Skip to main content

Autonomous DNA Models

  • Chapter
  • First Online:
DNA Computing Models

Abstract

The second generation of DNA computing focusses on models that are molecular-scale, autonomous, and partially programmable. The computations are essentially driven by the self-assembly of DNA molecules and are modulated by DNA-manipulating enzymes. This chapter addresses basic autonomous DNA models emphasizing tile assembly, finite state automata, Turing machines, neural networks, and switching circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adar R, Benenson Y, Linshiz G, Rosner A, Tishby N, Shapiro E (2004) Stochastic computing with biomolecular automata. Proc Natl Acad Sci USA 101:9960–9965

    Google Scholar 

  2. Benenson Y, Paz-Elizur T, Adar R, Keinan E, Livneh Z, Shapiro E (2001) Programmable and autonomous computing machine made of biomolecules. Nature 414:430–434

    Article  Google Scholar 

  3. Benenson Y, Paz-Elizur T, Adar R, Livneh Z, Shapiro E (2003) DNA molecules providing a computing machine with both data and fuel. Proc Natl Acad Sci USA 100:2191–2196

    Google Scholar 

  4. Condon A (2004) Automata make antisense. Nature 429:361–362

    Article  Google Scholar 

  5. Durbin R, Eddy SR, Krogh A, Mitchinson G (1998) Biological sequence analysis: probabilistic models of proteins and amino acids. Cambridge Univ Press, Cambridge

    MATH  Google Scholar 

  6. Fu TJ, Seeman NC (1993) DNA double-crossover molecules. Biochem 32:3211–3220

    Article  Google Scholar 

  7. Hagiya M, Arita M (1998) Towards parallel evaluation and learning of Boolean μ-formulas with molecules. Proc 3rd DIMACS Workshop DNA Based Computers, 57–72

    Google Scholar 

  8. Hagiya M, Sakamoto M, Arita M, Kiga D, Yokoyama S (1997) Towards parallel evaluation and learning of boolean u-formulas with molecules. Proc 3rd DIMACS Workshop DNA Based Computers, 105–114

    Google Scholar 

  9. Hornik K, Stinchcombe, White H (1989) Multilayer feedforward networks are universal approximators. Neural Networks 2:359–366

    Article  Google Scholar 

  10. Kari L, Konstantinidis S, Losseva E, Sosik P, Thierrin G (2006) Hairpin structures in DNA words. LNCS 3492:158–170

    Google Scholar 

  11. Kroeker WD (1976) Mung bean nuclease I: terminally directed hydrolisis of native DNA. Biochem 15:4463–4467.

    Article  Google Scholar 

  12. Kuramochi J, Sakakibara Y (2006) Intensive in vitro experiments of implementing and executing finite automata in test tube. LNCS 3892:193–202

    Google Scholar 

  13. Li X, Yang X, Qi J, Seeman NC (1996) Antiparallel DNA double crossover molecules as components for nanoconstruction. J Am Chem Soc 1118:6131–6140

    Article  Google Scholar 

  14. Martínez-Pérez I, Zhong G, Ignatova Z, Zimmermann KH (2005) Solving the Hamiltonian path problem via DNA hairpin formation. Int J Bioinform Res Appl 1:389–398

    Article  Google Scholar 

  15. Martinez-Perez I, Zhong G, Ignatova Z, Zimmermann KH (2007) Computational genes: a tool for molecular diagnosis and therapy of aberrant mutational phenotype. BMC Bioinform 8:365

    Article  Google Scholar 

  16. McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 7:115-133

    Article  MathSciNet  Google Scholar 

  17. Mills Jr AP (2002) Gene expression profiling diagnosis through DNA molecular computation. Trends Biotechnol 20:137–140

    Article  Google Scholar 

  18. Moore EF (1962) Sequential machines: selected papers. Addison-Wesley Reading MA

    Google Scholar 

  19. Reif JH, Sahu S, Yin P (2005) Compact error-resilient computational DNA tiling assemblies. LNCS 3384:293–307

    MathSciNet  Google Scholar 

  20. Reif JH, Sahu S, Yin P (2006) Complexity and graph self-assembly in accretive systems and self-destructible systems. LNCS 3892:257–274

    Google Scholar 

  21. Rothemund PWK (1996) A DNA and restriction enzyme implemenation of Turing machines. Proc 1st DIMACS Workshop DNA Based Computers 75–119

    Google Scholar 

  22. Sahu S, Reif JH (2007) Capabilities and limits of compact error-resilience methods for algorithmic self-assembly in two and three dimensions. LNCS 4287:223–238

    Google Scholar 

  23. Rosenblatt F (1958) The perceptron: a probabilitistic mode for infomation storage and processing in the brain. Psychological Rev 65:386–408

    Article  MathSciNet  Google Scholar 

  24. Sakakibara Y, Suyama A (2000) Intelligent DNA chips: logical operation of gene expression profiles on DNA computers. Gen Inform 11:33-42

    Google Scholar 

  25. Sakamoto K, Gouzu H, Komiya K, Kiga D, Yokoyama S, Yokomori T, Hagiya M (2000) Molecular computation by DNA hairpin formation. Science 288:1223–1226.

    Article  Google Scholar 

  26. Sakamoto K, Gouzu H, Komiya K, Kiga D, Yokoyama S, Ikeda S, Sugiyama H, Hagiya M (1999) State transitions by molecules. Biosystems 52:81–91

    Article  Google Scholar 

  27. Schwacha A, Kleckner N (1995) Identification of double Holliday junctions as intermediates in meiotic recombination. Cell 83:783–791

    Article  Google Scholar 

  28. Seelig G, Soloveichnik D, Zhang DY, Winfree E (2006) Enzyme-free nucleic acid logic circuits. Science 314:1585–1588

    Article  Google Scholar 

  29. Seelig G, Yurke B, Winfree E (2006) Catalyzed relaxation of a metastable DNA fuel. J Am Chem Soc 128:12211–12220

    Article  Google Scholar 

  30. Seeman NC (1982) Nucleic acid junctions and lattices. J Theor Biol 99:237–247

    Article  Google Scholar 

  31. Seeman NC (1990) De novo design of sequences for nucleic acid structural engineering. J Biomol Struct Dyn 8:573–581

    Google Scholar 

  32. Seeman NC (1993) DNA double-crossover molecules. Biochem 32:3211–3220

    Article  Google Scholar 

  33. Seeman NC (1999) DNA engineering and its application to nanotechnology. Trends Biotechnol 17:437–443

    Article  Google Scholar 

  34. Stojanovic MN, Stefanovic D (2003) A deoxyribozyme-based molecular automaton. Nat Biotechnol 21:1069–1074

    Article  Google Scholar 

  35. Thaler DS, Stahl FW (1988) DNA double-chain breaks in recombination of phage and of yeast. Annu Rev Genet 22:169–197

    Article  Google Scholar 

  36. Tyagi S, Kramer FR (1996) Probes that fluoresce upon hybridization. Nature Biotech 14:303–308

    Article  Google Scholar 

  37. Winfree E (1998) Algorithmic self-assembly of DNA. PhD thesis, Caltec, Pasadena

    Google Scholar 

  38. Winfree E, Liu F, Wenzler LA, Seeman NC (1998) Design and self-assembly of two-dimensional DNA crystals. Nature 394:539–544

    Article  Google Scholar 

  39. Winfree E, Yang X, Seeman NC (1996) Universal Computation via self-assembly of DNA: some theory and experiments. Proc 2nd DIMACS Workshop DNA Based Computers 191-213

    Google Scholar 

  40. Turberfield AJ, Mitchell JC, Yurke B, Mills Yr AP Blakey MI, Simmel FC (2003) DNA fuel for free-running nanomachines. Phys Rev Lett 90:118102

    Article  Google Scholar 

  41. Yin P, Turberfield AJ, Sahu S, Reif JH (2005) Design of autonomous DNA nanomechanical device capable of universal computation and universal translational motion. LNCS 3892:399–416

    Google Scholar 

  42. Yurke B, Mills Jr AP (2003) Using DNA to power nanostructures. Genet Program Evolable Machines 4:111–122

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoya Ignatova .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag US

About this chapter

Cite this chapter

Ignatova, Z., Zimmermann, KH., Martínez-Pérez, I. (2008). Autonomous DNA Models. In: DNA Computing Models. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73637-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-73637-2_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-73635-8

  • Online ISBN: 978-0-387-73637-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics