Skip to main content

Transcriptional Mechanisms Underlying the Mammalian Circadian Clock

  • Chapter
Transcriptional Regulation by Neuronal Activity
  • 794 Accesses

Abstract

The mammalian ‘master’ pacemaker is seated in the suprachiasmatic nuclei (SCN), a bilateral hypothalamic structure above the optic chiasm that is a heterogeneous conglomerate of ~ 20,000 neurons. Within the nuclei of SCN cells lies the molecular basis of circadian timekeeping: clock proteins that form interlocking transcriptional feedback loops, and that drive and sustain the rhythmic expression of their cognate genes as well as other clock-controlled genes (ccg). In addition to the SCN, this intracellular molecular clock is a common element in the many oscillating tissues of the central nervous system (CNS) and periphery that form the clock hierarchy. In this review we discuss the nature of themolecular clock,the neurotransmitter systems that actuate clock entrainment, and the intracellular signaling events leading to activation of transcriptional programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahamson, E.E. and Moore, R.Y. (2001) Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res. 916, 172–191.

    Article  PubMed  CAS  Google Scholar 

  • Agostino, P.V., Ferreyra, G.A., Murad, A.D., Watanabe, Y. and Golombek, D.A. (2004) Diurnal, circadian and photic regulation of calcium/calmodulin kinase II and neuronal nitric oxide synthase in the hamster suprachiasmatic nuclei. Neurochem. Int. 44, 617–625.

    Article  PubMed  CAS  Google Scholar 

  • Akashi, M. and Takumi, T. (2005) The orphan nuclear receptor RORalpha regulates circadian transcription of the mammalian core-clock Bmal1. Nat. Struct. Mol. Biol. 12, 441–448.

    Article  PubMed  CAS  Google Scholar 

  • Akashi, M., Tsuchiya, Y., Yoshino, T. and Nishida, E. (2002) Control of intracellular dynamics of mammalian period proteins by casein kinase I epsilon (CKIepsilon) and CKIdelta in cultured cells. Mol. Cell. Biol. 22, 1693–1703.

    Article  PubMed  CAS  Google Scholar 

  • Akiyama, M., Minami, Y., Nakajima, T., Moriya, T. and Shibata, S. (2001) Calcium and pituitary adenylate cyclase-activating polypeptide induced expression of circadian clock gene mPer1 in the mouse cerebellar granule cell culture. J. Neurochem. 78, 499–508.

    Article  PubMed  CAS  Google Scholar 

  • Arimura, A., Somogyvari-Vigh, A., Miyata, A., Mizuno, K., Coy, D.H. and Kitada, C. (1991) Tissue distribution of PACAP as determined by RIA: highly abundant in the rat brain and testes. Endocrinology 129, 2787–2789.

    Article  PubMed  CAS  Google Scholar 

  • Arthur, J.S. and Cohen, P. (2000) MSK1 is required for CREB phosphorylation in response to mitogens in mouse embryonic stem cells. FEBS Lett. 482, 44–48.

    Article  PubMed  CAS  Google Scholar 

  • Arthur, J.S., Fong, A.L., Dwyer, J.M., Davare, M., Reese, E., Obrietan, K. and Impey, S. (2004) Mitogen- and stress-activated protein kinase 1 mediates cAMP response element-binding protein phosphorylation and activation by neurotrophins. J. Neurosci. 24, 4324–4332.

    Article  PubMed  CAS  Google Scholar 

  • Bae, K., Jin, X., Maywood, E.S., Hastings, M.H., Reppert, S.M. and Weaver, D.R. (2001) Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 30, 525–536.

    Article  PubMed  CAS  Google Scholar 

  • Barrie, A.P., Clohessy, A.M., Buensucso, C.S., Rogers, M.V. and Allen, J.M. (1997) Pituitary adenylyl cyclase-activating peptide stimulates extracellular signal-regulated kinase 1 or 2 (ERK1/2) activity in a Ras-independent, mitogen-activated protein Kinase/ERK kinase 1 or 2-dependent manner in PC12 cells. J. Biol. Chem. 272, 19666–19671.

    Article  PubMed  CAS  Google Scholar 

  • Bergstrom, A.L., Hannibal, J., Hindersson, P. and Fahrenkrug, J. (2003) Light-induced phase shift in the Syrian hamster (Mesocricetus auratus) is attenuated by the PACAP receptor antagonist PACAP6-38 or PACAP immunoneutralization. Eur. J. Neurosci. 18, 2552–2562.

    Article  PubMed  CAS  Google Scholar 

  • Bunger, M.K., Wilsbacher, L.D., Moran, S.M., Clendenin, C., Radcliffe, L.A., Hogenesch, J.B., Simon, M.C., Takahashi, J.S. and Bradfield, C.A. (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103, 1009–1017.

    Article  PubMed  CAS  Google Scholar 

  • Butcher, G.Q., Dziema, H., Collamore, M., Burgoon, P.W. and Obrietan, K. (2002) The p42/p44 mitogen-activated protein kinase pathway couples photic input to circadian clock entrainment. J. Biol. Chem. 277, 29519–29525.

    Article  PubMed  CAS  Google Scholar 

  • Butcher, G.Q., Lee, B., Cheng, H.Y. and Obrietan, K. (2005) Light stimulates MSK1 activation in the suprachiasmatic nucleus via a PACAP-ERK/MAP kinase-dependent mechanism. J. Neurosci. 25, 5305–5313.

    Article  PubMed  CAS  Google Scholar 

  • Butcher, G.Q., Lee, B., Hsieh, F. and Obrietan K. (2004) Light- and clock-dependent regulation of ribosomal S6 kinase activity in the suprachiasmatic nucleus. Eur. J. Neurosci. 19, 907–915.

    Google Scholar 

  • Cermakian, N., Monaco, L., Pando, M.P., Dierich, A. and Sassone-Corsi, P. (2001) Altered behavioral rhythms and clock gene expression in mice with a targeted mutation in the Period1 gene. EMBO J. 20, 3967–3974.

    Article  PubMed  CAS  Google Scholar 

  • Chen, D., Buchanan, G.F., Ding, J.M., Hannibal, J. and Gillette, M.U. (1999) Pituitary adenylyl cyclase-activating peptide: a pivotal modulator of glutamatergic regulation of the suprachiasmatic circadian clock. Proc. Natl. Acad. Sci. USA 96, 13468–13473.

    Article  PubMed  CAS  Google Scholar 

  • Chen, R.H., Sarnecki, C. and Blenis, J. (1992) Nuclear localization and regulation of ERK- and RSK-encoded protein kinases. Mol. Cell. Biol. 12, 915–927.

    PubMed  CAS  Google Scholar 

  • Cheng, H.Y. and Obrietan, K. (2006) Dexras1: shaping the responsiveness of the circadian clock. Semin. Cell. Dev. Biol. 17, 345–351.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, H.Y., Obrietan, K., Cain, S.W., Lee, B.Y., Agostino, P.V., Joza, N.A., Harrington, M.E., Ralph, M.R. and Penninger, J.M. (2004) Dexras1 potentiates photic and suppresses nonphotic responses of the circadian clock. Neuron 43, 715–728.

    Article  PubMed  CAS  Google Scholar 

  • Cismowski, M.J., Ma, C., Ribas, C., Xie, X., Spruyt, M., Lizano, J.S., Lanier, S.M. and Duzic, E. (2000) Activation of heterotrimeric G-protein signaling by a ras-related protein. Implications for signal transduction. J. Biol. Chem. 275, 23421–23424.

    Article  PubMed  CAS  Google Scholar 

  • Cismowski, M.J., Takesono, A., Ma, C., Lizano, J.S., Xie, X., Fuernkranz, H., Lanier, S.M., and Duzic, E. (1999) Genetic screens in yeast to identify mammalian nonreceptor modulators of G-protein signaling. Nat. Biotechnol. 17, 878–883.

    Article  PubMed  CAS  Google Scholar 

  • Colwell, C.S. (2001) NMDA-evoked calcium transients and currents in the suprachiasmatic nucleus: Gating by the circadian system. Eur. J. Neurosci. 13, 1420–1428.

    Article  PubMed  CAS  Google Scholar 

  • Colwell, C.S. and Menaker, M. (1992) NMDA as well as non-NMDA receptor antagonists can prevent the phase shifting effects of light on the circadian system of the golden hamster. J. Biol. Rhythms 7, 125–136.

    Article  PubMed  CAS  Google Scholar 

  • Colwell, C.S., Michel, S., Itri, J., Rodriguez, W., Tam, J., Lelievre, V., Hu, Z. and Waschek, J.A. (2004) Selective deficits in the circadian light response in mice lacking PACAP. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R1194–R1201.

    PubMed  CAS  Google Scholar 

  • Crews, C.M., Alessandrini, A. and Erikson, R.L. (1992) The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. Science 258, 478–480.

    Article  PubMed  CAS  Google Scholar 

  • Deak, M., Clifton, A.D., Lucocq, L.M. and Alessi, D.R. (1998) Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J. 17, 4426–4441.

    Article  PubMed  CAS  Google Scholar 

  • Debruyne, J.P., Noton, E., Lambert, C.M., Maywood, E.S., Weaver, D.R. and Reppert, S.M. (2006) A clock shock: mouse CLOCK is not required for circadian oscillator function. Neuron 50, 465–477.

    Article  PubMed  CAS  Google Scholar 

  • Ding, J.M., Buchanan, G.F., Tischkau, S.A., Chen, D., Kuriashkina, L., Faiman, L.E., Alster, J.M., McPherson, P.S., Campbell, K.P., and Gillette, M.U. (1998) A neuronal ryanodine receptor mediates light-induced phase delays of the circadian clock. Nature 394, 381–384.

    Article  PubMed  CAS  Google Scholar 

  • Ding, J.M., Chen, D., Weber, E.T., Faiman, L.E., Rea, M.A. and Gillette, M.U. (1994) Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and NO. Science 266, 1713–1717.

    Article  PubMed  CAS  Google Scholar 

  • Ding, J.M., Faiman, L.E., Hurst, W.J., Kuriashkina, L.R., and Gillette, M.U. (1997) Resetting the biological clock: mediation of nocturnal CREB phosphorylation via light, glutamate, and nitric oxide. J. Neurosci. 17, 667–675.

    PubMed  CAS  Google Scholar 

  • Dioum, E.M., Rutter, J., Tuckerman, J.R., Gonzalez, G., Gilles-Gonzalez, M.A. and McKnight, S.L. (2002) NPAS2: a gas-responsive transcription factor. Science 298, 2385–2387.

    Article  PubMed  CAS  Google Scholar 

  • Drolet, D.W., Scully, K.M., Simmons, D.M., Wegner, M., Chu, K.T., Swanson, L.W. and Rosenfeld, M.G. (1991) TEF, a transcription factor expressed specifically in the anterior pituitary during embryogenesis, defines a new class of leucine zipper proteins. Genes & Dev. 5, 1739–1753.

    Article  CAS  Google Scholar 

  • Dziema, H., Oatis, B., Butcher, G.Q., Yates, R., Hoyt, K.R. and Obrietan, K. (2003) The ERK/MAP kinase pathway couples light to immediate-early gene expression in the suprachiasmatic nucleus. Eur. J. Neurosci. 17, 1617–1627.

    Article  PubMed  Google Scholar 

  • Dziema, H. and Obrietan, K. (2002) PACAP potentiates L-type calcium channel conductance in suprachiasmatic nucleus neurons by activating the MAPK pathway. J. Neurophysiol. 88, 1374–1386.

    PubMed  CAS  Google Scholar 

  • Edelstein, K. and Amir, S. (1999) The role of the intergeniculate leaflet in entrainment of circadian rhythms to a skeleton photoperiod. J. Neurosci. 19, 372–380.

    PubMed  CAS  Google Scholar 

  • Erikson, E. and Maller, J.L. (1985) A protein kinase from Xenopus eggs specific for ribosomal protein S6. Proc. Natl. Acad. Sci. USA 82 , 742–746.

    Article  PubMed  CAS  Google Scholar 

  • Etchegaray, J.P., Lee, C., Wade, P.A. and Reppert, S.M. (2003) Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421, 177–182.

    Article  PubMed  CAS  Google Scholar 

  • Fang, M., Jaffrey, S.R., Sawa, A., Ye, K., Luo, X. and Snyder, S.H. (2000) Dexras1: a G protein specifically coupled to neuronal nitric oxid synthase via CAPON. Neuron 28, 183–193.

    Article  PubMed  CAS  Google Scholar 

  • Ferreyra, G.A. and Golombek, D.A. (2001) Rhythmicity of the cGMP-related signal transduction pathway in the mammalian circadian system. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R1348-R1355.

    PubMed  CAS  Google Scholar 

  • Fiscus, R.R. (2002) Involvement of cyclic GMP and protein kinase G in the regulation of apoptosis and survival in neural cells. Neurosignals 11, 175–190.

    Article  PubMed  CAS  Google Scholar 

  • Frodin, M. and Gammeltoft, S. (1999) Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction. Mol. Cell. Endocrinol. 151, 65–77.

    Article  PubMed  CAS  Google Scholar 

  • Fukushima, T., Shimazoe, T., Shibata, S., Watanabe, A., Ono, M., Hamada, T. and Watanabe, S. (1997) The involvement of calmodulin and Ca2+/calmodulin-dependent protein kinase II in the circadian rhythms controlled by the suprachiasmatic nucleus. Neurosci. Lett. 227, 45–48.

    Article  PubMed  CAS  Google Scholar 

  • Gau, D., Lemberger, T., von Gall, C., Kretz, O., Le Minh, N., Gass, P., Schmid, W., Schibler, U., Korf, H.W. and Schutz, G. (2002) Phosphorylation of CREB Ser142 regulates light-induced phase shifts of the circadian clock. Neuron 34, 245–253.

    Article  PubMed  CAS  Google Scholar 

  • Gekakis, N., Staknis, D., Nguyen, H.B., Davis, F.C., Wilsbacher, L.D., King, D.P., Takahashi, J.S. and Weitz, C.J. (1998) Role of the CLOCK protein in the mammalian circadian mechanism. Science 280, 1564–1569.

    Article  PubMed  CAS  Google Scholar 

  • Ghatei, M.A., Takahashi, K., Suzuki, Y., Gardiner, J., Jones, P.M. and Bloom, S.R. (1993) Distribution, molecular characterization of pituitary adenylate cyclase-activating polypeptide and its precursor encoding messenger RNA in human and rat tissues. J. Endocrinol. 136, 159–166.

    Article  PubMed  CAS  Google Scholar 

  • Gille, H., Kortenjann, M., Thomae, O., Moomaw, C., Slaughter, C., Cobb, M.H. and Shaw, P.E. (1995) ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation. EMBO J. 14, 951–962.

    PubMed  CAS  Google Scholar 

  • Ginty, D.D., Kornhauser, J.M., Thompson, M.A., Bading, H., Mayo, K.E., Takahashi, J.S. and Greenberg, M.E. (1993) Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science 260, 238–241.

    Article  PubMed  CAS  Google Scholar 

  • Golombek, D.A., Agostino, P.V., Plano, S.A., Ferreyra, G.A. (2004) Signaling in the mammalian circadian clock: the NO/cGMP pathway. Neurochem. Int. 45, 929–936.

    Article  PubMed  CAS  Google Scholar 

  • Golombek, D.A. and Ralph, M.R. (1994) KN-62, an inhibitor of Ca2+/calmodulin kinase II, attenuates circadian responses to light. Neuroreport 5, 1638–1640.

    Article  PubMed  CAS  Google Scholar 

  • Graham, T.E., Prossnitz, E.R., and Dorin, R.I. (2002) Dexras1/AGS-1 inhibits signal transduction from the Gi-coupled formyl peptide receptor to Erk-1/2 MAP kinases. J. Biol. Chem. 277, 10876–10882.

    Article  PubMed  CAS  Google Scholar 

  • Griffin, E.A. Jr., Staknis, D. and Weitz, C.J. (1999) Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science 286, 768–771.

    Article  PubMed  CAS  Google Scholar 

  • Haak, L.L. (1999) Metabotropic glutamate receptor modulation of glutamate responses in the suprachiasmatic nucleus. J. Neurophysiol. 81, 1308–1317.

    PubMed  CAS  Google Scholar 

  • Hamaguchi, H., Fujimoto, K., Kawamoto, T., Noshiro, M., Maemura, K., Takeda, N., Nagai, R., Furukawa, M., Honma, S., Honma, K., Kurihara, H. and Kato, Y. (2004) Expression of the gene for Dec2, a basic helix-loop-helix transcription factor, is regulated by a molecular clock system. Biochem. J. 382, 43–50.

    Article  PubMed  CAS  Google Scholar 

  • Hannibal, J. (2002) Neurotransmitters of the retino-hypothalamic tract. Cell Tissue Res. 309, 73–88.

    Article  PubMed  CAS  Google Scholar 

  • Hannibal, J., Ding, J.M., Chen, D., Fahrenkrug, J., Larsen, P.J., Gillette, M.U. and Mikkelsen, J.D. (1997) Pituitary adenylate cyclase-activating peptide (PACAP) in the retinohypothalamic tract: a potential daytime regulator of the biological clock. J. Neurosci. 17, 2637–2644.

    PubMed  CAS  Google Scholar 

  • Hannibal, J., Ding, J.M., Chen, D., Fahrenkrug, J., Larsen, P.J., Gillette, M.U. and Mikkelsen, J.D. (1998) Pituitary adenylate cyclase activating peptide (PACAP) in the retinohypothalamic tract: a daytime regulator of the biological clock. Ann. N. Y. Acad. Sci. 865, 197–206.

    Article  PubMed  CAS  Google Scholar 

  • Hannibal, J., Hindersson, P., Knudsen, S.M., Georg, B. and Fahrenkrug, J. (2002) The Photopigment Melanopsin Is Exclusively Present in Pituitary Adenylate Cyclase-Activating Polypeptide-Containing Retinal Ganglion Cells of the Retinohypothalamic Tract. J. Neurosci. 22, RC191.

    PubMed  Google Scholar 

  • Hannibal, J., Jamen, F., Nielsen, H.S., Journot, L., Brabet, P. and Fahrenkrug, J. (2001) Dissociation between light-induced phase shift of the circadian rhythm and clock gene expression in mice lacking the pituitary adenylate cyclase activating polypeptide type 1 receptor. J. Neurosci. 21, 4883–4890.

    PubMed  CAS  Google Scholar 

  • Hannibal, J., Mikkelsen, J.D., Clausen, H., Holst, J.J., Wulff, B.S. and Fahrenkrug, J. (1995) Gene expression of pituitary adenylate cyclase activating polypeptide (PACAP) in the rat hypothalamus. Regul. Pept. 55, 133–148.

    Article  PubMed  CAS  Google Scholar 

  • Hannibal, J., Moller, M., Ottersen, O.P. and Fahrenkrug, J. (2000) PACAP and glutamate are co-stored in the retinohypothalamic tract. J. Comp. Neurol. 418, 147–155.

    Article  PubMed  CAS  Google Scholar 

  • Harmar, A.J., Arimura, A., Gozes, I., Journot, L., Laburthe, M., Pisegna, J.R., Rawlings, S.R., Robbrecht, P., Said, S.I., Sreedharan, S.P., Wank, S.A. and Waschek, J.A. (1998) International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Pharmacol. Rev. 50, 265–270.

    PubMed  CAS  Google Scholar 

  • Harrington, M.E., Hoque, S., Hall, A., Golombek, D. and Biello, S. (1999) Pituitary adenylate cyclase activating peptide phase shifts circadian rhythms in a manner similar to light. J. Neurosci. 19, 6637–6642.

    PubMed  CAS  Google Scholar 

  • Hinds, H.L., Tonegawa, S. and Malinow, R. (1998) CA1 long-term potentiation is diminished but present in hippocampal slices from alpha-CaMKII mutant mice. Learn. Mem. 5, 344–354.

    PubMed  CAS  Google Scholar 

  • Hogenesch, J.B., Gu, Y.Z., Jain, S. and Bradfield, C.A. (1998) The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc. Natl. Acad. Sci. USA 95, 547–549.

    Article  Google Scholar 

  • Honma, S., Kawamoto, T., Takagi, Y., Fujimoto, K., Sato, F., Noshiro, M., Kato, Y. and Honma, K. (2002) Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature 419, 841–844.

    Article  PubMed  CAS  Google Scholar 

  • Honrado, G.I., Johnson, R.S., Golombek, D.A., Spiegelman, B.M., Papaioannou, V.E. and Ralph, M.R. (1996) The circadian system of c-fos deficient mice. J. Comp. Physiol. 178, 563–570.

    Article  CAS  Google Scholar 

  • Hsu, D.S., Zhao, X., Zhao, S., Kazantsev, A., Wang, R.P., Todo, T., Wei, Y.F. and Sancar, A. (1996) Putative human blue-light photoreceptors hCRY1 and hCRY2 are flavoproteins. Biochemistry 35, 13871–13877.

    Article  PubMed  CAS  Google Scholar 

  • Hudmon, A. and Schulman, H. (2002) Neuronal CA2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu. Rev. Biochem. 71, 473–510.

    Article  PubMed  CAS  Google Scholar 

  • Inaba, T., Roberts, W.M., Shapiro, L.H., Jolly, K.W., Raimondi, S.C., Smith, S.D. and Look, A.T. (1992) Fusion of the leucine zipper gene HLF to the E2A gene in human acute B-lineage leukemia. Science 257, 531–534.

    Article  PubMed  CAS  Google Scholar 

  • Janik, D., Mikkelsen, J.D. and Mrosovsky, N. (1995) Cellular colocalization of Fos and neuropeptide Y in the intergeniculate leaflet after nonphotic phase-shifting events. Brain Res. 698, 137–145.

    Article  PubMed  CAS  Google Scholar 

  • Johannessen, M., Delghandi, M.P. and Moens, U. (2004) What turns CREB on? Cell Signal. 16, 1211–1227.

    Article  PubMed  CAS  Google Scholar 

  • Karin, M., Liu, Z. and Zandi, E. (1997) AP-1 function and regulation. Curr. Opin. Cell. Biol. 9, 240–246.

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi, C., Tanaka, K., Isojima, Y., Shintani, N., Hashimoto, H., Baba, A. and Nagai, K. (2003) Changes in light-induced phase shift of circadian rhythm in mice lacking PACAP. Biochem. Biophys. Res. Commun. 310, 169–175.

    Article  PubMed  CAS  Google Scholar 

  • Kawamoto, T., Noshiro, M., Sato, F., Maemura, K., Takeda, N., Nagai, R., Iwata, T., Fujimoto, K., Furukawa, M., Miyazaki, K., Honma, S., Honma, K. and Kato, Y. (2004) A novel autofeedback loop of Dec1 transcription involved in circadian rhythm regulation. Biochem. Biophys. Res. Commun. 313, 117–124.

    Article  CAS  Google Scholar 

  • King, D.P., Zhao, Y., Sangoram, A.M., Wilsbacher, L.D., Tanaka, M., Antoch, M.P., Steeves, T.D., Vitaterna, M.H., Kornhauser, J.M., Lowrey, P.L., Turek, F.W. and Takahashi, J.S. (1997) Positional cloning of the mouse circadian clock gene. Cell 89, 641–653.

    Article  PubMed  CAS  Google Scholar 

  • Kornhauser, J.M., Nelson, D.E., Mayo, K.E. and Takahashi, J.S. (1990) Photic and circadian regulation of c-fos gene expression in the hamster suprachiasmatic nucleus. Neuron 5, 127–134.

    Article  PubMed  CAS  Google Scholar 

  • Kornhauser, J.M., Nelson, D.E., Mayo, K.E. and Takahashi, J.S. (1992) Regulation of jun-B messenger RNA and AP-1 activity by light and a circadian clock. Science 255, 1581–1584.

    Article  PubMed  CAS  Google Scholar 

  • Kriegsfeld, L.J., M.J., Demas, G.E., Lee, S.E. Jr., Dawson, T.M., Dawson, V.L., and Nelson, R.J. (1999) Circadian locomotor analysis of male mice lacking the gene for neuronal nitric oxide synthase (nNOS-/-) J. Biol. Rhythms 14, 20–27.

    Article  PubMed  CAS  Google Scholar 

  • Lin, J.T., Kornhauser, J.M., Singh, N.P., Mayo, K.E. and Takahashi, J.S. (1997) Visual sensitivities of nur77 (NGFI-B) and zif268 (NGFI-A) induction in the suprachiasmatic nucleus are dissociated from c-fos induction and behavioral phase-shifting responses. Brain Res. Mol. Brain Res. 46, 303–310.

    Article  PubMed  Google Scholar 

  • Lopez-Molina, L., Conquet, F., Dubois-Dauphin, M. and Schibler, U. (1997) The DBP gene is expressed according to a circadian rhythm in the suprachiasmatic nucleus and influences circadian behavior. EMBO J. 16, 6762–6771.

    Article  PubMed  CAS  Google Scholar 

  • Lowrey, P.L., Shimomura, K., Antoch, M.P., Yamazaki, S., Zemenides, P.D., Ralph, M.R., Menaker, M. and Takahashi, J.S. (2000) Positional Syntenic Cloning and Functional Characterization of the Mammalian Circadian Mutation tau. Science 288, 483–492.

    Article  PubMed  CAS  Google Scholar 

  • Low-Zeddies, S.S. and Takahashi, J.S. (2001) Chimera analysis of the Clock mutation in mice shows that complex cellular integration determines circadian behavior. Cell 105, 25–42.

    Article  PubMed  CAS  Google Scholar 

  • Malenka, R.C., Kauer, J.A., Perkel, D.J., Mauk, M.D., Kelly, P.T., Nicoll, R.A. and Waxham, M.N. (1989) An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature 340, 554–557.

    Article  PubMed  CAS  Google Scholar 

  • Martinek, S., Inonog, S., Manoukian, A.S. and Young, M.W. (2001) A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. Cell 105, 769–779.

    Article  PubMed  CAS  Google Scholar 

  • Mathur, A., Golombek, D.A. and Ralph, M.R. (1996) cGMP-dependent protein kinase inhibitors block light-induced phase advances of circadian rhythms in vivo. Am. J. Physiol. 270, R1031-R1036.

    PubMed  CAS  Google Scholar 

  • Michel, S., Itri, J. and Colwell, C.S. (2002) Excitatory mechanisms in the suprachiasmatic nucleus: the role of AMPA/KA glutamate receptors. J. Neurophysiol. 88, 817–828.

    PubMed  CAS  Google Scholar 

  • Mintz, E.M., Marvel, C.L., Gillespie, C.F., Price, K.M. and Albers, H.E. (1999) Activation of NMDA receptors in the suprachiasmatic nucleus produces light-like phase shifts of the circadian clock in vivo. J. Neurosci. 19, 5124–5130.

    PubMed  CAS  Google Scholar 

  • Mitsui, S., Yamaguchi, S., Matsuo, T., Ishida, Y. and Okamura, H. (2001) Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Dev. 15, 995–1006.

    Article  PubMed  CAS  Google Scholar 

  • Miyata, A., Arimura, A., Dahl, R.R., Minamino, N., Uehara, A., Jiang, L., Culler, M.D. and Coy, D.H. (1989) Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem. Biophys. Res. Commun. 164, 567–574.

    Article  PubMed  CAS  Google Scholar 

  • Miyata, A., Jiang, L., Dahl, R.D., Kitada, C., Kubo, K., Fujino, M., Minamino, N. and Arimura, A. (1990) Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem. Biophys. Res. Commun. 170, 643–648.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R.Y. (1996) Entrainment pathways and the functional organization of the circadian system. Prog. Brain Res. 111, 103–119.

    PubMed  CAS  Google Scholar 

  • Morin, L.P. and Blanchard, J.H. (2001) Neuromodulator content of hamster intergeniculate leaflet neurons and their projection to the suprachiasmatic nucleus or visual midbrain. J. Comp. Neurol. 437, 79–90.

    Article  PubMed  CAS  Google Scholar 

  • Morris, M.E., Viswanathan, N., Kuhlman, S., Davis, F.C. and Weitz, C.J. (1998) A screen for genes induced in the suprachiasmatic nucleus by light. Science 279, 1544–1547.

    Article  PubMed  CAS  Google Scholar 

  • Mueller, C.R., Maire, P. and Schibler, U. (1990) DBP, a liver-enriched transcriptional act-ivator, is expressed late in ontogeny and its tissue specificity is determined posttranscriptionally. Cell 61, 279–291.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, H.S., Hannibal, J., Knudsen, S.M. and Fahrenkrug, J. (2001) Pituitary adenylate cyclase-activating polypeptide induces period1 and period2 gene expression in the rat suprachiasmatic nucleus during late night. Neuroscience 103, 433–441.

    Article  PubMed  CAS  Google Scholar 

  • Obrietan, K., Impey, S., Smith, D., Athos, J. and Storm, D.R. (1999) Circadian regulation of cAMP response element-mediated gene expression in the suprachiasmatic nuclei. J. Biol. Chem. 274, 17748–17756.

    Article  PubMed  CAS  Google Scholar 

  • Obrietan, K., Impey, S. and Storm, D.R. (1998) Light and circadian rhythmicity regulate MAP kinase activation in the suprachiasmatic nuclei. Nat. Neurosci. 1, 693–700.

    Article  PubMed  CAS  Google Scholar 

  • Otmakhov, N., Griffith, L.C. and Lisman, J.E. (1997) Postsynaptic inhibitors of calcium/calmodulin-dependent protein kinase type II block induction but not maintenance of pairing-induced long-term potentiation. J. Neurosci. 17, 5357–5365.

    PubMed  CAS  Google Scholar 

  • Pennartz, C.M., Hamstra, R. and Geurtsen, A.M. (2001) Enhanced NMDA receptor activity in retinal inputs to the rat suprachiasmatic nucleus during the subjective night. J. Physiol. 532, 181–194.

    Article  PubMed  CAS  Google Scholar 

  • Pickard, G.E., Ralph, M.R. and Menaker, M. (1987) The intergeniculate leaflet partially mediates effects of light on circadian rhythms. J. Biol. Rhythms 2, 35–56.

    Article  PubMed  CAS  Google Scholar 

  • Pierrat, B., Correia, J.S., Mary, J.L., Tomas-Zuber, M. and Lesslauer, W. (1998) RSK-B, a novel ribosomal S6 kinase family member, is a CREB kinase under dominant control of p38alpha mitogen-activated protein kinase (p38alphaMAPK). J. Biol. Chem. 273, 29661–29671.

    Article  PubMed  CAS  Google Scholar 

  • Preitner, N., Damiola, F., Lopez-Molina, L., Zakany, J., Duboule, D., Albrecht, U. and Schibler, U. (2002) The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251–260.

    Article  PubMed  CAS  Google Scholar 

  • Reick, M., Garcia, J.A., Dudley, C. and McKnight, S.L. (2001) NPAS2: an analog of clock operative in the mammalian forebrain. Science 293, 506–509.

    Article  PubMed  CAS  Google Scholar 

  • Ripperger, J.A., Shearman, L.P., Reppert, S.M. and Schibler, U. (2000) CLOCK, an essential pacemaker component, controls expression of the circadian transcription factor DBP. Genes Dev. 14, 679–689.

    PubMed  CAS  Google Scholar 

  • Roberto, M. and Brunelli, M. (2000) PACAP-38 enhances excitatory synaptic transmission in the rat hippocampal CA1 region. Learn Mem. 7, 303–311.

    Article  PubMed  CAS  Google Scholar 

  • Romano, C., Sesma, M.A., McDonald, C.T., O’Malley, K., Van den Pol, A.N. and Olney, J.W. (1995) Distribution of metabotropic glutamate receptor mGluR5 immunoreactivity in rat brain. J. Comp. Neurol. 355, 455–469.

    Article  PubMed  CAS  Google Scholar 

  • Shearman, L.P., Jin, X., Lee, C., Reppert, S.M. and Weaver, D.R. (2000) Targeted disruption of the mPer3 gene: subtle effects on circadian clock function. Mol. Cell. Biol. 20, 6269–6275.

    Article  PubMed  CAS  Google Scholar 

  • Shen, M., Kawamoto, T., Teramoto, M., Makihira, S., Fujimoto, K., Yan, W., Noshiro, M. and Kato, Y. (2001) Induction of basic helix-loop-helix protein DEC1 (BHLHB2)/Stra13/Sharp2 in response to the cyclic adenosine monophosphate pathway. Eur. J. Cell. Biol. 80, 329–334.

    Article  PubMed  CAS  Google Scholar 

  • Shibata, S., Watanabe, A., Hamada, T., Ono, M. and Watanabe, S. (1994) N-methyl-D-aspartate induces phase shifts in circadian rhythm of neuronal activity of rat SCN in vitro. Am. J. Physiol. 267, R360-R364.

    PubMed  CAS  Google Scholar 

  • Soderling, T. R. (1996) Structure and regulation of calcium/calmodulin-dependent protein kinases II and IV. Biochim. Biophys. Acta 1297, 131–138.

    PubMed  Google Scholar 

  • Soderling, T. R., Chang, B. and Brickey, D. (2001) Cellular signaling through multifunctional Ca2+/calmodulin-dependent protein kinase II. J. Biol. Chem. 276, 3719–3722.

    Article  PubMed  CAS  Google Scholar 

  • Spengler, D., Waeber, C., Pantaloni, C., Holsboer, F., Bockaert, J., Seeburg, P.H. and Journot, L. (1993) Differential signal transduction by five splice variants of the PACAP receptor. Nature 365, 170–175.

    Article  PubMed  CAS  Google Scholar 

  • Sun, P., Enslen, H., Myung, P.S. and Maurer, R.A. (1994) Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev. 8, 2527–2539.

    Article  PubMed  CAS  Google Scholar 

  • Sun, P. and Maurer, R.A. (1995) An inactivating point mutation demonstrates that interaction of cAMP response element binding protein (CREB) with the CREB binding protein is not sufficient for transcriptional activation. J. Biol. Chem. 270, 7041–7044.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, H., Umeda, N., Tsutsumi, Y., Fukumura, R., Ohkaze, H., Sujino, M., van der Horst, G., Yasui, A., Inouye, S.T., Fujimori, A., Ohhata, T., Araki, R., and Abe, M. (2003) Mouse dexamethasone-induced RAS protein 1 gene is expressed in a circadian rhythmic manner in the suprachiasmatic nucleus. Brain Res. Mol. Brain Res. 110, 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, K., Shibuya, I., Harayama, N., Nomura, M., Kabashima, N., Ueta, Y. and Yamashita, H. (1997) Pituitary adenylate cyclase-activating polypeptide potentiation of Ca2+ entry via protein kinase C and A pathways in melanotrophs of the pituitary pars intermedia of rats. Endocrinology. 138, 4086–4095.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, K., Shibuya, I., Nagamoto, T., Yamashita, H. and Kanno, T. (1996) Pituitary adenylate cyclase-activating polypeptide causes rapid Ca2+ release from intracellular stores and long lasting Ca2+ influx mediated by Na+ influx-dependent membrane depolarization in bovine adrenal chromaffin cells. Endocrinology. 137, 956–966.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, B.L. and Zhulin, I.B. (1999) PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol. Mol. Biol. Rev. 63, 479–506.

    PubMed  CAS  Google Scholar 

  • Teramoto, M., Nakamasu, K., Noshiro, M., Matsuda, Y., Gotoh, O., Shen, M., Tsutsumi, S., Kawamoto, T., Iwamoto, Y. and Kato, Y. (2001) Gene structure and chromosomal location of a human bHLH transcriptional factor DEC1 x Stra13 x SHARP-2/BHLHB2. J. Biochem (Tokyo) 129, 391–396.

    CAS  Google Scholar 

  • Thankachan, S. and Rusak, B. (2005) Juxtacellular recording/labeling analysis of physiological and anatomical characteristics of rat intergeniculate leaflet neurons. J. Neurosci. 25, 9195–9204.

    Article  PubMed  CAS  Google Scholar 

  • Tischkau, S.A., Mitchell, J.W., Tyan, S.H., Buchanan, G.F. and Gillette, M.U. (2003) Ca2+/cAMP response element-binding protein (CREB)-dependent activation of Per1 is required for light-induced signaling in the suprachiasmatic nucleus circadian clock. J. Biol. Chem. 278, 718–723.

    Article  PubMed  CAS  Google Scholar 

  • Tischkau, S.A., Weber, E.T., Abbott, S.M., Mitchell, J.W. and Gillette, M.U. (2003) Circadian clock-controlled regulation of cGMP-protein kinase G in the nocturnal domain. J. Neurosci. 23, 7543–7550.

    PubMed  CAS  Google Scholar 

  • Travnickova-Bendova, Z., Cermakian, N., Reppert, S.M. and Sassone-Corsi, P. (2002) Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity. Proc. Natl. Acad. Sci. USA 99, 7728–7733.

    Article  PubMed  CAS  Google Scholar 

  • Van den Pol, A.N., Kogelman, L., Ghosh, P., Liljelund, P. and Blackstone, C. (1994) Developmental regulation of the hypothalamic metabotropic glutamate receptor mGluR1. J. Neurosci. 14, 3816–3834.

    PubMed  Google Scholar 

  • Van der Horst, G.T., Muijtjens, M., Kobayashi, K., Takano, R., Kanno, S., Takao, M., de Wit, J., Verkerk, A., Eker, A.P., van Leenen, D., Buijs, R., Bootsma, D., Hoeijmakers, J.H. and Yasui, A. (1999) Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398, 627–630.

    Article  PubMed  Google Scholar 

  • Vitaterna, M.H., King, D.P., Chang, A.M., Kornhauser, J.M., Lowrey, P.L., McDonald, J.D., Dove, W.F., Pinto, L.H., Turek, F.W. and Takahashi, J.S. (1994) Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264, 719–725.

    Article  PubMed  CAS  Google Scholar 

  • Von Gall, C., Duffield, G.E., Hastings, M.H., Kopp, M.D., Dhghani, F., Korf, H.W. and Stehle, J.H. (1998) CREB in the mouse SCN: a molecular interface coding the phase-adjusting stimuli light, glutamate, PACAP, and melatonin for clockwork access. J. Neurosci. 18, 10389–10397.

    Google Scholar 

  • Vrang, N., Mrosovsky, N. and Mikkelsen, J.D. (2003) Afferent projections to the hamster intergeniculate leaflet demonstrated by retrograde and anterograde tracing. Brain Res. Bull. 59, 267–288.

    Article  PubMed  Google Scholar 

  • Weber, E.T., Gannon, R.L. and Rea, M.A. (1995) cGMP-dependent protein kinase inhibitor blocks light-induced phase advances of circadian rhythms in vivo. Neurosci. Lett. 197, 227–230.

    Article  PubMed  CAS  Google Scholar 

  • Wickland, C. and Turek, F.W. (1994) Lesions of the thalamic intergeniculate leaflet block activity-induced phase shifts in the circadian activity rhythm of the golden hamster. Brain Res. 660, 293–300.

    Article  PubMed  CAS  Google Scholar 

  • Wollnik, F., Brysch, W., Uhlmann, E., Gillardon, F., Bravo, R., Zimmermann, M., Schlingensiepen, K.H. and Herdegen, T. (1995) Block of c-Fos and JunB expression by antisense oligonucleotides inhibits light-induced phase shifts of the mammalian circadian clock. Eur. J. Neurosci. 7, 388–393.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, S., Mitsui, S., Yan, L., Yagita, K., Miyake, S. and Okamura, H. (2000) Role of DBP in the circadian oscillatory mechanism. Mol. Cell. Biol. 20, 4773–4781.

    Article  PubMed  CAS  Google Scholar 

  • Yin, L., Wang, J., Klein, P.S. and Lazar, M.A. (2006) Nuclear receptor Rev-erbalpha is a critical lithium-sensitive component of the circadian clock. Science 311, 1002–1005.

    Article  PubMed  CAS  Google Scholar 

  • Yokota, S., Yamamoto, M., Moriya, T., Akiyama, M., Fukunaga, K., Miyamoto, E. and Shibata, S. (2001) Involvement of calcium-calmodulin protein kinase but not mitogen-activated protein kinase in light-induced phase delays and Per gene expression in the suprachiasmatic nucleus of the hamster. J. Neurochem. 77, 618–627.

    Article  PubMed  CAS  Google Scholar 

  • Yujnovsky, I., Hirayama, J.., Doi, M., Borrelli, E. and Sassone-Corsi, P. (2006) Signaling mediated by the dopamine D2 receptor potentiates circadian regulation by CLOCK:BMAL1. Proc. Natl. Acad. Sci. USA. 103, 6386–6391.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, C.F. and Guan, K.L. (1993) Cloning and characterization of two distinct human extracellular signal-regulated kinase activator kinases, MEK1 and MEK2. J. Biol. Chem. 268, 11435–11439.

    PubMed  CAS  Google Scholar 

  • Zheng, B., Larkin, D.W., Albrecht, U., Sun, Z.S., Sage, M., Eichele, G., Lee, C.C. and Bradley, A. (1999) The mPer2 gene encodes a functional component of the mammalian circadian clock. Nature 400, 169–173.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, B., Albrecht, U., Kaasik, K., Sage, M., Lu, W., Vaishnav, S., Li, Q., Sun, Z.S., Eichele, G., Bradley, A. and Lee, C.C. (2001) Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 105, 683–694.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mary Cheng, HY., Obrietan, K. (2008). Transcriptional Mechanisms Underlying the Mammalian Circadian Clock. In: Dudek, S.M. (eds) Transcriptional Regulation by Neuronal Activity. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73609-9_16

Download citation

Publish with us

Policies and ethics