Skip to main content

First Principles Molecular Modeling of Sensing Material Selection for Hybrid Biomimetic Nanosensors

  • Chapter
  • First Online:
Computational Methods for Sensor Material Selection

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 1020 Accesses

Abstract

Hybrid biomimetic nanosensors use selective polymeric and biological materials that integrate flexible recognition moieties with nanometer size transducers. These sensors have the potential to offer the building blocks for a universal sensing platform. Their vast range of chemistries and high conformational flexibility present both a problem and an opportunity. Nonetheless, it has been shown that oligopeptide aptamers from sequenced genes can be robust substrates for the selective recognition of specific chemical species. Here we present first principles molecular modeling approaches tailored to peptide sequences suitable for the selective discrimination of small molecules on nanowire arrays. The modeling strategy is fully atomistic. The excellent performance of these sensors, their potential biocompatibility combined with advanced mechanistic modeling studies, could potentially lead to applications such as: unobtrusive implantable medical sensors for disease diagnostics, light weight multi-purpose sensing devices for aerospace applications, ubiquitous environmental monitoring devices in urban and rural areas, and inexpensive smart packaging materials for active in-situ food safety labeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McAlpine, M. C.; Ahmad, H.; Wang, D.; Heath, J. R., Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors, Nat. Mat. 2007, 6, 379–384

    Article  CAS  Google Scholar 

  2. McAlpine, M. C.; Agnew, H. D.; Rohde, R. D.; Blanco, M.; Ahmad, H.; Stuparu, A. D.; Goddard, W. A.; Heath, J. R., Peptide-nanowire hybrid materials for selective sensing of small molecules, J. Am. Chem. Soc. 2008, 130, 9583–9589

    Article  CAS  Google Scholar 

  3. Chan, W. C.; White, P. D., Fmoc Solid Phase Peptide Synthesis: A Practical Approach; Oxford University Press, Oxford, 2000

    Google Scholar 

  4. Belmares, M.; Blanco, M.; Goddard, W. A.; Ross, R. B.; Caldwell, G.; Chou, S. H.; Pham, J.; Olofson, P. M.; Thomas, C., Hildebrand and Hansen solubility parameters from molecular dynamics with applications to electronic nose polymer sensors, J. Comput. Chem. 2004, 25, 1814–1826

    Article  CAS  Google Scholar 

  5. Cozmuta, I.; Blanco, M.; Goddard, W. A., Gas sorption and barrier properties of polymeric membranes from molecular dynamics and Monte Carlo simulations, J. Phys. Chem. B 2007, 111, 3151–3166

    Article  CAS  Google Scholar 

  6. Wu, T.-Z.; Lo, Y.-R.; Chan, E.-C., Exploring the recognized bio-mimicry materials for gas sensing Biosens. Bioelectron. 2001, 16, 945–953

    Article  CAS  Google Scholar 

  7. Mayo, S. L.; Olafson, B. D.; Goddard, W. A., Dreiding – A generic force-field for molecular simulations. J. Phys. Chem. 1990, 94, 8897–8909

    CAS  Google Scholar 

  8. Lee, C. T.; Yang, W. T.; Parr, R. G., Development of the colle-salvetti correlation-energy formula into a functional of the electron-density, Phys. Rev. B 1988, 37, 785–789

    Article  CAS  Google Scholar 

  9. Becke, A. D., Density-functional thermochemistry 3. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652

    CAS  Google Scholar 

  10. Venkatchalam, C. M., Cerius2 User' Manual, 4.10 edn.; Accelrys, Inc., San Diego, CA, 2005

    Google Scholar 

  11. Blanco, M., Molecular silverware. I. General solutions to excluded volume constrained problems, J. Comput. Chem. 1991, 12, 237–247

    Article  CAS  Google Scholar 

  12. Accelrys, I.; 4.01 edn.; Accelrys, Inc., San Diego, CA, 2005

    Google Scholar 

  13. Hu, G. Q.; Quaranta, V.; Li, D. Q., Modeling of effects of nutrient gradients on cell proliferation in microfluidic bioreactor, Biotechnol. Prog. 2007, 23, 1347–1354

    Article  CAS  Google Scholar 

  14. McAlpine, M.C.; Agnew, H.D.; Rohde, R.D.; Mario Blanco, M.; Ahmad, H.; Stuparu, A.D.; Goddard, W.A.; and Heath, J.R., J. Am. Chem. Soc. 2008, 130 (29), 9583–9589

    Google Scholar 

Download references

Acknowledgments

This work was partly supported by the Materials and Process Simulation Center, Beckman Institute at the California Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Blanco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Blanco, M., McAlpine, M.C., Heath, J.R. (2009). First Principles Molecular Modeling of Sensing Material Selection for Hybrid Biomimetic Nanosensors. In: Ryan, M., Shevade, A., Taylor, C., Homer, M., Blanco, M., Stetter, J. (eds) Computational Methods for Sensor Material Selection. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73715-7_6

Download citation

Publish with us

Policies and ethics