Skip to main content

Electromechanical and Chemical Sensing at the Nanoscale: DFT and Transport Modeling

  • Chapter
  • First Online:
Computational Methods for Sensor Material Selection

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 1046 Accesses

Abstract

Of the many nanoelectronic applications proposed for near to medium-term commercial deployment, sensors based on carbon nanotubes (CNT) and metal-oxide nanowires are receiving significant attention from researchers. Such devices typically operate on the basis of the changes of electrical response characteristics of the active component (CNT or nanowire) when subjected to an externally applied mechanical stress or the adsorption of a chemical or bio-molecule. Practical development of such technologies can greatly benefit from quantum chemical modeling based on density functional theory (DFT), and from electronic transport modeling based on non-equilibrium Green's function (NEGF). DFT can compute useful quantities like possible bond-rearrangements, binding energy, charge transfer, and changes to the electronic structure, while NEGF can predict changes in electronic transport behavior and contact resistance. Effects of surrounding medium and intrinsic structural defects can also be taken into account. In this work we review some recent DFT and transport investigations on (1) CNT-based nano-electromechanical sensors (NEMS) and (2) gas-sensing properties of CNTs and metal-oxide nanowires. We also briefly discuss our current understanding of CNT–metal contacts which, depending upon the metal, the deposition technique, and the masking method can have a significant effect on device performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mintmire, J. W.; Dunlap, B. I.; White, C. T., Are fullerene tubules metallic, Phys. Rev. Lett. 1992, 68, 631–634

    CAS  Google Scholar 

  2. Hamada, N.; Sawada, S.; Oshiyama, A., New one-dimensional conductors: Graphitic microtubules, Phys. Rev. Lett. 1992, 68, 1579–1582

    CAS  Google Scholar 

  3. Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S., Electronic structure of chiral graphene tubules, Appl. Phys. Lett. 1992, 60, 2204–2206

    CAS  Google Scholar 

  4. White, C. T.; Robertson, D. H.; Mintmire, J. W., Helical and rotational symmetries of nanoscale graphitic tubules, Phys. Rev. B 1993, 47, 5485–5488

    CAS  Google Scholar 

  5. Jishi, R. A.; Inomata, D.; Nakao, K.; Dresselhaus, M. S.; Dresselhaus, G., Electronic and lattice properties of carbon nanotubes, J. Phys. Soc. Jpn 1994, 63, 2252–2260

    CAS  Google Scholar 

  6. White, C. T.; Mintmire, J. W.; Mowrey, R. C.; Brenner, D. W.; Robertson, D. H.; Harrison, J. A.; Dunlap, B. I., In Buckminsterfullerenes; Billups, W. E.; Ciufolini, M. A., Eds.; VCH Pub-lishers, Deerfield Beach, FL, 1993

    Google Scholar 

  7. Articles in Phys. World 2000, 13, 29–53

    Google Scholar 

  8. Terrones, M., Science and technology of the twenty-first century: Synthesis, properties, and applications of carbon nanotubes, Annu. Rev. Mater. Res. 2003, 33, 419–501

    CAS  Google Scholar 

  9. Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A., Carbon nanotubes - The route toward applications, Science 2002, 297, 787–792

    CAS  Google Scholar 

  10. Ajayan, P. M.; Zhou, O., in Carbon Nanotubes Synthesis, Structure, Properties and Applications; Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P., Eds.; Springer, Berlin, 2001, 391–425

    Google Scholar 

  11. Meyyappan, M., Ed., Carbon Nanotubes – Science and Applications, CRC, Boca Raton, FL, 2004

    Google Scholar 

  12. Iijima, S., Helical microtubules of graphitic carbon, Nature 1991, 354, 56–58

    CAS  Google Scholar 

  13. Articles in NSTI Technical Proceedings, NSTI Publications, Cambridge, MA, Vol. 2, 2001

    Google Scholar 

  14. Articles in NSTI Technical Proceedings, NSTI Publications, Cambridge, MA, Vol. 2, 2002

    Google Scholar 

  15. Articles in NSTI Technical Proceedings, NSTI Publications, Cambridge, MA, Vol. 3, 2003

    Google Scholar 

  16. Bernholc, J.; Brenner, D.; Nardelli, M. B.; Meunier, V.; Roland, C., Mechanical and electrical properties of nanotubes, Annu. Rev. Mater. Res. 2002, 32, 347–375

    CAS  Google Scholar 

  17. Tománek, D.; Enbody, R., Eds., Science and Applications of Nanotubes, Kluwer, Netherlands, 2000

    Google Scholar 

  18. Articles in Phys. B: Condensed Matter 2002, 323, No. 1–4

    Google Scholar 

  19. Tombler, T. W.; Zhou, C.; Alexseyev, L.; Kong, J.; Dai, H.; Liu, L.; Jayanthi, C. S.; Tang, M.; Wu, S. Y., Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation, Nature 2000, 405, 769–772

    CAS  Google Scholar 

  20. Nardelli, M.; Bernholc, J., Mechanical deformations and coherent transport in carbon nanotubes, Phys. Rev. B 1999, 60, R16338–R16341

    CAS  Google Scholar 

  21. Rochefort, A.; Avouris, P.; Lesage, F.; Salahub, D., Electrical and mechanical properties of distorted carbon nanotubes, Phys. Rev. B 1999, 60, 13824–13830

    CAS  Google Scholar 

  22. Liu, L.; Jayanthi, C. S; Dai, H., Controllable reversibility of an sp2 to sp3 transition of a single wall nanotube under the manipulation of an AFM tip: A nanoscale electromechanical switch, Phys. Rev. Lett. 2000, 84, 4950–4953

    CAS  Google Scholar 

  23. Parr, R. G.; Yang, W., Density Functional Theory of Atoms and Molecules, Oxford University Press, Oxford, 1989

    Google Scholar 

  24. Hohenberg, P.; Kohn, W., Inhomogeneous electron gas, Phys. Rev. 1964, 136, B864–B871

    Google Scholar 

  25. Kohn, W.; Sham, L. J., Self-consistent equations including exchange and correlation effects, Phys. Rev. 1965, 140, A1133–A1138

    Google Scholar 

  26. Jensen, F., Introduction to Computational Chemistry, Wiley, New York, 1999

    Google Scholar 

  27. Hill, J.-R.; Subramanian, L.; Maiti, A., Molecular Modeling Techniques in Material Sciences, CRC/Taylor & Francis, Boca Raton, FL/London, 2005

    Google Scholar 

  28. Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M., UFF: A full periodic table force field for molecular mechanics and molecular dynamics simulations, J. Am. Chem. Soc. 1992, 114, 10024–10039

    CAS  Google Scholar 

  29. Delley, B., An all-electron numerical method for solving the local density functional for polyatomic molecules, J. Chem. Phys. 1990, 92, 508–517

    CAS  Google Scholar 

  30. Delley, B., Fast calculation of electrostatics in crystals and large molecules, J. Phys. Chem. 1996, 100, 6107–6110

    CAS  Google Scholar 

  31. Delley, B., A scattering theoretic approach to scalar relativistic corrections on bonding, Int. J. Quantum Chem. 1998, 69, 423–433

    CAS  Google Scholar 

  32. Delley B., From molecules to solids with the DMol3 approach, J. Chem. Phys. 2000, 113, 7756–7764

    CAS  Google Scholar 

  33. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation made simple, Phys. Rev. Lett. 1996, 77, 3865–3868

    CAS  Google Scholar 

  34. Monkhorst, H. J.; Pack, J. D., Special points for Brillouin-zone integrations, Phys. Rev. B 1976, 13, 5188–5192

    Google Scholar 

  35. Szabo, A.; Ostlund, N. S., Modern Quantum Chemistry, Dover, New York, 1996

    Google Scholar 

  36. Maiti, A., Application of carbon nanotubes as electromechanical sensors – Results from First-Principles simulations, Phys. Stat. Sol. B 2001, 226, 87–93

    CAS  Google Scholar 

  37. Datta, S., Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge, 1997

    Google Scholar 

  38. Datta, S., Quantum Transport: Atom to Transistor, Cambridge University Press, Cambridge, 2005

    Google Scholar 

  39. Imry, Y., Introduction to Mesoscopic Physics, Oxford University Press, Oxford, 1997

    Google Scholar 

  40. Brandbyge, M.; Mozos, J.; Ordejón, P.; Taylor, J.; Stokbro, K., Density-functional method for nonequilibrium electron transport, Phys. Rev. B 2002, 65, 165401.1–165401.17

    Google Scholar 

  41. Ferry, D. K.; Goodnick, S. M., Transport in Nanostructures, Cambridge University Press, Cambridge, 1997

    Google Scholar 

  42. Beenakker, C. W. J., Random-matrix theory of quantum transport, Rev. Mod. Phys. 1997, 69, 731–808

    CAS  Google Scholar 

  43. Büttiker, M., Four-terminal phase-coherent conductance, Phys. Rev. Lett. 1986, 57, 1761–1764

    Google Scholar 

  44. Landauer, R., Conductance determined by transmission: Probes and quantised constriction resistance, J. Phys.: Condens: Matter 1989, 1, 8099–8110

    Google Scholar 

  45. Papaconstantopoulos, D. A.; Mehl, M. J.; Erwin, S. C.; Pederson, M. R., Tight-binding approach to computational materials science, In MRS Proceedings 491; Turchi, P.E.A.; Gonis, A.; Colombo, L., Eds.; Materials Research Society, Warrendale, PA, 1998

    Google Scholar 

  46. Maiti, A.; Svizhenko, A.; Anantram, M. P., Electronic transport through carbon nanotubes: Effects of structural deformation and tube chirality, Phys. Rev. Lett. 2002, 88, 126805.1–126805.4

    Google Scholar 

  47. Kane, C. L.; Mele, E. J., Size, shape, and low energy electronic structure of carbon nanotubes, Phys. Rev. Lett. 1997, 78, 1932–1935

    CAS  Google Scholar 

  48. Heyd, R.; Charlier, A.; McRae, E., Uniaxial-stress effects on the electronic properties of carbon nanotubes, Phys. Rev. B 1997, 55, 6820–6824

    CAS  Google Scholar 

  49. Yang, L.; Anantram, M. P.; Han, J.; Lu, J. P., Band-gap change of carbon nanotubes: Effect of small uniaxial and torsional strain, Phys. Rev. B 1999, 60, 13874–13878

    CAS  Google Scholar 

  50. Yang, L.; Han, J., Electronic structure of deformed carbon nanotubes, Phys. Rev. Lett. 2000, 85, 154–157

    CAS  Google Scholar 

  51. Kleiner, A.; Eggert, S., Band gaps of primary metallic carbon nanotubes, Phys. Rev. B 2001, 63, 073408.1–073408.4

    Google Scholar 

  52. Lammert, P. E.; Zhang, P.; Crespi, V. H., Gapping by squashing: Metal–insulator and insulator-metal transitions in collapsed carbon nanotubes, Phys. Rev. Lett. 2000, 84, 2453–2456

    CAS  Google Scholar 

  53. Lu, J-Q.; Wu, J.; Duan, W.; Liu, F.; Zhu, B. F.; Gu, B. L., Metal-to-semiconductor transition in squashed armchair carbon nanotubes, Phys. Rev. Lett. 2003, 90, 156601.1–156601.4

    Google Scholar 

  54. Svizhenko, A.; Mehrez, H.; Anantram, M. P.; Maiti, A., Sensing mechanical deformation in carbon nanotubes by electrical response: A computational study, Proc. SPIE 2005, 5593, 416–428

    Google Scholar 

  55. Minot, E. D.; Yaish, Y.; Sazonova, V.; Park, J-Y.; Brink, M.; McEuen, P. L., Tuning carbon nanotube band gaps with strain, Phys. Rev. Lett. 2003, 90, 156401.1–156401.4

    Google Scholar 

  56. Cao, J.; Wang, Q.; Dai, H., Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching, Phys. Rev. Lett. 2003, 90, 157601.1–157601.4

    Google Scholar 

  57. Maiti, A., Carbon nanotubes: Band gap engineering with strain, Nat. Mater. (London) 2003, 2, 440–442

    CAS  Google Scholar 

  58. Baughman, R. H., et al., Carbon nanotube actuators, Science 1999, 284, 1340–1344

    CAS  Google Scholar 

  59. Sazonova, V.; Yaish, Y.; Ustunel, H.; Roundy, D.; Arias, T. A.; McEuen P. L., A tunable carbon nanotube electromechanical oscillator, Nature 2004, 431, 284–287

    CAS  Google Scholar 

  60. Hartman, A. Z.; Jouzi, M.; Barnett, R. L.; Xu, J. M, Theoretical and experimental studies of carbon nanotube electromechanical coupling, Phys. Rev. Lett. 2004, 92, 236804.1–236804.4

    Google Scholar 

  61. Zhang, Y.; Franklin, N. W.; Chen, R. J.; Dai, H., Metal coating on suspended carbon nanotubes and its implication to metal–tube interaction, Chem. Phys. Lett. 2000, 331, 35–41

    CAS  Google Scholar 

  62. Mann, D.; Javey, A.; Kong, J.; Wang, Q.; Dai, H., Ballistic transport in metallic nanotubes with reliable Pd ohmic contacts, Nano Lett. 2003, 3, 1541–1544

    CAS  Google Scholar 

  63. Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H., Ballistic carbon nanotube field-effect transistors, Nature 2003, 424, 654–657

    CAS  Google Scholar 

  64. Durgun, E.; Dag, S.; Bagci, V. M. K.; Gülseren, O.; Yildirim, T.; Ciraci, S., Systematic study of adsorption of single atoms on a carbon nanotube, Phys. Rev. B 2003, 67, 201401.1–201401.4

    Google Scholar 

  65. Maiti, A.; Ricca, A., Metal–nanotube interactions – binding energies and wetting properties, Chem. Phys. Lett. 2004, 395, 7–11

    CAS  Google Scholar 

  66. Heinze, S.; Tersoff, J.; Martel, R.; Derkcke, V.; Appenzeller, J.; Avouris, P., Carbon nanotubes as Schottky barrier transistors, Phys. Rev. Lett. 2002, 89, 106801.1–106801.4

    Google Scholar 

  67. Guo, J.; Datta, S.; Lundstrom, M., A numerical study of scaling issues for Schottky-barrier carbon nanotube transistors, IEEE Trans. Electron Devices 2004, 51, 172–177

    CAS  Google Scholar 

  68. Shan, B.; Cho, K. J., Ab initio study of Schottky barriers at metal-nanotube contacts, Phys. Rev. B 2004, 70, 233405.1–233405.4

    Google Scholar 

  69. Nemec, N.; Tomanek, D.; Cuniberti, G., Contact dependence of carrier injection in carbon nanotubes: An ab initio study, Phys. Rev. Lett. 2006, 96, 076802.1–076802.4

    Google Scholar 

  70. Auvray, S. et al., Chemical optimization of self-assembled carbon nanotube transistors, Nano Lett. 2005, 5, 451–455

    CAS  Google Scholar 

  71. Charlier, J. C.; Blasé, X.; Roche, S., Electronic and transport properties of nanotubes, Rev. Mod. Phys. 2007, 79, 677–732

    CAS  Google Scholar 

  72. Kong, J.; Franklin, N.R; Zhou, C.; Chapline, M.G.; Peng, S.; Cho, K.; Dai, H., Nanotube molecular wires as chemical sensors, Science 2000, 287, 622–625

    CAS  Google Scholar 

  73. Collins, P.G.; Bradley, K.; Ishigami, M.; Zettl, A., Extreme oxygen sensitivity of electronic properties of carbon nanotubes, Science 2000, 287, 1801–1804

    CAS  Google Scholar 

  74. Valentini, L.; Armentano, I.; Kenny, J. M.; Cantalini, C.; Lozzi, L.; Santucci, S., Sensors for sub-ppm NO2 gas detection based on carbon nanotube thin films, Appl. Phys. Lett. 2003, 82, 961–963

    CAS  Google Scholar 

  75. Chopra, S.; McGuire, K.; Gothard, N.; Rao, A. M.; Pham, A., Selective gas detection using a carbon nanotube sensor, Appl. Phys. Lett. 2003, 83, 2280–2282

    CAS  Google Scholar 

  76. Klinke, C.; Chen, J.; Afzali, A.; Avouris, P., Charge transfer induced polarity switching in carbon nanotube transistors, Nano Lett. 2005, 5, 555–558

    CAS  Google Scholar 

  77. Snow, E. S.; Perkins, F. K.; Houser, E. J.; Badescu, S. C.; Reinecke, T. L., Chemical detection with a single-walled carbon nanotube capacitor, Science 2005, 307, 1942–1945

    CAS  Google Scholar 

  78. Sumanasekera, G. U.; Pradhan, B. K.; Romero, H. E.; Adu, K. W.; Eklund, P. C., Giant thermopower effects from molecular physisorption on carbon nanotubes, Phys. Rev. Lett. 2002, 89, 166801.1–166801.4

    Google Scholar 

  79. Qi, P.; Vermesh, O.; Grecu, M.; Javey, A.; Wang, Q.; Dai, H.; Peng, S.; Cho, K., Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection, Nano Lett. 2003, 3, 347–351

    CAS  Google Scholar 

  80. Staii, C.; Johnson, A. T.; Chen, M.; Gelperin, A., DNA-decorated carbon nanotubes for chemical sensing, Nano Lett. 2005, 5, 1774–1778

    CAS  Google Scholar 

  81. Dai, H., Carbon nanotubes: Synthesis, integration, and properties, Acc. Chem. Res. 2002, 35, 1035–1044

    CAS  Google Scholar 

  82. Chen, R.; Zhang, Y.; Wang, D.; Dai, H., Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization, J. Am. Chem. Soc. 2001, 123, 3838–3839

    CAS  Google Scholar 

  83. Grüner, G., Carbon nanotube transistors for biosensing applications, Anal. Bioanal. Chem. 2006, 384, 322–335

    Google Scholar 

  84. Heath, J. R. In Nanobiotechnology II; Mirkin, C.; Niemeyer, C. M., Eds.; Wiley, New York, 2007, Chap. 12, 213

    Google Scholar 

  85. Asuri, P.; Bale, S. S.; Pangule R. C.; Shah, D. A.; Kane, R. S.; Dordick, J. S., Structure, function, and stability of enzymes covalently attached to single-walled carbon nanotubes, Langmuir 2007, 23, 12318–12321

    CAS  Google Scholar 

  86. Peng, S.; Cho, K. J.; Qi, P.; Dai, H., Ab initio study of CNT NO2 gas sensor, Chem. Phys. Lett. 2004, 387, 271–276

    CAS  Google Scholar 

  87. Rodriguez, J. A.; Jirsak, T.; Sambasiban, S.; Fischer, D.; Maiti, A., Chemistry of NO2 on CeO2 and MgO: Experimental and theoretical studies on the formation of NO3, J. Chem. Phys. 2000, 112, 9929–9939

    CAS  Google Scholar 

  88. Rodriguez, J. A.; Jirsak, T.; Liu, G.; Hrbek, J.; Dvorak, J.; Maiti, A., Chemistry of NO2 on oxide surfaces: Formation of NO3 on TiO2(110) and NO2:O vacancy interactions, J. Am. Chem. Soc. 2001, 123, 9597–9605

    CAS  Google Scholar 

  89. Chang, H.; Lee, J. D.; Lee, S. M.; Lee, Y. H., Adsorption of NH3 and NO2 molecules on carbon nanotubes, Appl. Phys. Lett. 2001, 79, 3863–3865

    CAS  Google Scholar 

  90. Zhao, J.; Buldum, A.; Han, J.; Lu, J. P., Gas molecule adsorption in carbon nanotubes and nanotube bundles, Nanotechnology 2002, 13, 195–200

    CAS  Google Scholar 

  91. Valentini, L.; Mercuri, F.; Armentano, I.; Cantalini, C.; Picozzi, S.; Lozzi, L.; Santucci, S.; Sgamellotti, A.; Kenny, A., Role of defects on the gas sensing properties of carbon nanotubes thin films: Experiment and theory, Chem. Phys. Lett. 2004, 387, 356–361

    CAS  Google Scholar 

  92. Robinson, J. A.; Snow, E. S.; Bǎdescu, S. C.; Reinecke, T. L.; Perkins, F. K., Role of defects in single-walled carbon nanotube chemical sensors, Nano Lett. 2006, 6, 1747–1751

    CAS  Google Scholar 

  93. Yamada, T., Modeling of carbon nanotube Schottky barrier modulation under oxidizing conditions, Phys. Rev. B 2004, 69, 125408.1–125408.8

    Google Scholar 

  94. Andzelm, J.; Govind, N.; Maiti, A., Carbon nanotubes as gas sensors – Role of structural defects, Chem. Phys. Lett. 2006, 421, 58–62

    CAS  Google Scholar 

  95. Stone, A. J.; Wales, D. J., Theoretical studies of icosahedral C60 and some related species, Chem. Phys. Lett. 1986, 128, 501–503

    CAS  Google Scholar 

  96. Ellison, M. D.; Crotty, M. J.; Koh, D.; Spray, R. L.; Tate, K. E., Adsorption of NH3 and NO2 on single-walled carbon nanotubes, J. Phys. Chem. B 2004, 108, 7938–7943

    CAS  Google Scholar 

  97. Maiti, A., Multiscale modeling with carbon nanotubes, Microelectron. J. 2008, 39, 208–221

    CAS  Google Scholar 

  98. Latil, S.; Roche, S.; Charlier, J. C., Electronic transport in carbon nanotubes with random coverage of physisorbed molecules, Nano Lett. 2005, 5, 2216–2219

    CAS  Google Scholar 

  99. Santucci, S.; Picozzi, S.; Di Gregorio; F., Lozzi; L., Cantalini, C., L'Aquila, C.; Valentini, L.; Kenny, J. M.; Delley, B., NO2 and CO gas adsorption on carbon nanotubes: Experiment and theory, J. Chem. Phys. 2003, 119, 10904–10910

    CAS  Google Scholar 

  100. Ulbricht, H.; Kriebel, J.; Moos, G.; Hertel, T., Desorption kinetics and interaction of Xe with single-wall carbon nanotube bundles, Chem. Phys. Lett. 2002, 363, 252–260

    CAS  Google Scholar 

  101. Wang, Z. L., Ed., Nanowires and Nanobelts: Materials, Properties, and Devices, Kluwer, Netherlands, 2003

    Google Scholar 

  102. Dai, Z. R.; Pan, Z. W.; Wang, Z. L., Ultra-long single crystalline nanoribbons of tin oxide, Solid State Commun. 2001, 118, 351–354

    CAS  Google Scholar 

  103. Huang, M.; Wu, Y.; Feick, H.; Tran, N.; Weber, E.; Yang, P., Catalytic growth of zinc oxide nanowires by vapor transport, Adv. Mater. 2001, 13, 113–116

    CAS  Google Scholar 

  104. Huang, M.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P., Room-temperature ultraviolet nanowire nanolasers, Science 2001, 292, 1897–1899

    CAS  Google Scholar 

  105. Comini, E.; Faglia, G.; Sberveglieri, G.; Pan, Z.; Wang, Z. L., Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts, Appl. Phys. Lett. 2002, 81, 1869–1871

    CAS  Google Scholar 

  106. Cui, Y.; Wei, Q.; Park, H.; Lieber, C. M., Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science 2001, 293, 1289–1292

    CAS  Google Scholar 

  107. Favier, F.; Walter, E. C.; Zach, M. P.; Benter, T.; R. M. Penner, Hydrogen sensors and switches from electrodeposited palladium mesowire arrays, Science 2001, 293, 2227–2231

    CAS  Google Scholar 

  108. Founstadt, C. G.; Rediker, R. H., Electrical properties of high-quality stannic oxide crystals, J. Appl. Phys. 1971, 42, 2911–2918

    Google Scholar 

  109. Law, M.; Kind, H.; Kim, F.; Messer, B.; Yang, P., Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature, Angew. Chem. Int. Ed. 2002, 41, 2405–2408

    CAS  Google Scholar 

  110. Maiti, A.; Rodriguez, J.; Law, M.; Kung, P.; McKinney, J.; Yang, P., SnO2 nanoribbons as NO2 sensors: insights from First-Principles calculations, Nano Lett. 2003, 3, 1025–1028

    CAS  Google Scholar 

  111. Kind, H.; Yan, H.; Law, M.; Messer, B.; Yang, P., Nanowire ultraviolet photodetectors and optical switches, Adv. Mater. 2002, 14, 158–160

    CAS  Google Scholar 

  112. Lieber, C. M.; Wang, Z. L., Functional nanowires, MRS Bull. 2007, 32, 99–104

    CAS  Google Scholar 

  113. Law, M.; Goldberger, J.; Yang, P., Semiconductor nanowires and nanotubes, Annu. Rev. Mater. Res. 2004, 34, 83–122

    CAS  Google Scholar 

Download references

Acknowledgment

The author would like to acknowledge collaborations with M. P. Anantram, A. Svizhenko, and A. Ricca (NASA, Ames), J. Andzelm, N. Govind, and P. Kung (Accelrys), J. Rodriguez (Brookhaven National Lab), and Prof. P.Yang (UC, Berkeley). Stimulating discussions with Prof. H. Dai and Dr. A. Javey (Stanford) are also greatly appreciated. The work was performed under the auspices of the U.S. Department of Energy by the UC LLNL under Contract W-7405-Eng-48.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitesh Maiti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Maiti, A. (2009). Electromechanical and Chemical Sensing at the Nanoscale: DFT and Transport Modeling. In: Ryan, M., Shevade, A., Taylor, C., Homer, M., Blanco, M., Stetter, J. (eds) Computational Methods for Sensor Material Selection. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73715-7_2

Download citation

Publish with us

Policies and ethics