Skip to main content

Computer-Aided Design of Organic Host Architectures for Selective Chemosensors

  • Chapter
  • First Online:
Computational Methods for Sensor Material Selection

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 984 Accesses

Abstract

Selective organic hosts provide the foundation for the development of many types of sensors. The deliberate design of host molecules with predetermined selectivity, however, remains a challenge in supramolecular chemistry. To address this issue, we have developed a de novo structure-based design approach for the unbiased construction of complementary host architectures. This chapter summarizes recent progress including improvements on a computer software program, HostDesigner, specifically tailored to discover host architectures for small guest molecules. HostDesigner is capable of generating and evaluating millions of candidate structures in minutes on a desktop personal computer, allowing a user to rapidly identify three-dimensional architectures that are structurally organized for binding a targeted guest species. The efficacy of this computational methodology is illustrated with a search for cation hosts containing aliphatic ether oxygen groups and anion hosts containing urea groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Desvergne, J. P.; Czarnik, A. W.; Eds., Chemosensors of Ion and Molecule Recognition; Kluwer, Dordrecht, Netherlands, 1997

    Google Scholar 

  2. Beer, P. D.; Gale, P. A., Anion recognition and sensing: The state of the art and future perspectives, Angew. Chem. Int. Ed. 2001, 40, 486–516

    Article  CAS  Google Scholar 

  3. Manez-Martinez, R.; Sancenon, F., New advances in fluorogenic anion chemosensors, J. Fluoresc. 2005, 15, 267–285

    Article  Google Scholar 

  4. Suksai, C.; Tuntulani, T., Chromogenic anion sensors, Chem. Soc. Rev. 2003, 32, 192–202

    Article  CAS  Google Scholar 

  5. Gunnlaugsson, T.; Glynn, M.; Tocci, G. M. (nee Hussey); Kruger, P. E.; Pfeffer, F. M., Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors, Coord. Chem. Rev. 2006, 250, 3094–3117

    Article  CAS  Google Scholar 

  6. Nguyen, B. T.; Anslyn, E. V., Indicator-displacement assays, Coord. Chem. Rev. 2006, 250, 3118–3127

    Article  CAS  Google Scholar 

  7. Li, Y. Q.; Bricks, J. L.; Resch-Genger, U.; Spieles, M., Rettig, Bifunctional charge transfer operated fluorescent probes with acceptor and donor Receptors. 2. Bifunctional cation coordination behavior of biphenyl-type sensor molecules incorporating 2,2′:6′,2′′-terpyridine acceptors, J. Phys. Chem. A 2006, 110, 10972–10984

    Article  CAS  Google Scholar 

  8. Rurack, K.; Resch-Genger, U., Rigidization, preorientation and electronic decoupling - the ‘magic triangle’ for the design of highly efficient fluorescent sensors and switches, Chem. Soc. Rev. 2002, 31, 116–127

    Article  CAS  Google Scholar 

  9. Gardner, J. W.; Bartlett, P. N., Electronic Noses: Principles and Applications; Oxford University Press, Oxford, 1999

    Google Scholar 

  10. Pearce, T. C.; Schiffman, S. S.; Nagle, H. T.; Gardner, J. W., Eds., Handbook of Machine Olfaction: Electronic Nose Technology; Willey-VCH, Weinheim, 2003

    Google Scholar 

  11. James, D.; Scott, S. M.; Ali, Z.; O'Hare, W. T., Chemical Sensors for electronic nose systems, Microchim. Acta 2005, 149, 1–17

    Article  CAS  Google Scholar 

  12. Wolfbeis, O. S., Materials for fluorescent-based optical chemical sensors, J. Mater. Chem. 2005, 15, 2657–2669

    Article  CAS  Google Scholar 

  13. Brogan, K. L.; Walt, D. R., Optical fiber-based sensors: Application to chemical biology, Curr. Opin. Chem. Biol. 2005, 9, 494–500

    Article  CAS  Google Scholar 

  14. Wolfbeis, O. S., Fiber-optic chemical sensors and biosensors, Anal. Chem. 2006, 78, 3859–3874

    Article  CAS  Google Scholar 

  15. Polymeric sensor materials: Toward an alliance of combinatorial and rational design tools? Angew. Chem. Int. Ed. 2006, 45, 702–723

    Article  CAS  Google Scholar 

  16. Frost, M.; Meyerhoff, M. E., Sensors: Tackling biocompatibility, Anal. Chem. 2006, 7371–7377

    Google Scholar 

  17. Mohr, G. J., Covalent bond formation as an analytical tool to optically detect neutral and anionic analytes, Sens. Actuators B 2005, 107, 2–13

    Article  Google Scholar 

  18. Toma, H. E., Molecular materials and devices: Developing new functional systems based on the coordination chemistry approah, J. Braz. Chem. Soc. 2003, 14, 845–869

    Article  CAS  Google Scholar 

  19. Yang, R. H.; Wang, K. M.; Xiao, D.; Yang, X. H., A host-guest optical sensor for aliphatic amines based on lipophilic cyclodextrin, Fresenius J. Anal. Chem. 2000, 367, 429–435

    Article  CAS  Google Scholar 

  20. Finney, N. S., Combinatorial discovery of fluorophores and fluorescent probes, Curr. Opin. Chem. Biol. 2006, 10, 238–245

    Article  CAS  Google Scholar 

  21. Steed, J.; Atwood, J., Supramolecular Chemistry; Wiley, LTD, Chichester, 2000

    Google Scholar 

  22. Schneider, H.-J.; Yatsimirsky, A., Principles and Methods in Supramolecular Chemistry; Wiley, LTD, Chichester, 2000

    Google Scholar 

  23. Cram, D. J.; Lein, G. M. Host-guest complexation. 36. Spherand and lithium and sodium ion complexation rates and equilibria, J. Am. Chem. Soc. 1985, 107, 3657–3668

    Article  CAS  Google Scholar 

  24. Busch, D. H.; Farmery, K.; Goedken, V.; Katovic, V.; Melnyk, A.C.; Sperati, C. R.; Tokel, N., Chemical foundations for understanding of natural macrocyclic complexes, Adv. Chem. Ser. 1971, 100, 44

    Article  Google Scholar 

  25. McDougall, G. J.; Hancock, R. D.; Boeyens, J. C. A., Empirical force-field calculations of strain-energy contributions to the thermodynamics of complex formation. Part 1. The difference in stability between complexes containing five- and six-membered chelate rings, J. Chem. Soc. Dalton Trans. 1978, 1438–1444

    Google Scholar 

  26. Anicini, A.; Fabbrizzi, L.; Paoletti, P.; Clay, R. M., A microcalorimetric study of the macrocyclic effect. Enthalpies of formation of copper(II) and zinc(II) complexes with some tetra-aza macrocyclic ligands in aqueous solution, J. Chem. Soc. Dalton Trans. 1978, 577–583

    Google Scholar 

  27. Cram, D. J.; Kaneda, T.; Helgeson, R.C.; Brown, S. B.; Knobler, C. B.; Maverick, E.; Trueblood, K. N., Host-guest complexation. 35. Spherands, the first completely preorganized ligand systems, J. Am. Chem. Soc. 1985, 107, 3645–3657

    Article  CAS  Google Scholar 

  28. Stack, T. D. P.; Hou, Z.; Raymond, K. N., Rational reduction of the conformational space of a siderophore analog through nonbonded interactions: the role of entropy in enterobactin, J. Am. Chem. Soc. 1993, 115, 6466–6467

    Article  CAS  Google Scholar 

  29. Bianchi, A.; Bowman-James, K.; García-España, E., Eds., Supramolecular Chemistry of Anions; Wiley-VHC, New York, 1997

    Google Scholar 

  30. Schmidtchen, F. P.; Berger, M., Artificial organic host molecules for anions, Chem. Rev. 1997, 97, 1609–1646

    Article  CAS  Google Scholar 

  31. Gale, P. A., Anion coordination and anion-directed assembly: Highlights from 1997 and 1998, Coord. Chem. Rev. 2000, 199, 181–233

    Article  CAS  Google Scholar 

  32. Gale, P. A., Anion receptor chemistry: highlights from 1999, Coord. Chem. Rev. 2001, 213, 79–128

    Article  CAS  Google Scholar 

  33. Fitzmaurice, R. J.; Kyne, G. M.; Douheret, D.; Kilburn, J. D., Synthetic receptors for carboxylic acids and carboxylates, J. Chem. Soc.; Perkin Trans. 2002, 1, 841–864

    Article  Google Scholar 

  34. Martínez-Máñez, R.; Sacenón, F., Fluorogenic and chromogenic chemosensors and reagents for anions, Chem. Rev. 2003, 103, 4419–4476

    Article  Google Scholar 

  35. Choi, K.; Hamilton, A. D., Macrocyclic anion receptors based on directed hydrogen bonding interactions, Coord. Chem. Rev. 2003, 240, 101–110

    Article  CAS  Google Scholar 

  36. Lambert, T. N.; Smith, B. D., Synthetic receptors for phospholipid headgroups, Coord. Chem. Rev. 2003, 240, 129–141

    Article  CAS  Google Scholar 

  37. Davis, A. P.; Joos, J.-B., Steroids as organising elements in anion receptors, Coord. Chem. Rev. 2003, 240, 143–156

    Article  CAS  Google Scholar 

  38. Gale, P. A., Anion and ion-pair receptor chemistry: Highlights from 2000 and 2001, Coord. Chem. Rev. 2003, 240, 191–221

    Article  CAS  Google Scholar 

  39. Moyer, B. A.; Singh, R. P., Eds., Fundamentals and Applications of Anion Separations; Kluwer, New York, 2004

    Google Scholar 

  40. Severin, K., Supramolecular chemistry with organometallic half-sandwich complexes, Chem. Commun. 2006, 3859–3867

    Google Scholar 

  41. Wright, A. T.; Anslyn, E. V., Differential receptor arrays and assays for solution-based molecular recognition, Chem. Soc. Rev. 2006, 35, 14–28

    Article  CAS  Google Scholar 

  42. Kuntz, I. D.; Meng, E. C.; Shoichet, B. K., Structure-based molecular design, Acct. Chem. Res. 1994, 27, 117–123

    Article  CAS  Google Scholar 

  43. Lybrand, T. P., Ligand-protein docking and rational drug design, Curr. Opin. Struct. Biol. 1995, 5, 224–228

    Article  Google Scholar 

  44. Böhm, H.-J., Computational tools for structure-based ligand design, Prog. Biophys. Mol. Biol. 1996, 66, 197–210

    Article  Google Scholar 

  45. Ajay, Murcko, M. A., Computational methods to predict binding free energy in ligand-receptor complexes, J. Med. Chem. 1995, 38, 4953–4967

    Article  CAS  Google Scholar 

  46. Eldridge, M. D.; Murray, C. W.; Auton, T. R.; Paolini, G. V.; Mee, R. P., Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes, J. Comput. Aided Mol. Des. 1997, 11, 425–445

    Article  CAS  Google Scholar 

  47. Kitchen, D. B.; Decornez, H.; Furr, J. R.; Bajorath, J., Docking and scoring in virtual screening for drug discovery: methods and applications, Nature Rev. Drug Discov. 2004, 3, 935–949

    Article  CAS  Google Scholar 

  48. Nishibata, Y.; Itai, A., Automatic creation of drug candidate structures based on receptor structure. Starting point for artificial lead generation, Tetrahedron 1991, 47, 8985–8990

    Article  CAS  Google Scholar 

  49. Nishibata, Y.; Itai, A., Confirmation of usefulness of a structure construction program based on three-dimensional receptor structure for rational lead generation, J. Med. Chem. 1993, 36, 2921–2928

    Article  CAS  Google Scholar 

  50. Rotstein, S. H.; Murcko, M. A., GenStar: A method for de novo drug design, J. Comput. Aided Mol. Des. 1993, 7, 23–43

    Article  CAS  Google Scholar 

  51. Bohecek, R. S.; McMartin, C., Multiple highly diverse structures complementary to enzyme binding sites: Results of extensive application of a de novo design method incorporating combinatorial growth, J. Am. Chem. Soc. 1994, 116, 5560–5571

    Article  Google Scholar 

  52. Gehlhaar, D. K.; Moerder, K. E.; Zichi, D.; Sherman, C. J.; Ogden, R. C.; Freer, S. T., De novo design of enzyme inhibitors by Monte Carlo ligand generation, J. Med. Chem. 1995, 38, 466–472

    Article  CAS  Google Scholar 

  53. Luo, Z.; Wang, R.; Lai, L., RASSE: A new method for structure-based drug design J. Chem. Inf. Comput. Sci. 1996, 36, 1187–1194

    Article  CAS  Google Scholar 

  54. Böhm, H.-J., The computer program LUDI: A new method for the de novo design of enzyme inhibitors, J. Comput. Aided Mol. Des. 1992, 6, 61–78

    Article  Google Scholar 

  55. Lawrence, M. C.; Davis, P. C., CLIX: A search algorithm for finding novel ligands capable of binding proteins of known three-dimensional structure, Proteins: Struct. Funct. Genet. 1992, 12, 31–41

    Article  CAS  Google Scholar 

  56. Ho, C. M. W.; Marshall, G. R., SPLICE: A program to assemble partial query solutions from three-dimensional database searches into novel ligands, J. Comput.-Aided Mol. Des. 1993, 7, 623–647

    Article  CAS  Google Scholar 

  57. Rotstein, S. H.; Murcko, M. K., GroupBuild: A fragment-based method for de novo drug design, J. Med. Chem. 1993, 36, 1700–1710

    Article  CAS  Google Scholar 

  58. Tschinke, V.; Cohen, N. C., The NEWLEAD program: A new method for the design of candidate structures from pharmacophoric hypotheses, J. Med. Chem. 1993, 36, 3863–3870.

    Article  CAS  Google Scholar 

  59. Gillet, V. J.; Newell, W.; Mata, P.; Myatt, G. J.; Sike, S.; Zsoldos, Z.; Johnson, A. P., SPROUT: Recent developments in the de novo design of molecules, J. Chem. Inf. Comput. Sci. 1994, 34, 207–217.

    Article  CAS  Google Scholar 

  60. Leach, A. R.; Kilvington, S. R., Automated molecular design: A new fragment-joining algorithm, J. Comput.-Aided Mol. Des. 1994, 8, 283–298.

    Article  CAS  Google Scholar 

  61. Mata, P.; Gillet, V. J.; Johnson, A. P.; Lampreia, J.; Myatt, G. J.; Sike, S.; Stebbings, A. L., SPROUT: 3D structure generation using templates, J. Chem. Inf. Comp. Sci. 1995, 35, 479–493.

    Article  CAS  Google Scholar 

  62. Roe, D. C.; Kuntz, I. D., BUILDER v.2: Improving the chemistry of a de novo design strategy, J. Comput.-Aided Mol. Des. 1995, 9, 269–282.

    Article  CAS  Google Scholar 

  63. Wang, R. X.; Gao, Y.; Lai, L. H., LigBuilder: A multi-purpose program for structure-based drug design, J. Mol. Mod. 2000, 6, 498–516.

    Article  CAS  Google Scholar 

  64. Head, R. D.; Smythe, M. L.; Oprea, T. I.; Waller, C. L.; Green, S. M.; Marshall, G. R., VALIDATE: A new method for the receptor-based prediction of binding affinities of novel ligands, J. Am. Chem. Soc. 1996, 118, 3959–3969.

    Article  CAS  Google Scholar 

  65. Baxter, C. A.; Murray, C. W.; Clark, D. E.; Westhead, D. R.; Eldridge, M. D., Flexible docking using tabu search and an empirical estimate of binding affinity, Proteins: Struct. Funct. Genet. 1998, 33, 367–382.

    Article  CAS  Google Scholar 

  66. Wang, R.; Liu, L.; Lai, L.; Tang, Y., SCORE: A new empirical method for estimating the binding affinity of a protein-ligand complex, J. Mol. Model. 1998, 4, 379–394.

    Article  CAS  Google Scholar 

  67. Böhm, H.-J.; Schneider, G., Virtual screening and fast automated docking methods, Drug Discov. Today 2002, 7, 64–70.

    Google Scholar 

  68. Hay, B. P.; Firman, T. K., HostDesigner: A program for the de novo structure-based design of molecular receptors with binding sites that complement metal ion guests, Inorg. Chem. 2002, 41, 5502–5512.

    Article  CAS  Google Scholar 

  69. Hay, B. P.; Firman, T. K.; Bryantsev, V. S., HostDesigner User's Manual, PNNL-13850, Pacific Northwest National Laboratory, Richland, WA, 2006. HostDesigner software and User's Manual can be obtained free of charge by contacting BPH (haybp@ornl.gov)

    Google Scholar 

  70. Allinger, N. L.; Lii, J.-H., Molecular mechanics. The MM3 force field for hydrocarbons. 1, J. Am. Chem. Soc. 1989, 111, 8551–8566.

    Article  CAS  Google Scholar 

  71. Eblinger, F.; Schneider, H.-J., Stabilities of hydrogen-bonded supramolecular complexes with various numbers of single bonds: Attempts to quantify a dogma in host-guest chemistry, Angew. Chem. Int. Ed. 1998, 37, 826–829.

    Article  CAS  Google Scholar 

  72. Mammen, M.; Shakhnovich, E. I.; Whitesides, G. M., Using a convenient, quantitative model for torsional entropy to establish qualitative trends for molecular processes that restrict conformational freedom, J. Org. Chem. 1998, 63, 3168–3175.

    Article  CAS  Google Scholar 

  73. Houk, K. N.; Leach, A. G.; Kim, S. P.; Zhang, X., Binding affinities of host-guest, protein-ligand, and protein-transition-state complexes, Angew. Chem. Int. Ed. 2003, 42, 4872–4897.

    Article  CAS  Google Scholar 

  74. Deanda, F.; Smith, K. M.; Liu, J.; Pearlman, R. S., GSSI, a general model for solute−solvent interactions. 1. Description of the model, Mol. Pharm. 2004, 1, 23–39.

    Article  CAS  Google Scholar 

  75. Hay, B. P.; Oliferenko, A. A.; Uddin, J.; Zhang, C.; Firman, T. K., Search for improved host architectures: Application of the de novo structure-based design and high-throughput screening methods to identify optimal binding blocks for multidentate ethers, J. Am. Chem. Soc. 2005, 127, 17043–17053.

    Article  CAS  Google Scholar 

  76. Bryantsev, V. S.; Hay, B. P., De novo structure-based design of bisurea hosts for tetrahedral oxoanion guests, J. Am. Chem. Soc. 2006, 128, 2035–2042.

    Article  CAS  Google Scholar 

  77. Hay, B. P.; Firman, T. K.; Moyer, B. A., Structural design criteria for anion hosts: Strategies for achieving anion shape recognition through the complementary placement of urea donor groups, J. Am. Chem. Soc. 2005, 127, 1810–1819.

    Article  CAS  Google Scholar 

  78. Bryantsev V. S.; Hay, B. P., Using the MMFF94 model to predict structures and energies for hydrogen–bonded urea–anion complexes, J. Mol. Struct. (THEOCHEM) 2005, 725, 177–182.

    Article  CAS  Google Scholar 

  79. Albert, J. S.; Hamilton, A. D., Synthetic analogs of the ristocetin binding site: Neutral, multidentate receptors for carboxylate recognition, Tetrahedron Lett. 1993, 34, 7363–7366.

    Article  CAS  Google Scholar 

  80. Nishizawa, S.; Bühlmann, P.; Iwao, M.; Umezawa, Y., Anion recognition by urea and thiourea groups: Remarkably simple neutral receptors for dihydrogenphosphate, Tetrahedron Lett. 1995, 36, 6483–6486.

    Article  CAS  Google Scholar 

  81. Kwon, J. Y.; Jang, Y. J.; Kim, S. K.; Lee, K.-H.; Kim, J. S.; Yoon, J., Unique hydrogen bonds between 9-anthracenyl hydrogen and anions, J. Org. Chem. 2004, 69, 5155–5157.

    Article  CAS  Google Scholar 

  82. Brooks, S. J.; Gale, P. A.; Light, M. E., Carboxylate complexation by 1,1′-(1,2-phenylene)bis(3-phenylurea) in solution and the solid state, Chem. Commun. 2005, 4696–4698.

    Google Scholar 

  83. Amendola, V.; Boicchi, M.; Esteban-Gomez, D.; Fabbrizzi, L.; Monzani, E., Chiral receptors for phosphate ions, Org. Biomol. Chem. 2005, 3, 2632–2639.

    Article  CAS  Google Scholar 

  84. Hamann, B. C.; Branda, N. R.; Rebek, J., Jr., Multipoint recognition of carboxylates by neutral hosts in non-polar solvents, Tetrahedron Lett. 1993, 34, 6837–6840.

    Article  CAS  Google Scholar 

  85. Bühlmann, P.; Nishizawa, S.; Xiao, K. P.; Umezawa, Y., Strong hydrogen bond-mediated complexation of H2PO4 − by neutral bis-thiourea hosts, Tetrahedron 1997, 53, 1647–1654.

    Article  Google Scholar 

  86. Tobe, Y.; Sasaki, S.; Mizuno, M.; Naemura, K., Synthesis and anion binding ability of metacyclophane-based cyclic thioureas, Chem. Lett. 1998, 8, 835–836.

    Article  Google Scholar 

  87. Nishizawa, S.; Kamaishi, T.; Yokobori, T.; Kato, R.; Cui, Y.-Y.; Shioya, T.; Teramae, N., Facilitated sulfate transfer across the nitrobenzene-water interface as mediated by hydrogen-bonding ionophores, Anal. Sci. 2004, 20, 1559–1566.

    Article  CAS  Google Scholar 

  88. Nishizawa, S.; Rokobori, T.; Kato, R.; Yoshimoto, K.; Kamaishi, T.; Teramae, N., Hydrogen-bond forming ionophore for highly efficient transport of phosphate anions across the nitrobenzene-water interface, Analyst 2003, 128, 663–669.

    Article  CAS  Google Scholar 

  89. Lauri, G.; Bartlett, P. A., CAVEAT: A program to facilitate the design of organic molecules, J. Comp. Aided Mol. Design 1994, 8, 51–66.

    Article  CAS  Google Scholar 

  90. Herges, R.; Dikmans, A.; Jana, U.; Köhler, F.; Jones, P. G.; Dix, I.; Fricke, T.; König, B., Design of a neutral macrocyclic ionophore: Synthesis and binding properties for nitrate and bromide anions, Eur. J. Org. Chem. 2002, 3004–3014.

    Google Scholar 

  91. Dietrich, B; Fyles, T. M.; Lehn, J. M.; Pease L. G.; Fyles, D. L., Anion receptor molecules - synthesis and some anion binding properties of macrocyclic guanidinium salts, J. Chem. Soc. Chem. Comm. 1978, 934–936.

    Google Scholar 

Download references

Acknowledgments

BPH was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy under contract number DE-AC05–00OR22725 with Oak Ridge National Laboratory (managed by UT-Battelle, LLC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin P. Hay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hay, B.P., Bryantsev, V.S. (2009). Computer-Aided Design of Organic Host Architectures for Selective Chemosensors. In: Ryan, M., Shevade, A., Taylor, C., Homer, M., Blanco, M., Stetter, J. (eds) Computational Methods for Sensor Material Selection. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73715-7_5

Download citation

Publish with us

Policies and ethics