Skip to main content

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 1415 Accesses

Abstract

In vitro selection can yield specific, high-affinity aptamers. We and others have devised methods for the automated selection of aptamers and have begun to use these reagents for the construction of arrays. Arrayed aptamers have proven to be almost as sensitive as their solution-phase counterparts and when ganged together can provide both specific and general diagnostic signals for proteins and other ana-lytes. We describe here technical details regarding the production and processing of aptamer microarrays, including blocking, washing, drying, and scanning. We also discuss the challenges involved in developing standardized and reproducible methods for binding and quantitating protein targets. Although signals from fluorescent analytes or sandwiches are typically captured, it has proven possible for immobilized aptamers to be uniquely coupled to amplification methods not available to protein reagents, thus allowing for protein-binding signals to be greatly amplified. Into the future, many of the biosensor methods described in this book can potentially be adapted to array formats, thus further expanding the their utility and applications for aptamer arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ellington, A.D., Szostak, J.W. (1990) In vitro selection of RNA molecules that bind specific ligands. Nature (Lond.) 346(6287):818–822.

    Article  CAS  Google Scholar 

  2. Tuerk, C., Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510.

    Article  CAS  Google Scholar 

  3. Bock, L.C., et al. (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature (Lond.) 355(6360):564–566.

    Article  CAS  Google Scholar 

  4. Nimjee, S.M., Rusconi, C.P. and Sullenger, B.A. (2005) Aptamers: an emerging class of therapeutics. Annu. Rev. Med. 56:555–583.

    Article  CAS  Google Scholar 

  5. Lee, J.F., et al. (2004) Aptamer database. Nucleic Acids Res. 32(database issue):D95–D100.

    Article  CAS  Google Scholar 

  6. Khati, M., et al. (2003) Neutralization of infectivity of diverse R5 clinical isolates of human immunodeficiency virus type 1 by gp120-binding 2′F-RNA aptamers. J. Virol. 77(23):12692–12698.

    Article  CAS  Google Scholar 

  7. Misono, T.S., Kumar, P.K. (2005) Selection of RNA aptamers against human influenza virus hemagglutinin using surface plasmon resonance. Anal. Biochem. 342(2):312–317.

    Article  CAS  Google Scholar 

  8. Berezovski, M., et al. (2005) Nonequilibrium capillary electrophoresis of equilibrium mixtures: a universal tool for development of aptamers. J. Am. Chem. Soc. 127(9):3165–3171.

    Article  CAS  Google Scholar 

  9. Berezovski, M., et al. (2006) Non-SELEX selection of aptamers. J. Am. Chem. Soc. 128(5):1410–1411.

    Article  CAS  Google Scholar 

  10. Mendonsa, S.D., Bowser, M.T. (2004) In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis. Anal. Chem. 76(18):5387–5392.

    Article  CAS  Google Scholar 

  11. Mosing, R.K., Mendonsa, S.D., Bowser, M.T. (2005) Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase. Anal. Chem. 77(19):6107–6112.

    Article  CAS  Google Scholar 

  12. Cox, J.C., Rudolph, P., Ellington, A.D. (1998) Automated RNA selection. Biotechnol. Prog. 14(6):845–850.

    Article  CAS  Google Scholar 

  13. Cox, J.C., Ellington, A.D. (2001) Automated selection of anti-protein aptamers. Bioorg. Med. Chem. Lett. 9(10):2525–2531.

    Article  CAS  Google Scholar 

  14. Cox, J.C., et al. (2002) Automated selection of aptamers against protein targets translated in vitro: from gene to aptamer. Nucleic Acids Res. 30(20):e108.

    Article  Google Scholar 

  15. Cox, J.C., et al. (2002) Automated acquisition of aptamer sequences. Comb. Chem. High-Throughput Screen. 5(4):289–299.

    CAS  Google Scholar 

  16. Ellington, A.D., et al. (2005) Automated in vitro selections and microarray applications for functional RNA sequences. In: The RNA world. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N Y, pp. 683–719.

    Google Scholar 

  17. Hybarger, G., et al. (2006) A microfluidic SELEX prototype. Anal. Bioanal. Chem. 384(1): 191–198.

    Article  CAS  Google Scholar 

  18. Jhaveri, S.D. and Ellington, A.D. (2000) In vitro selection of RNA aptamers to a protein target by filter immobilization. In: Beaucage, S.L., et al. (eds.) Current protocols in nucleic acid chemistry. Wiley, New York, pp. 9.3.1–9.3.25.

    Google Scholar 

  19. Crameri, A. and Stemmer, W.P. (1993) 10(20)-fold aptamer library amplification without gel purification. Nucleic Acids Res. 21(18):4410.

    Article  CAS  Google Scholar 

  20. Bell, S.D., et al. (1998) RNA molecules that bind to and inhibit the active site of a tyrosine phosphatase. J. Biol. Chem. 273(23):14309–14314.

    Article  CAS  Google Scholar 

  21. Pollard, J., Bell, S.D. and Ellington, A.D. (2000) Design, synthesis, and amplification of DNA pools for in vitro selection. In: Beaucage, S.L., et al. (eds.) Current protocols in nucleic acid chemistry. Wiley, New York, pp. 9.2.1–9.2.23.

    Google Scholar 

  22. Goertz, P., Cox, J.C. and Ellington, A.D. (2004) Automated selection of aminoglycoside aptamers. J. Assoc. Lab. Autom. 9:150–154.

    Article  CAS  Google Scholar 

  23. Sooter, L.J. and Ellington, A.D. (2004) Automated selection of transcription factor binding sites. J. Assoc. Lab. Autom. 9:277–284.

    Article  CAS  Google Scholar 

  24. Liu, J.J., Hartman, D.S. and Bostwick, J.R. (2003) An immobilized metal ion affinity adsorption and scintillation proximity assay for receptor-stimulated phosphoinositide hydrolysis. Anal. Biochem. 318(1):91–99.

    Article  CAS  Google Scholar 

  25. Worlock, A.J., et al. (1991) The use of paramagnetic beads for the detection of major histo-compatibility complex class I and class II antigens. Biotechniques 10(3):310–315.

    CAS  Google Scholar 

  26. McKay, S.J., Cooke, H. (1992) hnRNP A2/B1 binds specifically to single stranded vertebrate telomeric repeat TTAGGGn. Nucleic Acids Res. 20(24):6461–6464.

    Article  CAS  Google Scholar 

  27. McKay, S.J., Cooke, H. (1992) A protein which specifically binds to single stranded TTAGGGn repeats. Nucleic Acids Res. 20(6):1387–1391.

    Article  CAS  Google Scholar 

  28. Froystad, M.K., et al. (1998) A role for scavenger receptors in phagocytosis of protein-coated particles in rainbow trout head kidney macrophages. Dev. Comp. Immunol. 22(5–6):533–549.

    Article  CAS  Google Scholar 

  29. Laine, S., et al. (2003) In vitro and in vivo interactions between the hepatitis B virus protein P22 and the cellular protein gClqR. J. Virol. 77:12875–12880.

    Article  CAS  Google Scholar 

  30. Pyle, B.H., Broadaway, S.C. and McFeters, G.A. (1999) Sensitive detection of Escherichia coli0157:H7 in food and water by immunomagnetic separation and solid-phase laser cytom-etry. Appl. Environ. Microbiol. 65:1966–1972.

    CAS  Google Scholar 

  31. Stovall, G.M., Cox, J.C. and Ellington, A.D. (2004) Automated optimization of aptamer selection buffer conditions. J. Assoc. Lab. Autom. 9(3):117.

    Article  CAS  Google Scholar 

  32. Rajendran, M., Ellington, A.D. (2002) Selecting nucleic acids for biosensor applications. Comb. Chem. High-Throughput. Screen. 5(4):263–270.

    CAS  Google Scholar 

  33. Chapman-Smith, A., Cronan, J.E. Jr. (1999) The enzymatic biotinylation of proteins: a post-translational modification of exceptional specificity. Trends Biochem. Sci. 24(9):359–363.

    Article  CAS  Google Scholar 

  34. Saviranta, P., et al. (1998) In vitro enzymatic biotinylation of recombinant fab fragments through a peptide acceptor tail. Bioconjug. Chem. 9(6):725–735.

    Article  CAS  Google Scholar 

  35. Cull, M.G. and Schatz, P.J. (2000) Biotinylation of proteins in vivo and in vitro using small peptide tags. Methods Enzymol. 326:430–440.

    Article  CAS  Google Scholar 

  36. McAllister, H.C. and Coon, M.J. (1966) Further studies on the properties of liver propionyl coenzyme A holocarboxylase synthetase and the specificity of holocarboxylase formation. J. Biol. Chem. 241(12):2855–2861.

    CAS  Google Scholar 

  37. Zhu, H., et al. (2000) Analysis of yeast protein kinases using protein chips. Nat. Genet. 26(3):283–289.

    Article  CAS  Google Scholar 

  38. Ramachandran, N., et al. (2004) Self-assembling protein microarrays. Science 305(5680):86–90.

    Article  CAS  Google Scholar 

  39. Stadtherr, K., Wolf, H., Lindner, P. (2005) An aptamer-based protein biochip. Anal. Chem. 77(11):3437–3443.

    Article  CAS  Google Scholar 

  40. Stoltenburg, R., Reinemann, C., Strehlitz, B. (2005) FluMag-SELEX as an advantageous method for DNA aptamer selection. Anal. Bioanal. Chem. 383(1):83–91.

    Article  CAS  Google Scholar 

  41. Bini, A., Minunni, M., Tombelli, S., Centi, S., Mascini, M. (2007) Analytical performances of aptamer-based sensing for thrombin detection. Anal. Chem. 79(7):3016–3019.

    Article  CAS  Google Scholar 

  42. Collett, J.R., Cho, E.J. and Ellington, A.D. (2005) Production and processing of aptamer microarrays. Methods 37(1):4–15.

    Article  CAS  Google Scholar 

  43. Kirby, R., et al. (2004) Aptamer-based sensor arrays for the detection and quantitation of proteins. Anal. Chem. 76(14):4066–4075.

    Article  CAS  Google Scholar 

  44. McCauley, T.G., Hamaguchi, N. and Stanton, M. (2003) Aptamer-based biosensor arrays for detection and quantification of biological macromolecules. Anal. Biochem. 319(2):244–250.

    Article  CAS  Google Scholar 

  45. Yang, L., et al. (2007) Real-time rolling circle amplification for protein detection. Anal. Chem. 79(9):3320–3329.

    Article  CAS  Google Scholar 

  46. Cho, E.J., et al. (2005) Using a deoxyribozyme ligase and rolling circle amplification to detect a non-nucleic acid analyte, ATP. J. Am. Chem. Soc. 127(7):2022–2023.

    Article  CAS  Google Scholar 

  47. Wengel, J., et al. (2001) LNA (locked nucleic acid) and the diastereoisomeric alpha-L-LNA: conformational tuning and high-affinity recognition of DNA/RNA targets. Nucleosides Nucleotides Nucleic Acids 20(4–7):389–396.

    Article  CAS  Google Scholar 

  48. You, Y., et al. (2006) Design of LNA probes that improve mismatch discrimination. Nucleic Acids Res. 34(8):e60.

    Article  Google Scholar 

  49. Li, Y., Lee, H.J. and Corn, R.M. (2006) Fabrication and characterization of RNA aptamer-microarrays for the study of protein–aptamer interactions with SPR imaging. Nucleic Acids Res. 34:1–9.

    Article  Google Scholar 

  50. Li, Y., Lee, H.J. and Corn, R.M. (2007) Detection of protein biomarkers using RNA aptamer microarrays and enzymatically amplified surface plasmon resonance imaging. Anal. Chem. 79(3):1082–1088.

    Article  CAS  Google Scholar 

  51. DeRisi, J., Iyer, V. and Brown, P.O. (1999) The MGuide: a complete guide to building your own microarrayer. Biochemistry Department, Stanford University, Palo Alto, CA.

    Google Scholar 

  52. Haab, B.B., Dunham, M.J. and Brown, P.O. (2001) Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol. 2(2):1–3.

    Article  Google Scholar 

  53. Miller, J.C., et al. (2003) Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers. Proteomics 3(1):56–63.

    Article  CAS  Google Scholar 

  54. Collett, J.R., et al. (2005) Functional RNA microarrays for high-throughput screening of antiprotein aptamers. Anal. Biochem. 338(1):113–123.

    Article  CAS  Google Scholar 

  55. Martinez, M.J., et al. (2003) Identification and removal of contaminating fluorescence from commercial and in-house printed DNA microarrays. Nucleic Acids Res. 31(4):e18.

    Article  Google Scholar 

  56. Timlin, J.A., et al. (2005) Hyperspectral microarray scanning: impact on the accuracy and reliability of gene expression data. BMC Genomics 6(1):72.

    Article  Google Scholar 

  57. Schweitzer, B., et al. (2002) Multiplexed protein profiling on microarrays by rolling-circle amplification. Nat. Biotechnol. 20(4):359–365.

    Article  CAS  Google Scholar 

  58. Nielsen, U.B., Geierstanger, B.H. (2004) Multiplexed sandwich assays in microarray format. J. Immunol. Methods 290(1–2):107–120.

    Article  CAS  Google Scholar 

  59. Perlee, L., et al. (2004) Development and standardization of multiplexed antibody microarrays for use in quantitative proteomics. Proteome Sci. 2(1):9.

    Article  Google Scholar 

  60. Varnum, S.M., Woodbury, R.L. and Zangar, R.C. (2004) A protein microarray ELISA for screening biological fluids. Methods Mol. Biol. 264:161–172

    CAS  Google Scholar 

  61. Zangar, R.C., Daly, D.S., White, A.M. (2006) ELISA microarray technology as a high-throughput system for cancer biomarker validation. Expert Rev. Proteomics 3(1):37–44.

    Article  CAS  Google Scholar 

  62. Engvall, E., Perlman, P. (1971) Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry 8(9):871–874.

    CAS  Google Scholar 

  63. Soderberg, O., et al. (2006) Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods 3(12):995–1000.

    Article  Google Scholar 

  64. Crowther, J.R. (2000) The ELISA guidebook. Methods Mol. Biol. 149(III–IV):1–413.

    Google Scholar 

  65. Nielsen, U.B., et al. (2003) Profiling receptor tyrosine kinase activation by using Ab microar-rays. Proc. Natl. Acad. Sci. USA 100(16):9330–9335.

    Article  Google Scholar 

  66. Zhou, H., et al. (2004) Two-color, rolling-circle amplification on antibody microarrays for sensitive, multiplexed serum-protein measurements. Genome Biol. 5(4):R28.

    Article  Google Scholar 

  67. MacBeath, G. (2002) Protein microarrays and proteomics. Nat. Genet. 32(suppl):526–532.

    Article  CAS  Google Scholar 

  68. Pavlickova, P., Schneider, E.M., Hug, H. (2004) Advances in recombinant antibody micro-arrays. Clin. Chim. Acta 343(1–2):17–35.

    Article  CAS  Google Scholar 

  69. Wingren, C. and Borrebaeck, C.A. (2006) Antibody microarrays: current status and key technological advances. Proteomics 10(3):411–427.

    CAS  Google Scholar 

  70. Saal, L.H., et al. (2002) BioArray Software Environment (BASE): a platform for comprehensive management and analysis of microarray data. Genome Biol. 3(8):SOFTWARE0003.1–3.6.

    Google Scholar 

  71. Whetzel, P.L., et al. (2006) The MGED ontology: a resource for semantics-based description of microarray experiments. Bioinformatics 22(7):866–873.

    Article  CAS  Google Scholar 

  72. Spellman, P.T., et al. (2002) Design and implementation of microarray gene expression markup language (MAGE-ML). Genome Biol. 3(9):RESEARCH0046.

    Google Scholar 

  73. Hamelinck, D., et al. (2005) Optimized normalization for antibody microarrays and application to serum-protein profiling. Mol. Cell Proteomics 4(6):773–784.

    Article  CAS  Google Scholar 

  74. Master, S.R., Bierl, C., Kricka, L.J. (2006) Diagnostic challenges for multiplexed protein microarrays. Drug Disc. Today 11(21–22):1007–1011.

    Article  CAS  Google Scholar 

  75. White, A.M., et al. (2006) ProMAT: protein microarray analysis tool. Bioinformatics 22(10):1278–1279.

    Article  CAS  Google Scholar 

  76. Daly, D.S., et al. (2005) Evaluating concentration estimation errors in ELISA microarray experiments. BMC Bioinform. 6:17.

    Google Scholar 

  77. Dietz, T.M. and Koch, T.H. (1987) Photochemical coupling of 5-bromouracil to tryptophan, tyrosine and histidine, peptide-like derivatives in aqueous fluid solution. Photochem. Photobiol. 46(6):971–978.

    Article  CAS  Google Scholar 

  78. Dietz, T.M. and Koch, T.H. (1987) Photochemical reduction of 5-bromouracil by cysteine derivatives and coupling of 5-bromouracil to cystine derivatives. Photochem. Photobiol. 49(2):121–129.

    Article  Google Scholar 

  79. Golden, M.C., et al. (1999) Mass spectral characterization of a protein-nucleic acid photo-crosslink. Protein Sci. 8(12):2806–2812.

    Article  CAS  Google Scholar 

  80. Golden, M.C., et al. (2000) Diagnostic potential of PhotoSELEX-evolved ssDNA aptamers. J. Biotechnol. 81(2–3):167–178.

    Article  CAS  Google Scholar 

  81. Smith, D., et al. (2003) Sensitivity and specificity of photoaptamer probes. Mol. Cell Proteomics 2(1):11–18.

    Article  CAS  Google Scholar 

  82. Petach, H., et al. (2004) Processing of photoaptamer microarrays. Methods Mol. Biol. 264:101–110.

    CAS  Google Scholar 

  83. Robertson, M.P. and Ellington, A.D. (2004) Design and optimization of effector-activated ribozyme ligases. Nucleic Acids Res. 28(8):1751–1759.

    Article  Google Scholar 

  84. Robertson, M.P., Knudsen, S.M., Ellington, A.D. (2004) In vitro selection of ribozymes de-pendent on peptides for activity. RNA 10(1):114–127.

    Article  CAS  Google Scholar 

  85. Yang, L. and Ellington, A.D. (2007) Real-time PCR detection of protein analytes with conformation-switching aptamers. Nucleic Acids Res. (submitted).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Syrett, H.A., Collett, J.R., Ellington, A.D. (2009). Aptamer Microarrays. In: Yingfu, L., Yi, L. (eds) Functional Nucleic Acids for Analytical Applications. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73711-9_11

Download citation

Publish with us

Policies and ethics