Skip to main content
  • 2071 Accesses

Abstract

Magnetoresistance (MR) in general is nonzero and anisotropic. A spectacular anisotropy observed in Cu is explained based on the nonspherical Fermi surface of this metal in this chapter. Magnetic oscillations found in the susceptibility also manifest themselves in magnetoresistance at low temperatures. A quantum theory is developed for the Shubnikov–de Haas oscillation for a 2D system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

 

  1. A.B. Pippard, Magnetoresistance in Metals (Cambridge University Press, Cambridge, UK, 1989), pp. 3–5.

    Google Scholar 

  2. J.R. Klauder and J.E. Kunzler, in The Fermi Surface, eds. Harrison and Webb (Wiley, New York, 1960).

    Google Scholar 

  3. L.W. Shubnikov and W.J. de Haas, Proc. Netherlands Royal Acad. Sci.. 33, 130 and 163 (1930).

    Google Scholar 

  4. F.E. Richard, Phys. Rev. B 8, 2552 (1973).

    Article  ADS  Google Scholar 

  5. M.A. Zudov et al., Phys. Rev. B 64 201311 (2001).

    Article  ADS  Google Scholar 

  6. R.G. Mani et al., Nature 420, 646 (2002).

    Article  ADS  Google Scholar 

  7. M.A. Zudov et al., Phys. Rev. Lett. 90, 046807 (2003).

    Article  ADS  Google Scholar 

  8. R.E. Prange and S.M. Girvin, eds., The Quantum Hall Effect, 2nd ed., (Springer-Verlag, New York, 1990); B.I. Halperin, P.A. Lee, and N. Read, Phys. Rev. B 47, 7312 (1993).

    Google Scholar 

  9. R.G. Mani, Physica E 22, 1 (2004).

    Article  ADS  Google Scholar 

  10. R.B. Dingle, Proc. Roy. Soc. A 211, 500 (1952).

    Article  ADS  Google Scholar 

  11. D.C. Tsui, 4. DFG-Rundgespräch über den Quanten Hall Effekt, (Schleching, Germany, 1989).

    Google Scholar 

  12. P. Ehrenfest and J.R. Oppenheimer, Phys. Rev. 37, 333 (1931); H.A. Bethe and R.F. Bacher, Rev. Mod. Phys. 8, 193 (1936); S. Fujita and D.L. Morabito, Mod. Phys. Lett. B 12, 753 (1998).

    Article  MATH  ADS  Google Scholar 

  13. S. Fujita et al., Phys. Rev. B 70, 075304 (2004).

    Article  ADS  Google Scholar 

  14. J.K. Jain, Phys. Rev. Lett. 63, 199 (1989); Phys. Rev. B 40, 8079 (1989); ibid. 41, 7653 (1990); J.K. Jain, Surf. Sci. 263, 65 (1992).

    Article  ADS  Google Scholar 

  15. R.R. Du et al., Phys. Rev. Lett. 70, 2944 (1993).

    Article  ADS  Google Scholar 

  16. S. Fujita and K. Ito, Quantum Theory of Conducting Matter 2. Superconductivity and Quantum Hall Effect (Springer-Verlag, New York).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeji Fujita .

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fujita, S., Ito, K. (2007). Magnetoresistance. In: Quantum Theory of Conducting Matter. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74103-1_12

Download citation

Publish with us

Policies and ethics