Skip to main content

Signalling Pathways and Adhesion Molecules as Targets for Antiangiogenesis Therapy in Tumors

  • Chapter
Targeted Therapies in Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 610))

In the embryo, blood vessels derive from endothelial precursors in a process called vasculogenesis. These progenitors assemble into a primitive vascular plexus. Subsequently, in a process called angiogenesis, the primitive vascular plexus expands by means of vessel sprouting and organizes into a network of blood vessels. Finally, the developing vessels are reinforced by the association with pericytes and smooth muscle cells (Coultas, et al. 2005). In parallel, in a process called lymphangiogenesis, lymphatic endothelial cells, which derive from embryonic veins by sprouting, form primary lymph sacs and the primary lymphatic plexus (Alitalo and Carmeliet 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achen, M. G.; B. K. McColl and S. A. Stacker (2005). Focus on lymphangiogenesis in tumor metastasis. Cancer Cell 7: 121–7.

    Article  PubMed  CAS  Google Scholar 

  • Alitalo, K. and P. Carmeliet (2002). Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 1: 219–27.

    Article  PubMed  CAS  Google Scholar 

  • Alitalo, K.; T. Tammela and T. V. Petrova (2005). Lymphangiogenesis in development and human disease. Nature 438: 946–53.

    Article  PubMed  CAS  Google Scholar 

  • Bader, B. L.; H. Rayburn; D. Crowley and R. O. Hynes (1998). Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins. Cell 95: 507–19.

    Article  PubMed  CAS  Google Scholar 

  • Bazzoni, G. (2003). The JAM family of junctional adhesion molecules. Curr Opin Cell Biol 15: 525–30.

    Article  PubMed  CAS  Google Scholar 

  • Bazzoni, G. and E. Dejana (2004). Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 84: 869–901.

    Article  PubMed  CAS  Google Scholar 

  • Bazzoni, G., E. Dejana and M. G. Lampugnani (1999). Endothelial adhesion molecules in the development of the vascular tree: the garden of forking paths. Curr Opin Cell Biol 11: 573–81.

    Article  PubMed  CAS  Google Scholar 

  • Cambier, S.; S. Gline; D. Mu; R. Collins; J. Araya; G. Dolganov; S. Einheber; N. Boudreau and S. L. Nishimura (2005). Integrin alpha(v) beta8-mediated activation of transforming growth factor-beta by perivascular astrocytes: an angiogenic control switch. Am J Pathol 166: 1883–94.

    PubMed  CAS  Google Scholar 

  • Carmeliet, P. (2005). Angiogenesis in life, disease and medicine. Nature 438: 932–6.

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet, P.; M. G. Lampugnani; L. Moons; F. Breviario; V. Compernolle; F. Bono; G. Balconi; R. Spagnuolo; B. Oostuyse; M. Dewerchin; A. Zanetti; A. Angellilo; V. Mattot; D. Nuyens; E. Lutgens; F. Clotman; M. C. de Ruiter; A. Gittenberger-de Groot; R. Poelmann; F. Lupu; J. M. Herbert; D. Collen and E. Dejana (1999). Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98: 147–57.

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet, P. and M. Tessier-Lavigne (2005). Common mechanisms of nerve and blood vessel wiring. Nature 436: 193–200.

    Article  PubMed  CAS  Google Scholar 

  • Cattelino, A.; S. Liebner; R. Gallini; A. Zanetti; G. Balconi; A. Corsi; P. Bianco; H. Wolburg; R. Moore; B. Oreda; R. Kemler and E. Dejana (2003). The conditional inactivation of the beta-catenin gene in endothelial cells causes a defective vascular pattern and increased vascular fragility. J Cell Biol 162: 1111–22.

    Article  PubMed  CAS  Google Scholar 

  • Cavallaro, U.; S. Liebner and E. Dejana (2006). Endothelial cadherins and tumor angiogenesis. Exp Cell Res 312: 659–67.

    Article  PubMed  CAS  Google Scholar 

  • Cera, M. R.; A. Del Prete; A. Vecchi; M. Corada; I. Martin-Padura; T. Motoike; P. Tonetti; G. Bazzoni; W. Vermi; F. Gentili; S. Bernasconi; T. N. Sato A. Mantovani and E. Dejana (2004). Increased DC trafficking to lymph nodes and contact hypersensitivity in junctional adhesion molecule-A-deficient mice. J Clin Invest 114: 729–38.

    PubMed  CAS  Google Scholar 

  • Corada, M.; F. Liao; M. Lindgren; M. G. Lampugnani; F. Breviario; R. Frank; W. A. Muller; D. J. Hicklin P. Bohlen and E. Dejana (2001). Monoclonal antibodies directed to different regions of vascular endothelial cadherin extracellular domain affect adhesion and clustering of the protein and modulate endothelial permeability. Blood 97: 1679–84.

    Article  PubMed  CAS  Google Scholar 

  • Coultas, L., K. Chawengsaksophak and J. Rossant (2005). Endothelial cells and VEGF in vascular development. Nature 438: 937–45.

    Article  PubMed  CAS  Google Scholar 

  • Dejana, E. (2004). Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol 5: 261–70.

    Article  PubMed  CAS  Google Scholar 

  • Dumont, D. J.; L. Jussila; J. Taipale; A. Lymboussaki; T. Mustonen; K. Pajusola M. Breitman and K. Alitalo (1998). Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282: 946–9.

    Article  PubMed  CAS  Google Scholar 

  • Fassler, R. and M. Meyer (1995). Consequences of lack of beta 1 integrin gene expression in mice. Genes Dev 9: 1896–908.

    Article  PubMed  CAS  Google Scholar 

  • Ferrara, N. and R. S. Kerbel (2005). Angiogenesis as a therapeutic target. Nature 438: 967–74.

    Article  PubMed  CAS  Google Scholar 

  • Fong, G. H.; J. Rossant; M. Gertsenstein and M. L. Breitman (1995). Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376: 66–70.

    Article  PubMed  CAS  Google Scholar 

  • Francis, S. E.; K. L. Goh; K. Hodivala-Dilke; B. L. Bader; M. Stark D. Davidson and R. O. Hynes (2002). Central roles of alpha5beta1 integrin and fibronectin in vascular development in mouse embryos and embryoid bodies. Arterioscler Thromb Vasc Biol 22: 927–33.

    Article  PubMed  CAS  Google Scholar 

  • Gerhardt, H.; M. Golding; M. Fruttiger; C. Ruhrberg; A. Lundkvist; A. Abramsson; M. Jeltsch; C. Mitchell; K. Alitalo, D. Shima and C. Betsholtz (2003). VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161: 1163–77.

    Article  PubMed  CAS  Google Scholar 

  • Hiratsuka, S.; O. Minowa; J. Kuno T. Noda and M. Shibuya (1998). Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci U S A 95: 9349–54.

    Article  PubMed  CAS  Google Scholar 

  • Hodivala-Dilke, K. M.; K. P. McHugh; D. A. Tsakiris; H. Rayburn; D. Crowley; M. Ullman-Cullere; F. P. Ross; B. S. Coller; S. Teitelbaum and R. O. Hynes (1999). Beta3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J Clin Invest 103: 229–38.

    Article  PubMed  CAS  Google Scholar 

  • Hurwitz, H., L. Fehrenbacher; W. Novotny; T. Cartwright; J. Hainsworth; W. Heim; J. Berlin; A. Baron; S. Griffing; E. Holmgren; N. Ferrara; G. Fyfe; B. Rogers R. Ross and F. Kabbinavar (2004). Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350: 2335–42.

    Article  PubMed  CAS  Google Scholar 

  • Hynes, R. O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell 110: 673–87.

    Article  PubMed  CAS  Google Scholar 

  • Karkkainen, M. J.; P. Haiko; K. Sainio; J. Partanen; J. Taipale; T. V. Petrova; M. Jeltsch; D. G. Jackson; M. Talikka; H. Rauvala; C. Betsholtz and K. Alitalo (2004). Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5: 74–80.

    Article  PubMed  CAS  Google Scholar 

  • Karpanen, T.; M. Egeblad; M. J. Karkkainen; H. Kubo; S. Yla-Herttuala; M. Jaattela and K. Alitalo (2001). Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res 61: 1786–90.

    PubMed  CAS  Google Scholar 

  • Lampugnani, M. G.; A. Zanetti; M. Corada; T. Takahashi; G. Balconi; F. Breviario; F. Orsenigo; A. Cattelino; R. Kemler T. O. Daniel and E. Dejana (2003). Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, beta-catenin, and the phosphatase DEP-1/CD148. J Cell Biol 161: 793–804.

    Article  CAS  Google Scholar 

  • Liebner, S.; A. Cattelino; R. Gallini; N. Rudini; M. Iurlaro; S. Piccolo and E. Dejana (2004). Beta-catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse. J Cell Biol 166: 359–67.

    Article  PubMed  CAS  Google Scholar 

  • Lindahl, P.; B. R. Johansson; P. Leveen and C. Betsholtz (1997). Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277: 242–5.

    Article  PubMed  CAS  Google Scholar 

  • Lyden, D.; K. Hattori; S. Dias; C. Costa; P. Blaikie; L. Butros; A. Chadburn; B. Heissig; W. Marks; L. Witte; Y. Wu; D. Hicklin; Z. Zhu; N. R. Hackett; R. G. Crystal; M. A. Moore; K. A. Hajjar; K. Manova; R. Benezra and S. Rafii (2001). Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7: 1194–201.

    Article  PubMed  CAS  Google Scholar 

  • Maeshima, Y.; A. Sudhakar; J. C. Lively; K. Ueki; S. Kharbanda; C. R. Kahn; N. Sonenberg; R. O. Hynes and R. Kalluri (2002). Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science 295: 140–3.

    Article  PubMed  CAS  Google Scholar 

  • Maisonpierre, P. C.; C. Suri; P. F. Jones; S. Bartunkova; S. J. Wiegand; C. Radziejewski; D. Compton; J. McClain; T. H. Aldrich; N. Papadopoulos; T. J. Daly; S. Davis; T. N. Sato and G. D. Yancopoulos (1997). Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277: 55–60.

    Article  PubMed  CAS  Google Scholar 

  • McCarty, J. H.; R. A. Monahan-Earley; L. F. Brown; M. Keller; H. Gerhardt; K. Rubin; M. Shani; H. F. Dvorak; H. Wolburg; B. L. Bader A. M. Dvorak and R. O. Hynes (2002). Defective associations between blood vessels and brain parenchyma lead to cerebral hemorrhage in mice lacking alphav integrins. Mol Cell Biol 22: 7667–77.

    Article  PubMed  CAS  Google Scholar 

  • Nikolopoulos, S. N.; P. Blaikie; T. Yoshioka; W. Guo and F. G. Giancotti (2004). Integrin beta4 signaling promotes tumor angiogenesis. Cancer Cell 6: 471–83.

    Article  PubMed  CAS  Google Scholar 

  • Nitta, T.; M. Hata; S. Gotoh; Y. Seo; H. Sasaki; N. Hashimoto; M. Furuse and S. Tsukita (2003). Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 161: 653–60.

    Article  PubMed  CAS  Google Scholar 

  • O’Reilly, M. S.; T. Boehm; Y. Shing; N. Fukai; G. Vasios; W. S. Lane; E. Flynn; J. R. Birkhead; B. R. Olsen and J. Folkman (1997). Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88: 277–85.

    Article  PubMed  Google Scholar 

  • Oliner, J.; H. Min; J. Leal; D. Yu; S. Rao; E. You; X. Tang; H. Kim; S. Meyer; S. J. Han; N. Hawkins; R. Rosenfeld; E. Davy; K. Graham; F. Jacobsen; S. Stevenson; J. Ho; Q. Chen; T. Hartmann; M. Michaels; M. Kelley; L. Li; K. Sitney; F. Martin; J. R. Sun; N. Zhang; J. Lu; J. Estrada; R. Kumar; A. Coxon; S. Kaufman; J. Pretorius; S. Scully; R. Cattley; M. Payton; S. Coats; L. Nguyen; B. Desilva; A. Ndifor; I. Hayward; R. Radinsky, T. Boone and R. Kendall (2004). Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin-2. Cancer Cell 6: 507–16.

    Article  PubMed  CAS  Google Scholar 

  • Pasquale, E. B. (2005). Eph receptor signalling casts a wide net on cell behavior. Nat Rev Mol Cell Biol 6: 462–75.

    Article  PubMed  CAS  Google Scholar 

  • Pike, S. E.; L. Yao; K. D. Jones; B. Cherney; E. Appella; K. Sakaguchi; H. Nakhasi; J. Teruya-Feldstein; P. Wirth; G. Gupta and G. Tosato (1998). Vasostatin, a calreticulin fragment, inhibits angiogenesis and suppresses tumor growth. J Exp Med 188: 2349–56.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, L. E.; L. Wyder; J. C. Lively; D. Taverna; S. D. Robinson; X. Huang; D. Sheppard R. O. Hynes and K. M. Hodivala-Dilke (2002). Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat Med 8: 27–34.

    Article  PubMed  CAS  Google Scholar 

  • Saitou, M.; M. Furuse; H. Sasaki; J. D. Schulzke; M. Fromm; H. Takano; T. Noda and S. Tsukita (2000). Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 11: 4131–42.

    PubMed  CAS  Google Scholar 

  • Serini, G.; D. Valdembri and F. Bussolino (2006). Integrins and angiogenesis: a sticky business. Exp Cell Res 312: 651–8.

    Article  PubMed  CAS  Google Scholar 

  • Shalaby, F.; J. Rossant; T. P. Yamaguchi; M. Gertsenstein; X. F. Wu; M. L. Breitman and A. C. Schuh (1995). Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376: 62–6.

    Article  PubMed  CAS  Google Scholar 

  • Shibuya, M. and L. Claesson-Welsh (2006). Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res 312: 549–60.

    Article  PubMed  CAS  Google Scholar 

  • Silvestre, J. S.; C. Thery, G. Hamard; J. Boddaert; B. Aguilar; A. Delcayre; C. Houbron; R. Tamarat; O. Blanc-Brude; S. Heeneman; M. Clergue; M. Duriez; R. Merval; B. Levy; A. Tedgui; S. Amigorena and Z. Mallat (2005). Lactadherin promotes VEGF-dependent neovascularization. Nat Med 11: 499–506.

    Article  PubMed  CAS  Google Scholar 

  • Soldi, R.; S. Mitola; M. Strasly; P. Defilippi; G. Tarone and F. Bussolino (1999). Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2. Embo J 18: 882–92.

    Article  PubMed  CAS  Google Scholar 

  • Stacker, S. A.; C. Caesar; M. E. Baldwin; G. E. Thornton; R. A. Williams; R. Prevo; D. G. Jackson; S. Nishikawa; H. Kubo and M. G. Achen (2001). VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 7: 186–91.

    Article  PubMed  CAS  Google Scholar 

  • Stephens, L. E.; A. E. Sutherland; I. V. Klimanskaya; A. Andrieux; J. Meneses R. A. Pedersen and C. H. Damsky (1995). Deletion of beta 1 integrins in mice results in inner cell mass failure and peri-implantation lethality. Genes Dev 9: 1883–95.

    Article  PubMed  CAS  Google Scholar 

  • Stupack, D. G.; X. S. Puente; S. Boutsaboualoy C. M. Storgard and D. A. Cheresh (2001). Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J Cell Biol 155: 459–70.

    Article  PubMed  CAS  Google Scholar 

  • Sund, M.; Y. Hamano; H. Sugimoto; A. Sudhakar; M. Soubasakos; U. Yerramalla; L. E. Benjamin; J. Lawler; M. Kieran A. Shah and R. Kalluri (2005). Function of endogenous inhibitors of angiogenesis as endothelium-specific tumor suppressors. Proc Natl Acad Sci U S A 102: 2934–9.

    Article  PubMed  CAS  Google Scholar 

  • Suri, C.; P. F. Jones; S. Patan; S. Bartunkova; P. C. Maisonpierre; S. Davis T. N. Sato and G. D. Yancopoulos (1996). Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87: 1171–80.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, T., H. Ueno and M. Shibuya (1999). VEGF activates protein kinase C-dependent, but Ras-independent Raf-MEK-MAP kinase pathway for DNA synthesis in primary endothelial cells. Oncogene 18: 2221–30.

    Article  PubMed  CAS  Google Scholar 

  • Tucker, G. C. (2003). Alpha v integrin inhibitors and cancer therapy. Curr Opin Investig Drugs 4: 722–31.

    PubMed  CAS  Google Scholar 

  • van der Neut, R.; P. Krimpenfort; J. Calafat, C. M. Niessen and A. Sonnenberg (1996). Epithelial detachment due to absence of hemidesmosomes in integrin beta 4 null mice. Nat Genet 13: 366–9.

    Article  PubMed  Google Scholar 

  • Wallez, Y., I. Vilgrain and P. Huber (2006). Angiogenesis: the VE-cadherin switch. Trends Cardiovasc Med 16: 55–9.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, K.; Y. Hasegawa; H. Yamashita; K. Shimizu; Y. Ding; M. Abe; H. Ohta; K. Imagawa; K. Hojo; H. Maki, H. Sonoda and Y. Sato (2004). Vasohibin as an endothelium-derived negative feedback regulator of angiogenesis. J Clin Invest 114: 898–907.

    PubMed  CAS  Google Scholar 

  • Yancopoulos, G. D.; S. Davis; N. W. Gale; J. S. Rudge; S. J. Wiegand and J. Holash (2000). Vascular-specific growth factors and blood vessel formation. Nature 407: 242–8.

    Article  PubMed  CAS  Google Scholar 

  • Yang, J. T.; H. Rayburn and R. O. Hynes (1993). Embryonic mesodermal defects in alpha 5 integrin-deficient mice. Development 119: 1093–105.

    PubMed  CAS  Google Scholar 

  • Zakarija, A. and G. Soff (2005). Update on angiogenesis inhibitors. Curr Opin Oncol 17: 578–83.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, J.; K. Motejlek; D. Wang; K. Zang, A. Schmidt and L. F. Reichardt (2002). beta8 integrins are required for vascular morphogenesis in mouse embryos. Development 129: 2891–903.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Bazzoni, G. (2008). Signalling Pathways and Adhesion Molecules as Targets for Antiangiogenesis Therapy in Tumors. In: Colotta, F., Mantovani, A. (eds) Targeted Therapies in Cancer. Advances in Experimental Medicine and Biology, vol 610. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73898-7_6

Download citation

Publish with us

Policies and ethics