Skip to main content

Introduction: Experimental Methods in Chemical Sensor and Sensor Array Evaluation and Development

  • Chapter
  • First Online:
Computational Methods for Sensor Material Selection

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

Sensors are devices, sensor arrays are collections of sensors, and it is through experimentation and computation that we obtain the knowledge we need to make useful analytical measurements. Gas and liquid chemical sensor arrays provide a new multidimensional analytical technique not unlike Gas Chromatography, Liquid chromatography, or GC/MS [gas chromatography mass spectrometry]. Exciting possibilities for advanced analytical measurements are emerging with the development and use of chemical sensor arrays. The multidisciplinary nature of sensor development and the diversity of the types of sensors, analytes, and applications provide a rich venue for research and development as well as the complex issues that lead to lively debates. Progress in developing arrays for analytical purposes is coming from applying new knowledge about biosystems that use sensor arrays, advanced predictive chemical computational capabilities, and significant increases in experimental materials and methods. The protocols for the experimental understanding of sensor arrays provides the foundation for present strategies and future models that will enable realization of the contributions of sensor arrays to analytical measurement science and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Analyte:

Substance or chemical constituent whose identity or quantity is determined by conducting the analytical procedure

ANN:

Artificial neural network

Ar:

Argon

atm:

Atmosphere (pressure)

A s :

Analytical sensitivity

BAW:

Bulk acoustic wave

C :

Capacitance

CGS:

Combustible gas sensor

Chembio:

Chemical–biological

CI:

Chemical interface

Cl2 :

Molecular chlorine

cm3 :

Cubic centimeter

CO:

Carbon monoxide

CO2 :

Carbon dioxide

CPS-100:

Chemical Parameter Spectrometer – 100

E :

Electromotive Force or Voltage

GC:

Gas chromatography

H2 :

Hydrogen

HCN:

Hydrogen cyanide

H2S:

Hydrogen sulfide

I :

Current – charge per unit time

IMCS2:

International Meeting on Chemical Sensors 2

IR:

Infrared

K or k :

Sensitivity – signal per unit concentration

KNN or k-NN:

k-nearest neighbor

L:

Liter

LOD:

Limit of detection

M :

Mass

mL:

Milliliter

MOSES II:

Laboratory electronic nose by Lennertz

MS:

Mass spectrometry

mV:

Millivolt

nA:

Nanoampere

N2 :

Nitrogen

Ne:

Neon

NH3 :

Ammonia

NO2 :

Nitrogen dioxide

O2 :

Oxygen

OR:

Olfactory Receptor – a G-receptor protein used in olfaction

pA:

Picoampere

ppb:

Parts per billion – by volume

ppq:

Parts per quadrillion

ppt:

Parts per trillion

R :

Resistance – ohms

S :

Sensor signal

SAW:

Surface acoustic wave

SPME:

Solid-phase microextraction

SSTUF:

Shared sensor testing user facility

TAS:

Total analytical system

TCD:

Thermal conductivity sensor

TIC:

Toxic industrial chemical

TIM:

Toxic industrial material

VOC:

Volatile organic compound

Z :

Impedance

References

  1. Buck, L., Unraveling the Sense of Smell, Nobel Lecture, Stockholm, Sweden, Dec. 8, 2004

    Google Scholar 

  2. Rolfe, B. M., Toward nanometer-scale sensing systems: Natural and artificial noses as models for ultra-small, ultra-dense sensing systems, Adv. Comput. 2007, 71

    Google Scholar 

  3. Schiffman, S. S.; Pearce, T. C., Introduction to olfaction: Perception, anatomy, physiology, and molecular biology, In Handbook of Machine Olfaction: Electronic Nose Technology; Pearch, T. C.; Schiffman, S. S., et al., Eds.; Wiley, New York, 2006, 1–26

    Google Scholar 

  4. Crasto, C.; Marenco, L.; Miller, P. L.; Shepherd, G. S., Olfactory receptor database: A metadata-driven automated population from sources of gene and protein sequences, Nucleic Acids Res. 2002, 1, 354–360

    Article  Google Scholar 

  5. Crasto, C.; Marenco, L.; Skoufos, E.; Healy, M. D.; Singer, M. S.; Nadkarni, P. M.; Miller, P. L.; Shepherd, G. S., The Olfactory Receptor Database. Available at http://senselab.med.yale.edu/senselab/ORDB

  6. Kurosawa, S.; Park, J. W.; Aizawa, H.; Wakida, S.; Tao, H.; Ishihara, K., Quartz crystal microbalance immunosensors for environmental monitoring, Biosens. Bioelectron. 2006, 22, 473–481

    Article  CAS  Google Scholar 

  7. Ricci, F.; Volpe, G.; Micheli, L.; Palleschi, G., A review on novel developments and applications of immunosensors in food analysis, Anal. Chim. Acta. 2007, 605, 111–129; and Mendoza, A., et al., Scalable fabrication of immunosensors based on CNT polymer composites, Nanotechnology 2008, 19, 075102

    Google Scholar 

  8. Kauer, J. S.; White, J., Representation of odor information in the olfactory system: From biology to an artificial nose, In Sensors and Sensing in Biology and Engineering; Barth, F. G.; Humphrey, J. A. C.; Secomb, T. W., Eds.; Springer Verlag, Berlin, 2002

    Google Scholar 

  9. Craven, B.; Neuberg, T.; Paterson, E. G.; Webb, A. G.; Josephson, E. M.; Morrison, E. E.; Settles, G. S., Reconstruction and morphometric analysis of the nasal airway of the dog (Canis familiaris) and implications regarding olfactory airflow, Anat. Rec. 2007, 209, 1325–1340

    Article  Google Scholar 

  10. Stetter, J. R.; Penrose, W. R., Understanding Chemical Sensors and Chemical Sensor Arrays (Electronic Noses): Past, Present, and Future, Chapter 2.3 in Sensors Update, Wiley-VCH, Weinheim, Germany, 2002, Vol. 10, 189–229

    Google Scholar 

  11. Stetter, J. R.; Zaromb, S.; Penrose, W. R.; Otagawa, T.; Sinclair, J.; Stull, J., Portable instrument for the detection and identification of air pollutants, J US Environ Prot Agency, Res. Dev., (Rep.) EPA (1984) Number: EPA/600/9–84/019, Proc. Natl. Symp. Recent Adv. Pollut. Monit. Ambient Air Stationary Sources 1984, 73–81

    Google Scholar 

  12. Lavner, G. I.; Bloch, Y. G.; Azulai, O.; Goldblatt, A.; Terkel, J., A simple system for the remote detection and analysis of sniffing in explosives detection dogs, Behav. Res. Methods Instrum. Comput. 2003, 35, 82–89. Also see http://k9.fgcu.edu/articles/gazit1.pdf)

    Article  Google Scholar 

  13. Pauling, L.; Robinson, A. B.; Terashi, R., et al., Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography, Proc. Natl Acad. Sci. USA 1971, 68, 2374–2376

    Article  CAS  Google Scholar 

  14. Phillips, M., Method for the collection and assay of volatile organic compounds in breath, Thesis intro chapter, Anal. Biochem. 1997, 247, 272–278

    Article  CAS  Google Scholar 

  15. Göpel, W., Chemical imaging: I. Concepts and visions for electronic and bioelectronic noses, Sensors Actuat. B 1998, 52, 125–142

    Article  Google Scholar 

  16. Stetter, J. R.; Zaromb, S.; Penrose, W. R.; Findlay, M. W.; Otagawa, T.; Sincali, A. J., Portable device for detecting and identifying hazardous vapors, In Journal: Hazardous Materials Spills Conference Proceedings, Prevention Behaviour Control Cleanup Spills Waste Sites, Paper 116; Ludwigson, J., Ed.; Government Institutes Inc., Rockville, MD, 1984, 183–190

    Google Scholar 

  17. Stetter, J. R.; Jurs, P. C.; Rose, S. L., Detection of hazardous gases and vapors: Pattern recognition analysis of data from an electrochemical sensor arrays, Anal. Chem. 1986, 58, 860–866

    Article  CAS  Google Scholar 

  18. Stetter, J. R.; Otagawa, T., A chemical concentration – Modulation sensor for the selective detection of airborne chemicals, Sensors Actuat. 1987, 11, 251–264

    Article  Google Scholar 

  19. Janata, J., Modern topics in chemical sensing, Chem. Rev. 2008, 108, 327–844

    Article  CAS  Google Scholar 

  20. Vaihinger, S.; Göpel, W.; Stetter, J. R., Detection of halogenated and other hydrocarbons in air: response functions of catalyst/electrochemical sensor systems, Sensors Actuat. 1991, B4, 337–343

    Article  CAS  Google Scholar 

  21. Stratheropoulos, M.; Agapiou, A.; Spiliopoulou, C.; Pallis, G. C.; Sianos, E., Environmental aspects of VOCs evolved in the early stages of human decomposition, Sci. Total Environ. 2007, 385, 221–227

    Article  Google Scholar 

  22. Stratheropoulos, M.; Agapiou, A.; Spiliopoulou, C., A study of VOCs evolved from the decaying human body, Forensic Sci. Int. 2005, 153, 147–155

    Article  Google Scholar 

  23. Bhushan, A.; Yemane, D.; Overton, E. B.; Goettert, J.; Murphy, M. C., Fabrication and preliminary results for LiGA fabricated nickel micro gas chromatograph columns, J. Microelectromech. Syst. 2007, 16, 383–393

    Article  CAS  Google Scholar 

  24. Iqbal, J.; Overton, E. B.; Gisclair, D., Polycyclic aromatic hydrocarbons in Louisiana rivers and coastal environments: Source fingerprinting and forensic analysis, Environ. Forensics 2008, 9, 63–74

    Article  CAS  Google Scholar 

  25. Machado, R. F.; Laskowski, D.; Deffenderfer, O.; Burch, T.; Zheng, S.; Mazzone, P. J.; Mekhail, T.; Jennings, C.; Stoller, J. K.; Pyle, J.; Duncan, J.; Dweik, R. A.; Erzurum, S. C., Detection of lung cancer by sensor array analyses of exhaled breath, Am. J. Respir. Crit. Care Med. 2005, 171, 1286–1291

    Article  Google Scholar 

  26. Mitrovics, J.; Ulmer, H.; Weimar, U.; Göpel, W., Modular sensor systems for gas sensing and odor monitoring: The MOSES concept, In ACS Symposium Series: Chemical Sensors and Interfacial Design, 1998, Vol. 31, 307–315

    CAS  Google Scholar 

  27. Eckenrode, B. A.; Ramsey, S. A; Stockham, R. A.; Van Berkel, G. J.; Asano, K. G.; Wolf, D. A., Performance evaluation of the scent transfer unit™ (STU-100) for organic compound collection and release, J. Forensic Sci. 2006, 51, 780–789, doi:10.1111/j.1556–4029.2006.00178

    Article  CAS  Google Scholar 

  28. Skoog, D. A.; West, D. M.; Holler, F. J.; Crouch, S. R., Fundamentals of Analytical Chemistry, 7th edn.; Thomas Learning, Belmont, CA, 1996, 870 pages, ISBN 0030059380 or Skoog, D. A.; Leary, J., Principles of Instrumental Analysis, Saunders, Fort Worth, TX, 1992

    Google Scholar 

  29. Willard, H.; Merritt, L.; Dean, J.; Settle, F., Instrumental Methods of Analysis, 7th edn.; Wadsworth, Belmont, CA, 1998

    Google Scholar 

  30. Strobel, H.; Heineman, W., Chemical Instrumentation: A Systematic Approach 3rd edn.; Wiley, New York, 1989, Validity is discussed in Heineman

    Google Scholar 

  31. Barsan, N.; Stetter, J. R.; Findlay, M.; Göpel, W., High performance gas sensing of CO: Comparative tests for semiconducting (SnO2-based) and for amperometric gas sensors, Anal. Chem. 1999, 71, 2512–2517

    Article  CAS  Google Scholar 

  32. Stetter, J. R., Amperometric electrochemical gas sensors: Description and applications, In NIST Workshop on Gas Sensors: Strategies for Future Technologies, Sept. 8–9, 1993, 61–64 (NIST Pub. #865)

    Google Scholar 

  33. Cao, Z.; Buttner, W. J.; Stetter, J. R., The properties and applications of amperometric gas sensors, Electroanalysis 1992, 4, 253–266

    Article  CAS  Google Scholar 

  34. Chang, S. C.; Stetter, J. R.; Cha, C. S., Amperometric gas sensors, Talanta 1993, 40, 461–467

    Article  CAS  Google Scholar 

  35. Stetter, J. R.; Li, J., Modern topics in chemical sensing: Chapter 4, Amperometric gas sensors – A review, Chem. Rev. 2008, 108, 352–366

    Article  CAS  Google Scholar 

  36. Chao, Y.-T.; Buttner, W. J.; Gupta, K.; Penrose, W. R.; Stetter, J. R., Shared sensor technology user facility at IIT. Hydrogen amperometric gas sensor: Performance evaluation by SSTUF, In Chemical Sensors VI: Chemical and Biological Sensors and Analytical Methods Proceedings of the International Symposium (as part of the 206th Meeting of the Electrochemical Society); Bruckner-Lea, C.; Hunter, G.; Miura, N.; Vanysek, P.; Egashira, M.; Mizutani, F., Eds.; Honolulu, Hawaii, 2004, 117–121, http://www.iit.edu/stetter/SSTUFOverview.html

  37. Zellers, E. T.; Park, J.; Hsu, T.; Groves, W. A., Establishing a limit of recognition for a vapor sensor array, Anal. Chem. 1998, 70, 4191–4201

    Article  CAS  Google Scholar 

  38. Hsieh, M-D.; Zellers, E. T., Adaptation and evaluation of a personal electronic nose for selective multivapor analysis, J. Occup. Environ. Hygiene 2004, 1, 149–160

    CAS  Google Scholar 

  39. Willis, C. M.; Church, S. M.; Guest, C. M.; Cook, W. A.; McCarthy, N.; Bransbury, A. J.; Church, M. R. T.; Church, J. C. T., Olfactory detection of human bladder cancer by dogs: Proof of principle study, Br Med J 2004, 329, 712

    Article  Google Scholar 

  40. Stetter, J. R.; Penrose, W. R., Eds., Artificial Chemical Sensing: Proceedings of Eighth International Symposium on Olfaction and the Electronic Nose (ISOEN8 - ISOEN 2001), Washington, DC, March 20–24, 2001, ECS Publishing, Pennington, NJ, 2001, 229 pages, ISBN 1–56677–321–0

    Google Scholar 

  41. Pardo, M.; Kwong, L. G.; Sberveglieri, G.; Brubaker, K.; Schneider, J. F.; Penrose, W. R.; Stetter, J. R., Data analysis for a hybrid sensor array, Sensors Actuat. B 2005, 106, 136–143

    Article  Google Scholar 

  42. Penrose, W. R.; Penrose, S. E., Designing Portable Computerized Instruments, TAB Books, Inc., Blue Ridge Summit, PA, 1987, 262

    Google Scholar 

  43. Lorber, A.; Faber, K.; Kowalski, B. R., Net analyte signal calculation in multivariate calibration, Anal. Chem. 1997, 69, 1620–1626, 10.1021/ac960862b S0003–2700(96)00862–1

    Article  CAS  Google Scholar 

  44. Stetter, J. R., Instrumentation to monitor chemical exposure in the synfuel industry, Ann. Am. Conf. Govern. Ind. Hygienists 1984, 11, 225–269

    CAS  Google Scholar 

  45. Stetter, J. R.; Zaromb, S.; Findlay, M. W., Jr., Monitoring of electrochemically inactive compounds by amperometric gas sensors, Sensors Actuat. 1985, 6, 269

    Google Scholar 

  46. Stetter, J. R., New toxic-gas detector could save lives, prevent disasters, logos, In C&ENews, Argonne National Lab, Argonne, IL, 1984, Vol. 3, 2; Sensor array for toxic gas detection, US Patent 4670405, filing date 1984

    Google Scholar 

  47. Stetter, J. R.; Zaromb, S.; Penrose, W. R.; Otagawa, T.; Sinclair, J.; Stull, J., Portable instrument for the detection and identification of air pollutants, In Proceedings of Fourth National Symposium on Recent Advances in Pollutant Monitoring of Ambient Air and Stationary Sources, U.S. EPA, Research Triangle Park, NC, May 1984

    Google Scholar 

  48. Stetter, J. R.; Zaromb, S.; Penrose, R.; Otagawa, T.; Sincali, A. J.; Stull, J. O., Selective monitoring of hazardous chemicals in emergency situations, In Proceedings of 1984 JANNAF Safety and Environmental Protection Annual Meeting, Las Cruces, NM, May 1984

    Google Scholar 

  49. Vaihinger, S.; Stetter, J. R.; Göpel, W., Detection of Halogenated and Other Hydrocarbons in Air: Response Functions of Catalyst/Electrochem. Sensor Systems, Proc. of Eurosensors IV, Karlsruhe, Federal Republic of Germany, October 1–3, 1990

    Google Scholar 

  50. Stetter, J. R.; Penrose, W. R.; Zaromb, S.; Stull, J. O., et al., A portable toxic vapor detector and analyzer using an electrochemical sensor array, In Analysis Instrumentation; Herbst, K. S., Ed.; ISA, RTP, NC 27709, 1985, Vol. 21, 163–170

    Google Scholar 

  51. Stull, J. O.; Stetter, J. R.; Penrose, W. R.; Zaromb, S., Development and evaluation of a portable personal monitor for detection and identification of hazardous chemical vapors, In Proceedings of 1985 of Hazardous Materials Management Conference and Exhibit, Long Beach Convention Center, CA, Dec. 3–5, 1985, Tower Conf. Mgt. Co., Wheaton, IL, 1985

    Google Scholar 

  52. Buttner, W. J.; Stetter, J. R., et al., A portable instrument for multiple compound detection and analysis, In Proceedings of Fourth Annual Technical Seminar on Chemical Spills, Feb 10–12, Toronto, ON, Sponsored by Environment Canada, 1987

    Google Scholar 

  53. Buttner, W. J.; Stetter, J. R., et al., Portable Instrumentation for On-Site Analysis of Toxic Vapors, Technical Seminar on Chemical Spills, Toronto, ON, Canada, 1988, 295–301

    Google Scholar 

  54. Stetter, J. R.; Penrose, W. R.; Zaromb, S.; Stull, J. O., et al., A portable toxic vapor detector and analyzer using an electrochemical sensor array, In Analysis Instrumentation; Herbst, K. S., Ed.; ISA, RTP, NC 27709, 1985, Vol. 21, 163–170

    Google Scholar 

  55. Stetter, J. R.; Zaromb, S.; Penrose, W., [ARCH] Sensor array for toxic gas detection, US Patent 4,670,405: 6/2/87

    Google Scholar 

  56. Stetter, J. R.; Penrose, W. R.; Zaromb, S.; Christian, D.; Hampton, D. M.; Nolan, M.; Billings, M. W.; Steinke, K.; Otagawa, T., Evaluating the effectiveness of chemical parameter spectrometry in analyzing vapors of industrial chemicals, In Proceedings of Second Annual Technical Seminar on Chemical Spills, Toronto, ON, 1985

    Google Scholar 

  57. Vaihinger, S.; Stetter, J. R.; Göpel, W., Detection of halogenated and other hydrocarbons in air: Response functions of catalyst/electrochemical sensor systems, In Proceedings of Eurosensors IV, Karlsruhe, Federal Republic of Germany, October 1–3, 1990

    Google Scholar 

  58. Stetter, J. R., Method and apparatus for identifying and quantifying simple and complex chemicals, US Patent 4,818,348: Apr. 4, 1989

    Google Scholar 

  59. Stetter, J. R., Electrochemical gas sensors for identification of solid and liquid compounds, Transducers ‘87, In Proceedings of the Fourth International Conference on Solid-State Sensors and Actuators, Institute of EE of Japan, Tokyo, Japan, June 2–5, 1987, 557–560

    Google Scholar 

  60. Strathmann, S.; Penrose, W. R.; Stetter, J. R.; Göpel, W., Detection of TNT with chemical sensors, In Proceedings of International Symposium on Olfaction and the Electronic Nose, (ISOEN 99), Tuebingen, Germany, September 20–22, 1999

    Google Scholar 

  61. Stetter, J. R.; Findlay, M. W.; Maclay, G. J.; Zhang, J.; Vaihinger, S.; Göpel, W., Sensor array and catalytic filament for chemical analysis of vapors and mixtures, Sensors Actuat. 1990, B1, 43–47

    Article  CAS  Google Scholar 

  62. Stetter, J. R.; Penrose, W. R.; Strathmann, S.; Göpel, W., Approaches to a more versatile electronic nose, In Proceedings of International Symposium on Olfaction and the Electronic Nose (ISOEN 99), Tuebingen, Germany, September 20–22, 1999

    Google Scholar 

  63. Stetter, J. R.; Jurs, P. C.; Rose, S. L.; Stull, J. O., Enhancement of the toxic vapor identification capability of portable sensors using pattern recognition techniques, In Proceedings of 1985 JANNAF Safety and Environmental Protection Subcommittee, Naval Postgraduate School, Monterey, CA, CPIA, John Hopkins Univ. APL, Baltimore, MD, Nov. 4–8, 1985

    Google Scholar 

  64. Weimar, U.; Göpel, W., Chemical imaging: II. Trends in practical multiparameter sensor systems, Sensors Actuat. B 1998, 52, 143–161

    Article  Google Scholar 

  65. Stetter, J. R., Electrochemical sensors, sensor arrays, and computer algorithms, In Fundamentals and Applications of Chemical Sensors; Schuetzle, D.; Hammerle, R.; Butler, J., Eds.; ACS Symposium Series, No. 309, 1986, 299–308

    Chapter  Google Scholar 

  66. Zaromb, S.; Battin, R.; Penrose, W. R.; Stetter, J. R.; Stamoudis, V. C.; Stull, J. O., Extending the capabilities of the portable chemical parameter spectrometer to the identification of up to 100 compounds, In Proceedings of the Second International Meeting on Chemical Sensors, Bordeaux, France, July 7–10; Aucouturier, J. L., et al., Eds.; 1986, 739–742

    Google Scholar 

  67. Findlay, M. W.; Penrose, W. R.; Stetter, J. R., Quality classification of grain using a sensor array and pattern recognition, Anal. Chim. Acta 1993, 284, 1–11

    Article  Google Scholar 

  68. Stetter, J. R.; Otagawa, T., Selective detection of chemicals using energy modulated signals, In Proceedings of the Third International Conference on Solid-State Sensors and Actuators, Philadelphia, PA, June 10–14, IEEE, Piscataway, NJ 08854 (IEEE Cat. #85CH2127–9 and LC #84–62799), 1985, 77–81

    Google Scholar 

  69. Stetter, J. R.; Otagawa, T., Selective detection of chemicals using energy modulated signals, In Proceedings of the Third International Conference on Solid-State Sensors and Actuators, Philadelphia, PA, June 10–14, IEEE, Piscataway, NJ 08854 (IEEE Cat. #85CH2127–9 and LC #84–62799), 1985, 77–81

    Google Scholar 

  70. Stetter, J. R.; Otagawa, T., Chemical Detection by Energy Modulation of Sensors. USP# 5047352; 9/10/91

    Google Scholar 

  71. Maclay, G. J.; Stetter, J. R., Use of time-dependent chemical sensor signals for selective identification, Transducers ‘87, In Proceedings of the Fourth International Conference on Solid-State Sensors and Actuators, Institute of EE of Japan, Tokyo, Japan, June 2–5, 1987, Vol. 28, 557–560

    Google Scholar 

  72. Stetter, J. R.; Maclay, G. J.; Christesen, S., Time dependent signals, In Proceedings of 1987 US Army Conference on Scientific Defense Research, APG MD, Nov. 16–21, 1987

    Google Scholar 

  73. Stetter, J. R., Neural network approach to identify signatures from electrochemical sensor arrays, In Proceedings of NATO Advanced Research Workshop on Sensors and Sensory Systems for an Electronic Nose, University of Iceland, Reykjavik, Iceland, August 5–9, 1991

    Google Scholar 

  74. Stetter, J. R., Chemical sensor arrays: Practical insights and examples, In Sensors and Sensory Systems for an Electronic Nose; Gardner, J.; Bartlett, P. N., Eds.; Kluwer, Dordrecht, 1992, 273–301

    Google Scholar 

  75. Ni, M.; Stetter, J. R.; Buttner, W. J., Orthogonal gas sensor arrays with intelligent algorithms for early warning of electrical fires, Sensors Actuat. B 2008, 130, 889–899

    Article  Google Scholar 

  76. Röck, F.; Barsan, N.; Weimar, U., Electronic nose: Current status and future trends, Chem. Rev. 2008, 108, 705–725

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank all of my colleagues for their tremendously stimulating work and discussions that helped me remain dedicated, inspired, and diligent in my pursuit of the understanding of sensors and arrays and their analytical utility and application for the common good. Also, special appreciation to Susan Creamer, Lee Gerans, and editors at SRI for their help with the organization and presentation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph R. Stetter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Stetter, J.R. (2009). Introduction: Experimental Methods in Chemical Sensor and Sensor Array Evaluation and Development. In: Ryan, M., Shevade, A., Taylor, C., Homer, M., Blanco, M., Stetter, J. (eds) Computational Methods for Sensor Material Selection. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73715-7_1

Download citation

Publish with us

Policies and ethics