PubMed  CAS  Google Scholar 

  • Sade H, Muraki K, Ohya S, Hatano N, Imaizumi Y (2006) Activation of large-conductance, Ca2+-activated K+ channels by cannabinoids. Am J Physiol Cell Physiol 290:C77–C86.

    Article  PubMed  CAS  Google Scholar 

  • Saghatelian A, McKinney MK, Bandell M, Patapoutian A, Cravatt BF (2006) A FAAH-regulated class of N-acyl taurines that activates TRP ion channels. Biochemistry 45:9007–9015.

    Article  PubMed  CAS  Google Scholar 

  • Salzet M, Stefano GB (2002) The endocannabinoid system in invertebrates. Prostaglandins, Leukotrienes and Essential Fatty Acids 66:353–361.

    Article  CAS  Google Scholar 

  • Savinainen JR, Saario SM, Niemi R, Jarvinen T, Laitinen JT (2003) An optimized approach to study endocannabinoid signaling: evidence against constitutive activity of rat brain adenosine A1 and cannabinoid CB1 receptors. Br J Pharmacol 140:1451–1459.

    Article  PubMed  CAS  Google Scholar 

  • Schild L (2004) The epithelial sodium channel: from molecule to disease. Rev Physiol Biochem Pharmacol 151:93–107.

    Article  PubMed  CAS  Google Scholar 

  • Schoffelmeer AN, Hogenboom F, Wardeh G, De Vries TJ (2006) Interactions between CB1 cannabinoid and mu opioid receptors mediating inhibition of neurotransmitter release in rat nucleus accumbens core. Neuropharmacology 51:773–781.

    Article  PubMed  CAS  Google Scholar 

  • Seth P, Cheeta S, Tucci S, File SE (2002) Nicotinic-serotonergic interactions in brain and behaviour. Pharmacol Biochem Behav 71:795–805.

    Article  PubMed  CAS  Google Scholar 

  • Shen M, Thayer SA (1998) The cannabinoid agonist Win55, 212–2 inhibits calcium channels by receptor-mediated and direct pathways in cultured rat hippocampal neurons. Brain Res 783:77–84.

    Article  PubMed  CAS  Google Scholar 

  • Shire D, Carillon C, Kaghad M, Calandra B, Rinaldi-Carmona M, Le Fur G, Caput D, Ferrara P (1995) An amino-terminal variant of the central cannabinoid receptor resulting from alternative splicing. J Biol Chem 270:3726–3731.

    Article  PubMed  CAS  Google Scholar 

  • Steffens M, Feuerstein TJ (2004) Receptor-independent depression of DA and 5-HT uptake by cannabinoids in rat neocortex - involvement of Na+/K+-ATPase. Neurochem Int 44:529–538.

    Article  PubMed  CAS  Google Scholar 

  • Su JY, Vo AC (2007) 2-Arachidonylglyceryl ether and abnormal cannabidiol-induced vascular smooth muscle relaxation in rabbit pulmonary arteries via receptor-pertussis toxin sensitive G proteins-ERK1/2 signaling. Eur J Pharmacol 559:189–195.

    Article  PubMed  CAS  Google Scholar 

  • Sugiura T, Kodaka T, Nakane S, Miyashita T, Kondo S, Suhara Y, Takayama H, Waku K, Seki C, Baba N, Ishima Y (1999) Evidence that the cannabinoid CB1 receptor is a 2-arachidonoylglycerol receptor. Structure-activity relationship of 2-arachidonoylglycerol, ether-linked analogues, and related compounds. J Biol Chem 274:2794–2801.

    Article  PubMed  CAS  Google Scholar 

  • Tapia R, Velasco I (1997) Ruthenium red as a tool to study calcium channels, neuronal death and the function of neural pathways. Neurochem Int 30:137–147.

    Article  PubMed  CAS  Google Scholar 

  • Trevisani M, Smart D, Gunthorpe MJ, Tognetto M, Barbieri M, Campi B, Amadesi S, Gray J, Jerman JC, Brough SJ, Owen D, Smith GD, Randall AD, Harrison S, Bianchi A, Davis JB, Geppetti P (2002) Ethanol elicits and potentiates nociceptor responses via the vanilloid receptor-1. Nat Neurosci 5:546–551.

    Article  PubMed  CAS  Google Scholar 

  • Upham BL, Rummel AM, Carbone JM, Trosko JE, Ouyang Y, Crawford RB, Kaminski NE (2003) Cannabinoids inhibit gap junctional intercellular communication and activate ERK in a rat liver epithelial cell line. Int J Cancer 104:12–18.

    Article  PubMed  CAS  Google Scholar 

  • Van den Bossche I, Vanheel B (2000) Influence of cannabinoids on the delayed rectifier in freshly dissociated smooth muscle cells of the rat aorta. Br J Pharmacol 131:85–93.

    Article  PubMed  Google Scholar 

  • van der Stelt M, Di Marzo V (2005) Anandamide as an intracellular messenger regulating ion channel activity. Prostaglandins and other Lipid Mediators 77:111–122.

    Article  PubMed  CAS  Google Scholar 

  • Venance L, Piomelli D, Glowinski J, Giaume C (1995) Inhibition by anandamide of gap junctions and intercellular calcium signalling in striatal astrocytes. Nature 376:590–594.

    Article  PubMed  CAS  Google Scholar 

  • Vigano D, Rubino T, Parolaro D (2005) Molecular and cellular basis of cannabinoid and opioid interactions. Pharmacol Biochem Behav 81:360–368.

    Article  PubMed  CAS  Google Scholar 

  • White R, Hiley CR (1998) The actions of the cannabinoid receptor antagonist, SR 141716A, in the rat isolated mesenteric artery. Br J Pharmacol 125:689–696.

    Article  PubMed  CAS  Google Scholar 

  • Williams EJ, Walsh FS, Doherty P (2003) The FGF receptor uses the endocannabinoid signaling system to couple to an axonal growth response. J Cell Biol 160:481–486.

    Article  PubMed  CAS  Google Scholar 

  • Yamamura H, Ugawa S, Ueda T, Nagao M, Shimada S (2004) Capsazepine is a novel activator of the delta subunit of the human epithelial Na+channel. J Biol Chem 279:44483–44489.

    Article  PubMed  CAS  Google Scholar 

  • Zhao Q, He Z, Chen N, Cho YY, Zhu F, Lu F, Ma WY, Bode AM, Dong Z (2005) 2-Arachidonoylglycerol stimulates activator protein-1-dependent transcriptional activity and enhances epidermal growth factor-induced cell transformation in JB6 P+ cells. J Biol Chem 280:26735–26742.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Köfalvi, A. (2008). Alternative Interacting Sites and Novel Receptors for Cannabinoid Ligands. In: Köfalvi, A. (eds) Cannabinoids and the Brain. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74349-3_9

Download citation

Publish with us

Policies and ethics